CN112414936A - 一种隧道力学特征检测系统及方法 - Google Patents

一种隧道力学特征检测系统及方法 Download PDF

Info

Publication number
CN112414936A
CN112414936A CN202011245038.7A CN202011245038A CN112414936A CN 112414936 A CN112414936 A CN 112414936A CN 202011245038 A CN202011245038 A CN 202011245038A CN 112414936 A CN112414936 A CN 112414936A
Authority
CN
China
Prior art keywords
water pressure
drilling
strain
barrel
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011245038.7A
Other languages
English (en)
Other versions
CN112414936B (zh
Inventor
王剑宏
李佳
张学森
刘健
胡艳秋
齐辉
解全一
吕高航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Shandong High Speed Group Co Ltd
Original Assignee
Shandong University
Shandong High Speed Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University, Shandong High Speed Group Co Ltd filed Critical Shandong University
Priority to CN202011245038.7A priority Critical patent/CN112414936B/zh
Publication of CN112414936A publication Critical patent/CN112414936A/zh
Application granted granted Critical
Publication of CN112414936B publication Critical patent/CN112414936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明公开了一种隧道力学特征检测系统及方法,其技术方案为:包括钻孔模块、应变检测模块、水压检测模块,钻孔模块包括取芯筒,所述取芯筒连接驱动装置,在驱动装置能够为取芯筒提供旋转动力;所述取芯筒下方安装反力升降装置;应变检测模块包括用于贴附在钻孔表面的应变片,所述应变片连接应变接收仪;水压检测模块包括能够与钻孔配合的筒体,所述筒体内部固定水压传感器;筒体端部连接水压控制模块。本发明能够准确快速的获取隧道数据,测量结构准确。

Description

一种隧道力学特征检测系统及方法
技术领域
本发明涉及隧道检测领域,尤其涉及一种隧道力学特征检测系统及方法。
背景技术
隧道检测中的钻孔取样法是通过钻孔对隧道衬砌厚度、空洞深度及衬砌后地质情况进行观察,对取出来的混凝土试样进行强度检测,从而获得隧道衬砌的强度完成衬砌质量检测的一种方法。
随着近年来我国交通基础建设的逐步发展与完善,对隧道的运营期健康状况的检测变得愈发重要。发明人发现,仅通过钻孔取样法对衬砌试样的强度进行检测已不能满足实际工程的需要,还需要获取隧道衬砌的应力变化情况及衬砌背后水压的大小,以准确反算围岩的作用荷载。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种隧道力学特征检测系统及方法,能够准确快速的获取隧道衬砌应变数据,测量结构受力情况。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明的实施例提供了一种隧道力学特征检测系统,包括:
钻孔模块,包括取芯筒,所述取芯筒连接驱动装置,在驱动装置能够为取芯筒提供旋转动力;所述取芯筒一侧或下方安装反力升降装置;
应变检测模块,包括用于贴附在钻孔表面的应变片,所述应变片连接应变接收仪;
水压检测模块,包括能够与钻孔配合的筒体,所述筒体内部固定水压传感器;筒体端部连接水压控制模块。
作为进一步的实现方式,所述水压控制模块包括与筒体连通的输水管,所述输水管安装有排气阀和截止阀。
作为进一步的实现方式,还包括显示器,所述显示器与应变片、水压传感器通过无线连接。
作为进一步的实现方式,所述输水管与筒体的连接端安装有固定座。
作为进一步的实现方式,所述驱动装置与支撑架固定,所述反力升降装置连接于支撑架下方。
作为进一步的实现方式,所述驱动装置包括电机、伸缩杆,所述电机通过齿轮组与伸缩杆的一端相连,伸缩杆的另一端与取芯筒相连。
作为进一步的实现方式,所述反力升降装置包括反力拉杆,所述反力拉杆一端与支撑架转动连接,另一端连接支座。
作为进一步的实现方式,所述取芯筒端部具有齿状结构。
第二方面,本发明实施例还提供了一种隧道力学特征检测方法,采用所述的检测系统,包括:
确定待检测区域,将应变检测模块贴于待检测区域中心;
安装钻孔模块,并调整钻孔高度和钻孔深度;
使用钻孔模块进行钻孔,钻孔完毕后,取出试样及应变检测模块,并导出应变数据;
将筒体置于钻孔内,并安装水压检测模块;
关闭截止阀,打开排气阀,观察显示器读数,读数稳定时显示竖直即为水压值。
作为进一步的实施方式,钻孔过程可利用应变片检测衬砌应变释放过程,钻得的孔洞可安装水压检测装置检测衬砌背后水压变化情况,扩充了钻孔取样方法的适用范围。
上述本发明的实施例的有益效果如下:
(1)本发明的一个或多个实施方式的钻孔模块为水平方向固定的取芯筒,通过齿轮组调节钻孔方向,使钻孔过程更加稳定;并通过升降杆调节钻进高度、伸缩杆调整钻孔深度,对检测部位的定位更加精准;
(2)本发明的一个或多个实施方式能够利用钻孔取样的孔洞实现对隧道衬砌背后的水压进行测量,扩充了钻孔取样法的使用范围,获取隧道衬砌应变状态的同时,检测水压变化情况;
(3)本发明的一个或多个实施方式的输水管装有截止阀和排气阀,可控制水流的流动和管内水压的稳定,确保了测量结果的准确性;
(4)本发明的一个或多个实施方式能够准确高精度地监测钻孔取样过程中衬砌应力释放的全过程,可随着钻孔的过程实时记录衬砌应变变化情况,简化了试验装置,提高了数据获取精度。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明根据一个或多个实施方式的水压检测模块结构示意图;
图2是本发明根据一个或多个实施方式的筒体内部结构示意图;
图3是本发明根据一个或多个实施方式的钻孔模块安装示意图;
图4是本发明根据一个或多个实施方式的钻孔模块结构示意图;
图5是本发明根据一个或多个实施方式的流程图;
其中,1、筒体,2、固定座,3、输水管,4、排气阀,5、截止阀,6、显示器,7、应变片,8、水压传感器,9、螺栓,10、衬砌,11、取芯筒,12、电机,13、反力拉杆,14、支座,15、轴承,16、伸缩杆,17、齿轮组,18、支撑架,19、应变接收仪。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
为了方便叙述,本申请中如果出现“上”、“下”、“左”“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语解释部分:本申请中的术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或为一体;可以是直接连接,也可以是通过中间媒介间接相连,可以是两个元件内部连接,或者两个元件的相互作用关系,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的具体含义。
实施例一:
本实施例提供了一种隧道力学特征检测系统,包括钻孔模块、水压检测模块和应变检测模块,钻孔模块用于对待检测区域进行钻孔,水压检测模块用于检测隧道孔壁水压,应变检测模块用于检测钻孔过程中衬砌应变变化情况。
具体的,如图1和图2所示,水压检测模块包括筒体1、固定座2和水压控制模块,其中,水压控制模块包括水压传感器8、输水管3、显示器6。筒体1为圆筒,其内部为中空结构,水压传感器8固定于筒体1内壁,用于测量隧道孔壁的水压。所述水压传感器8通过无线方式与显示器6相连。
所述筒体1的末端安装固定座2,固定座2的横截面为圆形,其直径大于筒体1外径,以使固定座2能够位于钻孔外侧并与钻孔周围隧道衬砌固定。固定座2紧密贴合隧道衬砌表面,并通过螺栓9固定,降低了水流渗漏情况。固定座2的中心具有圆孔,固定座2通过圆孔与输水管3相连,以使输水管3与筒体1连通。
在本实施例中,输水管3为L形;所述输水管3上安装有排气阀4和截止阀5,排气阀4用于排出输水管3内部气体,保证其内部气压的稳定。截止阀5设置于远离筒体1的一端,确保水流稳定不渗漏。输水管3、排气阀4、截止阀5和显示器6组成水压控制模块。
输水管3、筒体1、固定座2均采用耐腐蚀性材料,在本实施例中,输水管3和筒体1的材料均为耐腐蚀密闭性好的铝塑复合材料,固定座2采用耐腐蚀的铜合金。当然,在其他实施例中,输水管3、筒体1、固定座2也可以选择其他材料。
如图3和图4所示,钻孔模块包括取芯筒11、驱动装置、反力升降装置、支撑架18,支撑架18起到连接驱动装置、反力升降装置并支撑取芯筒11的作用。在本实施例中,所述支撑架18呈U型结构,支撑架18的一端具有凸起块,所述凸起块开设有与取芯筒11相适配的弧形槽,所述弧形槽支撑于取芯筒11下方。
驱动装置包括电机12、齿轮组17、伸缩杆16,电机12的电机轴通过齿轮组17连接伸缩杆16的一端,伸缩杆16的另一端穿过支撑架18与取芯筒11相连;伸缩杆16与支撑架18之间安装轴承15。支撑架18的侧面开设有用于取芯筒11穿过的通孔,通过调整伸缩杆16的长度改变取芯筒11的伸出长度,从而改变钻孔深度。在本实施例中,齿轮组17包括两个相互啮合的齿轮。
取芯筒11沿水平方向固定,取芯筒11为圆筒状,其一端为开口,另一端封闭。取芯筒11的封闭端与伸缩杆16相连,取芯筒11的开口端具有齿状结构;具体的,取芯筒11端部均匀布置有若干钻齿,用于钻孔取样。取芯筒11的尺寸可以根据实际钻孔要求设置。
所述反力升降装置包括反力拉杆13、支座14,所述反力拉杆13与支撑架18的底部相连,用于调整钻孔方向。在本实施例中,反力拉杆13设置两个,且两个反力拉杆13关于支撑架18对称安装。反力拉杆13一端与支撑架18铰接,另一端与支座14铰接。使用时,通过支座14连接外部装置。
应变检测模块为应变片7,使用时贴于衬砌10处需钻孔区域的中心位置,用于检测衬砌应变情况,并记录钻孔过程中衬砌应力释放情况。应变片7的导线从取芯筒11内部穿出,并通过轴承15固定,与应变接收仪19相连,可有效地降低钻孔模块旋转过程对导线的影响。
实施例二:
如图5所示,本实施例还提供了一种隧道力学特征检测方法,采用实施例一所述的检测系统,包括:
(1)先检测装置是否有足够的电量,并使其处于开启状态。
(2)确认隧道内需要进行检测的部位,并在该处划出与筒体1直径一致的圆形区域。
(3)将应变片7贴于待检测区域中心,将导线从取芯筒11内穿出,并与应变采集仪19相连。
(4)安装取芯筒11,通过反力拉杆调节取芯筒11方向,通过伸缩杆16调节钻孔深度。
(5)使用钻孔模块钻孔,钻孔时取芯筒11的圆心应与划线圆周同心,如果发现偏心,应及时校正。
(6)钻孔完毕后,取出钻孔模块中混凝土试样与应变片7,导出应变数据。
(7)通过实验室内测得的衬砌材料弹性模量,利用公式σ=E·ε计算分析应力变化及应力释放情况,检测是否有异常数据波动。
(8)将筒体1放置于孔洞内,安装固定座2,关闭截止阀5,打开排气阀4。
(9)观察显示器6,直至其读数趋于稳定,此时测得的数值即为衬砌背后水压值,分析其是否超过水压阈值。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种隧道力学特征检测系统,其特征在于,包括:
钻孔模块,包括取芯筒,所述取芯筒连接驱动装置,在驱动装置能够为取芯筒提供旋转动力;所述取芯筒下方安装反力升降装置;
应变检测模块,包括用于贴附在钻孔表面的应变片,所述应变片连接应变接收仪;
水压检测模块,包括能够与钻孔配合的筒体,所述筒体内部固定水压传感器;筒体端部连接水压控制模块。
2.根据权利要求1所述的一种隧道力学特征检测系统,其特征在于,所述水压控制模块包括与筒体连通的输水管,所述输水管安装有排气阀和截止阀。
3.根据权利要求2所述的一种隧道力学特征检测系统,其特征在于,还包括显示器,所述显示器与水压传感器、应变片通过无线连接。
4.根据权利要求2所述的一种隧道力学特征检测系统,其特征在于,所述输水管与筒体的连接端安装有固定支座。
5.根据权利要求1所述的一种隧道力学特征检测系统,其特征在于,所述驱动装置与支撑架固定,所述反力升降装置连接于支撑架下方。
6.根据权利要求1或5所述的一种隧道力学特征检测系统,其特征在于,所述驱动装置包括电机、伸缩杆,所述电机通过齿轮组与伸缩杆的一端相连,伸缩杆的另一端与取芯筒相连。
7.根据权利要求1或5所述的一种隧道力学特征检测系统,其特征在于,所述反力升降装置包括反力拉杆,所述反力拉杆一端与支撑架转动连接,另一端连接支座。
8.根据权利要求1所述的一种隧道力学特征检测系统,其特征在于,所述取芯筒端部具有齿状结构。
9.一种隧道力学特征检测方法,其特征在于,采用如权利要求1-8任一所述的检测系统,包括:
确定待检测区域,将应变检测模块贴于待检测区域中心;
安装钻孔模块,并调整钻孔高度和钻孔深度;
使用钻孔模块进行钻孔,钻孔完毕后,取出试样及应变检测模块,并导出应变数据;
将筒体置于钻孔内,并安装水压检测模块;
关闭截止阀,打开排气阀,观察显示器读数,读数稳定时显示竖直即为水压值。
10.根据权利要求9所述的一种隧道力学特征检测方法,其特征在于,钻孔过程可利用应变片检测衬砌应变释放过程,钻得的孔洞可安装水压检测装置检测衬砌背后水压变化情况。
CN202011245038.7A 2020-11-10 2020-11-10 一种隧道力学特征检测系统及方法 Active CN112414936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011245038.7A CN112414936B (zh) 2020-11-10 2020-11-10 一种隧道力学特征检测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011245038.7A CN112414936B (zh) 2020-11-10 2020-11-10 一种隧道力学特征检测系统及方法

Publications (2)

Publication Number Publication Date
CN112414936A true CN112414936A (zh) 2021-02-26
CN112414936B CN112414936B (zh) 2021-10-08

Family

ID=74781235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011245038.7A Active CN112414936B (zh) 2020-11-10 2020-11-10 一种隧道力学特征检测系统及方法

Country Status (1)

Country Link
CN (1) CN112414936B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778107A (en) * 1972-01-03 1973-12-11 Ameron Inc Remote-controlled boring machine for boring horizontal tunnels and method
CN101240707A (zh) * 2008-03-13 2008-08-13 上海交通大学 地质钻孔孔壁围岩应变测量装置
US20090013796A1 (en) * 2007-07-12 2009-01-15 Doleski Robert F Test apparatus to determine the shear strength of a composite sandwich beam under a high hydrostatic load
CN202693398U (zh) * 2012-06-28 2013-01-23 中国地质科学院地质力学研究所 深埋隧道围岩稳定性监测模拟试验装置
CN103454020A (zh) * 2013-08-15 2013-12-18 中国矿业大学 基于光纤光栅钻孔应力计的围岩应力在线监测系统及方法
CN104763432A (zh) * 2015-01-27 2015-07-08 安徽理工大学 一种高应力巷道围岩卸压控制大变形的方法
CN105179009A (zh) * 2015-08-27 2015-12-23 重庆大学 富水岩溶隧道衬砌外水压力测试装置及测试方法
CN105841853A (zh) * 2016-03-30 2016-08-10 广西大学 一种新型环芯测试混凝土现存应力的装置
CN205642679U (zh) * 2016-05-06 2016-10-12 中国矿业大学(北京) 一种新型地应力测试装置
CN106353120A (zh) * 2016-09-06 2017-01-25 中国水利水电科学研究院 模拟隧道内水压力的试验装置及方法
CN206920249U (zh) * 2017-04-12 2018-01-23 西南交通大学 用于输水隧道结构模型试验的内水压加载设备
CN208283101U (zh) * 2018-05-09 2018-12-25 贵州省质安交通工程监控检测中心有限责任公司 一种两用式可调节取芯机
CN109519121A (zh) * 2018-12-10 2019-03-26 重庆宏工工程机械股份有限公司 隧道取芯钻孔机
CN109696263A (zh) * 2019-02-21 2019-04-30 广西大学 一种测试混凝土现存应力的装置及测试方法
CN110736577A (zh) * 2019-10-23 2020-01-31 江苏科技大学 一种测量船用柴油机机身表面应力分布规律的方法
CN210375772U (zh) * 2019-06-24 2020-04-21 郑庆萌 一种市政工程检测用混凝土路面钻孔取芯装置
CN210482269U (zh) * 2019-06-13 2020-05-08 中铁第四勘察设计院集团有限公司 盾构施工的加固土体强度检测装置
CN111271122A (zh) * 2020-03-25 2020-06-12 上海同岩土木工程科技股份有限公司 一种衬砌外水压力的监测方法
CN111706355A (zh) * 2020-07-27 2020-09-25 四川省公路规划勘察设计研究院有限公司 适用于大变形围岩的隧道结构及隧道围岩大变形控制方法
CN111811923A (zh) * 2020-06-28 2020-10-23 中铁第一勘察设计院集团有限公司 一种地应力测量的滞弹性应变恢复法柔度比测试系统和测试方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778107A (en) * 1972-01-03 1973-12-11 Ameron Inc Remote-controlled boring machine for boring horizontal tunnels and method
US20090013796A1 (en) * 2007-07-12 2009-01-15 Doleski Robert F Test apparatus to determine the shear strength of a composite sandwich beam under a high hydrostatic load
CN101240707A (zh) * 2008-03-13 2008-08-13 上海交通大学 地质钻孔孔壁围岩应变测量装置
CN202693398U (zh) * 2012-06-28 2013-01-23 中国地质科学院地质力学研究所 深埋隧道围岩稳定性监测模拟试验装置
CN103454020A (zh) * 2013-08-15 2013-12-18 中国矿业大学 基于光纤光栅钻孔应力计的围岩应力在线监测系统及方法
CN104763432A (zh) * 2015-01-27 2015-07-08 安徽理工大学 一种高应力巷道围岩卸压控制大变形的方法
CN105179009A (zh) * 2015-08-27 2015-12-23 重庆大学 富水岩溶隧道衬砌外水压力测试装置及测试方法
CN105841853A (zh) * 2016-03-30 2016-08-10 广西大学 一种新型环芯测试混凝土现存应力的装置
CN205642679U (zh) * 2016-05-06 2016-10-12 中国矿业大学(北京) 一种新型地应力测试装置
CN106353120A (zh) * 2016-09-06 2017-01-25 中国水利水电科学研究院 模拟隧道内水压力的试验装置及方法
CN206920249U (zh) * 2017-04-12 2018-01-23 西南交通大学 用于输水隧道结构模型试验的内水压加载设备
CN208283101U (zh) * 2018-05-09 2018-12-25 贵州省质安交通工程监控检测中心有限责任公司 一种两用式可调节取芯机
CN109519121A (zh) * 2018-12-10 2019-03-26 重庆宏工工程机械股份有限公司 隧道取芯钻孔机
CN109696263A (zh) * 2019-02-21 2019-04-30 广西大学 一种测试混凝土现存应力的装置及测试方法
CN210482269U (zh) * 2019-06-13 2020-05-08 中铁第四勘察设计院集团有限公司 盾构施工的加固土体强度检测装置
CN210375772U (zh) * 2019-06-24 2020-04-21 郑庆萌 一种市政工程检测用混凝土路面钻孔取芯装置
CN110736577A (zh) * 2019-10-23 2020-01-31 江苏科技大学 一种测量船用柴油机机身表面应力分布规律的方法
CN111271122A (zh) * 2020-03-25 2020-06-12 上海同岩土木工程科技股份有限公司 一种衬砌外水压力的监测方法
CN111811923A (zh) * 2020-06-28 2020-10-23 中铁第一勘察设计院集团有限公司 一种地应力测量的滞弹性应变恢复法柔度比测试系统和测试方法
CN111706355A (zh) * 2020-07-27 2020-09-25 四川省公路规划勘察设计研究院有限公司 适用于大变形围岩的隧道结构及隧道围岩大变形控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LISA HERNQVIST等: "A statistical grouting decision method based on water pressure tests for the tunnel construction stage–A case study", 《TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY》 *
谭忠盛等: "无纺布对海底隧道衬砌防水作用的试验研究", 《岩土力学》 *

Also Published As

Publication number Publication date
CN112414936B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN211627239U (zh) 一种自动化钻孔剪切仪
CN104089826B (zh) 深孔内土体压缩变形模量及强度的测试装置及其测试方法
CN111238868A (zh) 一种智能取土器
CN112414936B (zh) 一种隧道力学特征检测系统及方法
CN205027606U (zh) 一种直接测量冻结土体抗拉强度的试验装置
CN113898412A (zh) 一种基于地铁水平冻结的冻胀力监测方法
CN114264546B (zh) 自平衡液压系统、岩石试件表面法向位移监测装置及方法
CN208140522U (zh) 电动六速旋转粘度计
CN111198131A (zh) 一种拉伸载荷下材料体积膨胀特性的测量装置和测量方法
CN101245700B (zh) 钻孔测斜仪探头
CN110031325A (zh) 一种桩身应力测试系统和方法
CN116335103A (zh) 一种土体原位测试装置、系统及方法
CN206917642U (zh) 油气水三相驱替可视化实验装置
CN213838606U (zh) 钻孔孔径测量装置
CN213422074U (zh) 一种风电齿轮箱箱体轴承孔同心度塔上检测工装
CN205192426U (zh) 圆孔内壁环向应变计
CN110530255B (zh) 一种地应力测试用橡皮叉式三轴应变计线缆连接装置、三轴应变计及其使用方法
CN209820760U (zh) 一种基于三重校验的高精度气液联动执行器扭矩测试台
CN114739279A (zh) 一种验证电涡流位移传感器动态测试精度的装置及方法
CN210712984U (zh) 一种模型试验中桩基承载力自平衡测试装置
CN212622589U (zh) 一种试验用简易填土密实度测试装置
JP4167912B2 (ja) 岩盤応力測定装置
CN110761785A (zh) 一种带有玻璃视窗的保压舱结构
CN210400663U (zh) 橡皮叉式三轴应变计线缆连接装置及三轴应变计
CN217084478U (zh) 一种深部岩石力学特性测定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant