CN112408968A - 一种生物活性3d打印陶瓷及其制备方法 - Google Patents

一种生物活性3d打印陶瓷及其制备方法 Download PDF

Info

Publication number
CN112408968A
CN112408968A CN202011267079.6A CN202011267079A CN112408968A CN 112408968 A CN112408968 A CN 112408968A CN 202011267079 A CN202011267079 A CN 202011267079A CN 112408968 A CN112408968 A CN 112408968A
Authority
CN
China
Prior art keywords
ceramic
slurry
printing
bioactive
calcium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011267079.6A
Other languages
English (en)
Other versions
CN112408968B (zh
Inventor
蔡林
闫飞飞
张铁
陈衍
马菲菲
刘智博
黄华溢
张梦雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202011267079.6A priority Critical patent/CN112408968B/zh
Publication of CN112408968A publication Critical patent/CN112408968A/zh
Application granted granted Critical
Publication of CN112408968B publication Critical patent/CN112408968B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5007Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
    • C04B41/5014Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于生物医用材料领域,具体涉及一种生物活性3D打印陶瓷及其制备方法。所述生物活性3D打印陶瓷由3D打印硅酸钙陶瓷支架和硫酸钙基修复组分组成。本发明所述的生物陶瓷具有良好的生物活性、降解性能和成骨性能,可实现个性化定制,满足病人的各种需求。

Description

一种生物活性3D打印陶瓷及其制备方法
技术领域
本发明属于生物医用材料领域,具体涉及一种生物活性3D打印陶瓷及其制备方法。
背景技术
3D打印作为新兴的制造技术,经过近些年的迅速发展,运用到了各行各业,由于其独特的成型优势,在医疗行业有着不可替代的地位。其中选择性激光烧结(SLS)技术已经运用在金属医疗器械的制造成型上,在治疗效果上显示出较传统工艺更为满意的结果。常用的3D打印技术还有熔融沉积成型(FDM)和立体光刻(SLA)技术,其中SLA具有更高的精度,能够完成更为复杂的模型打印。
传统的生物陶瓷材料的主要成分为磷酸钙和羟基磷灰石,该类陶瓷具有较好的生物相容性和力学性能,但是降解性能很差,无生物活性,植入体内后难以降解,阻碍新骨的形成。目前在3D打印陶瓷的研究中,研究者通过增加材料的孔隙率来加快材料的降解速度和成骨性能,但是结果往往不太理想。所以开发一种具有良好降解性能和生物活性的生物陶瓷有着重要的意义。
发明内容
本发明针对现有生物陶瓷材料降解性能差,无生物活性的问题,提供一种生物活性3D打印陶瓷。
为达到上述目的,本发明采用如下技术方案:
一种生物活性3D打印陶瓷,其由3D打印的硅酸钙陶瓷支架和填充于硅酸钙陶瓷支架孔隙中的硫酸钙基修复组分组成。
本发明还包括所述生物活性3D打印陶瓷的制备方法,包括如下步骤:
(1)将硅酸钙粉料添加到光敏树脂预混液中,按体积份计分别为:硅酸钙粉料60~80份,光敏树脂预混液20~40份,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)将步骤(1)中所述陶瓷浆料倾倒进立体光固化成型打印机的料桶中;
(3)使用三维建模软件创建多孔模型,并保存为STL格式;
(4)将STL格式模型导入立体光固化成型打印机中;
(5)调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(6)将步骤(5)中所述陶瓷支架素坯置于马弗炉中脱脂烧结,得到3D打印硅酸钙陶瓷支架;
(7)将半水硫酸钙与水按照1g/0.23~0.50mL比例混合成泥浆;
(8)将步骤(6)中得到的所述3D打印硅酸钙陶瓷支架放入步骤(7)中所述的泥浆中,搅拌或者超声处理使得泥浆填充到3D打印陶瓷支架的孔隙中;
(9)取出步骤(8)中得到的样品,清除表面多余泥浆,常温固化12~24h,然后在60~80℃下干燥至恒重,得到生物活性3D打印生物陶瓷。
进一步地,所述步骤(7)中所述泥浆的另一种组成为将95~99.9份半水硫酸钙和0.1~5份功能性材料混合成复合物,并将所述复合物与水按照1g/0.23~0.50mL比例混合成泥浆。
进一步地,所述功能性材料为抗生素和/或去铁胺和/或镁盐和/或锶盐。
进一步地,所述步骤(6)中所述3D打印硅酸钙陶瓷支架的孔隙率为20%~75%。
进一步地,所述步骤(6)中所述陶瓷支架素坯的脱脂烧结条件为:30℃~300℃升温速率为0.5℃/min~10℃/min,保温2小时;300℃~600℃升温速率为0.5℃/min~10℃/min,保温2小时;600℃~t℃升温速率为2℃~5℃/min,保温2小时;t℃~室温自然冷却,t为1100℃~1200℃。
本发明有益效果:本发明中,采用硫酸钙和硅酸钙作为原料。相比较于磷酸钙类陶瓷,该生物陶瓷具有良好的降解性能和成骨性能,确保植骨区最终完全被新骨替代。单独的硅酸钙的生物活性较差,只能在表面形成少量的羟基磷灰石,通过与硫酸钙结合,提高钙离子的释放速度,可以在表面形成生物矿化层,增加其生物活性,有利于骨细胞的附着,从而促进骨生长。其次,硅酸钙的主要缺点是降解导致周围环境的pH值升高并对细胞生长产生负面影响,复合硫酸钙(偏酸性)可以显著降低植入环境的ph有利于细胞的生长。同时,硫酸钙良好的自固化性能可以将其与抗生素、去铁胺、镁盐、锶盐等功能性材料复合,在降解过程中能够缓慢释放功能性离子或药物,能够更加有效发挥材料的功能,如去铁胺的促血管化功能。
本发明中,采用立体光固化成型3D打印技术,能够实现产品的微结构仿生,结构多样化,并实现临床定制。相比较于其他的成型方式,产品精度高,具有较好的力学强度,原材料利用率高,易于实现大规模生产。
附图说明
图1为本发明所述生物活性3D打印陶瓷的外观,实施例2(1a),实施例4(1b)。
图2为本发明所述生物活性3D打印陶瓷的XRD曲线图,实施例2(2a),实施例4(2b)。
图3为本发明实施例4所述生物活性3D打印陶瓷的截面SEM图(3a)和浸泡模拟体液4周后的SEM图(3b)。
图4为本发明所述生物活性3D打印陶瓷的SD大白鼠颅骨缺损植入12周micro-CT图,实施例2(4a)和(4d),实施例4(4b)和(4e),实施例6(4c)和(4f)。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
(1)陶瓷浆料制备:将70份硅酸钙粉料添加到30份光敏树脂预混液中,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)打印成型:浆料倾倒进立体光固化成型打印机的料桶中,将STL格式模型导入立体光固化成型打印机中,调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(3)将陶瓷支架素坯置于马弗炉中脱脂烧结,脱脂烧结制度设置为:30~300℃升温速率为5℃/min,保温2小时,300~600℃升温速率为5℃/min,保温2小时,600~1100℃升温速率为3℃/min,保温2小时,1100℃~室温自然冷却,得到3D打印硅酸钙陶瓷支架;
陶瓷的抗压强度为16±2MPa,重金属总量(以铅计)<50ppm。
实施例2
(1)陶瓷浆料制备:将70份硅酸钙粉料添加到30份光敏树脂预混液中,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)打印成型:浆料倾倒进立体光固化成型打印机的料桶中,将STL格式模型导入立体光固化成型打印机中,调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(3)将陶瓷支架素坯置于马弗炉中脱脂烧结,脱脂烧结制度设置为:30~300℃升温速率为5℃/min,保温2小时,300~600℃升温速率为5℃/min,保温2小时,600~1200℃升温速率为3℃/min,保温2小时,1200℃~室温自然冷却,得到3D打印硅酸钙陶瓷支架;
陶瓷的抗压强度为22±3MPa,重金属总量(以铅计)<50ppm。
实施例3
(1)陶瓷浆料制备:将70份硅酸钙粉料添加到30份光敏树脂预混液中,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)打印成型:浆料倾倒进立体光固化成型打印机的料桶中,将STL格式模型导入立体光固化成型打印机中,调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(3)将陶瓷支架素坯置于马弗炉中脱脂烧结,脱脂烧结制度设置为:30~300℃升温速率为5℃/min,保温2小时,300~600℃升温速率为5℃/min,保温2小时,600~1100℃升温速率为3℃/min,保温2小时,1100℃~室温自然冷却,得到3D打印硅酸钙陶瓷支架;
(4)将半水硫酸钙与水按照1g/0.30mL比例混合成泥浆,将3D打印硅酸钙陶瓷支架放入泥浆中,超声处理将泥浆填充到支架的孔隙中;
(5)取出样品,清除表面多余泥浆,常温固化24h,然后在60℃下干燥至恒重,得到生物活性3D打印生物陶瓷。
陶瓷的抗压强度为20±3MPa,重金属总量(以铅计)<50ppm。
实施例4
(1)陶瓷浆料制备:将70份硅酸钙粉料添加到30份光敏树脂预混液中,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)打印成型:浆料倾倒进立体光固化成型打印机的料桶中,将STL格式模型导入立体光固化成型打印机中,调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(3)将陶瓷支架素坯置于马弗炉中脱脂烧结,脱脂烧结制度设置为:30~300℃升温速率为5℃/min,保温2小时,300~600℃升温速率为5℃/min,保温2小时,600~1200℃升温速率为3℃/min,保温2小时,1200℃~室温自然冷却,得到3D打印硅酸钙陶瓷支架;
(4)将半水硫酸钙与水按照1g/0.30mL比例混合成泥浆,将3D打印硅酸钙陶瓷支架放入泥浆中,超声处理将泥浆填充到支架的孔隙中;
(5)取出样品,清除表面多余泥浆,常温固化24h,然后在60℃下干燥至恒重,得到生物活性3D打印生物陶瓷。
陶瓷的抗压强度为28±3MPa,重金属总量(以铅计)<50ppm。
实施例5
(1)陶瓷浆料制备:将72份硅酸钙粉料添加到28份光敏树脂预混液中,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)打印成型:浆料倾倒进立体光固化成型打印机的料桶中,将STL格式模型导入立体光固化成型打印机中,调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(3)将陶瓷支架素坯置于马弗炉中脱脂烧结,脱脂烧结制度设置为:30~300℃升温速率为5℃/min,保温2小时,300~600℃升温速率为5℃/min,保温2小时,600~1200℃升温速率为3℃/min,保温2小时,1200℃~室温自然冷却,得到3D打印硅酸钙陶瓷支架;
(4)将半水硫酸钙与水按照1g/0.23mL比例混合成泥浆,将3D打印硅酸钙陶瓷支架放入泥浆中,超声处理将泥浆填充到支架的孔隙中;
(5)取出样品,清除表面多余泥浆,常温固化24h,然后在60℃下干燥至恒重,得到生物活性3D打印生物陶瓷。
陶瓷的抗压强度为30±4MPa,重金属总量(以铅计)<50ppm。
实施例6
(1)陶瓷浆料制备:将70份硅酸钙粉料添加到30份光敏树脂预混液中,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)打印成型:浆料倾倒进立体光固化成型打印机的料桶中,将STL格式模型导入立体光固化成型打印机中,调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(3)将陶瓷支架素坯置于马弗炉中脱脂烧结,脱脂烧结制度设置为:30~300℃升温速率为5℃/min,保温2小时,300~600℃升温速率为5℃/min,保温2小时,600~1200℃升温速率为3℃/min,保温2小时,1200℃~室温自然冷却,得到3D打印硅酸钙陶瓷支架;
(4)将99.8份半水硫酸钙和0.2份去铁胺的复合物与水按照1g/0.30mL比例混合成泥浆,将3D打印硅酸钙陶瓷支架放入泥浆中,超声处理将泥浆填充到支架的孔隙中;
(5)取出样品,清除表面多余泥浆,常温固化24h,然后在60℃下干燥至恒重,得到生物活性3D打印生物陶瓷。
陶瓷的抗压强度为28±3MPa,重金属总量(以铅计)<50ppm。
由于开放性骨折是往往会导致骨缺损和细菌感染等并发症,在局部植骨区域负载缓释抗生素可以起到抗感染的作用。此外,镁盐、锶盐等离子在局部的缓慢释放可以促进成骨和血管生成,这些生物活性元素通过与宿主微环境之间的相互作用直接影响骨修复的过程和质量。
图1为本发明所述生物活性3D打印陶瓷的外观,可以看到可以通过3D打印技术将样品制备成较为复杂的形态,并且结合CT和核磁共振等技术可实现个性化定制。
图2为本发明所述生物活性3D打印陶瓷的XRD曲线图,(2a)的波峰为硅酸钙的特征峰,(2b)波峰为硅酸钙、半水硫酸钙和二水硫酸钙的特征峰,无其他杂质峰。
图3为本发明所述生物活性3D打印陶瓷的表面SEM图(3a)和浸泡模拟体液4周后的SEM图(3b),可以看到陶瓷表面有很多微孔结构;浸泡到模拟体液后,表面形成大量颗粒状羟基磷灰石,有助于成骨细胞的黏附,加速骨愈合。
图4为本发明所述生物活性3D打印陶瓷的SD大白鼠颅骨缺损植入12周micro-CT图,(4a)、(4b)和(4c)均观察到一定程度的降解,(4a)表面无矿化层,(4b)和(4c)表面形成矿化层,(4c)具有更优的成骨效果,说明添加硫酸钙能够增加硅酸钙的矿化能力,去铁胺能够增加材料的成骨能力;(4f)相对于(4d)和(4e)具有更好的血管化效果,说明去铁胺能够促血管化,从而促进成骨。
本发明所述陶瓷可以通过3D打印技术,实现仿生结构的制备,同时还可以依据患者病情实现临床定制,减轻患者痛苦,制备的陶瓷具有较高的力学强度,起到一定的力学支撑的作用。在降解的过程中,其中硫酸钙会优先降解,形成局部微酸环境,加速诱导因子的释放,同时在材料表面形成羟基磷灰石,有利于成骨细胞的附着,促进骨生长。
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (6)

1.一种生物活性3D打印陶瓷,其特征在于,其由3D打印的硅酸钙陶瓷支架和填充于硅酸钙陶瓷支架孔隙中的硫酸钙基修复组分组成。
2.根据权利要求1所述的一种生物活性3D打印陶瓷的制备方法,其特征在于,包括如下步骤:
(1)将硅酸钙粉料添加到光敏树脂预混液中,按体积份计分别为:硅酸钙粉料60~80份,光敏树脂预混液20~40份,常压搅拌,使得各组分分散均匀,得到陶瓷浆料;
(2)将步骤(1)中所述陶瓷浆料倾倒进立体光固化成型打印机的料桶中;
(3)使用三维建模软件创建多孔模型,并保存为STL格式;
(4)将STL格式模型导入立体光固化成型打印机中;
(5)调整光固化打印参数使陶瓷浆料逐层堆积叠加成型,清洗掉未固化浆料,得到陶瓷支架素坯;
(6)将步骤(5)中所述陶瓷支架素坯置于马弗炉中脱脂烧结,得到3D打印硅酸钙陶瓷支架;
(7)将半水硫酸钙与水按照1g/0.23~0.50mL比例混合成泥浆;
(8)将步骤(6)中得到的所述3D打印硅酸钙陶瓷支架放入步骤(7)中所述的泥浆中,搅拌或者超声处理使得泥浆填充到3D打印陶瓷支架的孔隙中;
(9)取出步骤(8)中得到的样品,清除表面多余泥浆,常温固化12~24h,然后在60~80℃下干燥至恒重,得到生物活性3D打印生物陶瓷。
3.根据权利要求2所述的一种生物活性3D打印陶瓷的制备方法,其特征在于,所述步骤(7)中所述泥浆的另一种组成为将95~99.9份半水硫酸钙和0.1~5份功能性材料混合成复合物,并将所述复合物与水按照1g/0.23~0.50mL比例混合成泥浆。
4.根据权利要求3所述的一种生物活性3D打印陶瓷的制备方法,其特征在于,所述功能性材料为抗生素和/或去铁胺和/或镁盐和/或锶盐。
5.根据权利要求2、3或4所述的一种生物活性3D打印陶瓷的制备方法,其特征在于,所述步骤(6)中所述3D打印硅酸钙陶瓷支架的孔隙率为20%~75%。
6.根据权利要求2、3或4所述的一种生物活性3D打印陶瓷的制备方法,其特征在于,所述步骤(6)中所述陶瓷支架素坯的脱脂烧结条件为:30℃~300℃升温速率为0.5℃/min~10℃/min,保温2小时;300℃~600℃升温速率为0.5℃/min~10℃/min,保温2小时;600℃~t℃升温速率为2℃~5℃/min,保温2小时;t℃~室温自然冷却,t为1100℃~1200℃。
CN202011267079.6A 2020-11-13 2020-11-13 一种生物活性3d打印陶瓷及其制备方法 Active CN112408968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011267079.6A CN112408968B (zh) 2020-11-13 2020-11-13 一种生物活性3d打印陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011267079.6A CN112408968B (zh) 2020-11-13 2020-11-13 一种生物活性3d打印陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112408968A true CN112408968A (zh) 2021-02-26
CN112408968B CN112408968B (zh) 2021-09-24

Family

ID=74831157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011267079.6A Active CN112408968B (zh) 2020-11-13 2020-11-13 一种生物活性3d打印陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112408968B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559326A (zh) * 2021-05-14 2021-10-29 南京航空航天大学 一种硅酸钙/硅酸镁生物骨多孔植入物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068272A1 (en) * 2006-04-25 2009-03-12 Washington State University Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents
CN102633287A (zh) * 2012-04-05 2012-08-15 中国科学院宁波材料技术与工程研究所 医用α-半水硫酸钙粉体及硫酸钙人工骨材料的制备方法
CN104649284A (zh) * 2015-02-05 2015-05-27 华东理工大学 介孔硅酸镁、半水硫酸钙复合材料及其制备方法和应用
CN110227178A (zh) * 2019-07-30 2019-09-13 广东工业大学 一种生物陶瓷支架及其应用
CN110615676A (zh) * 2019-09-30 2019-12-27 季华实验室 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068272A1 (en) * 2006-04-25 2009-03-12 Washington State University Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents
CN102633287A (zh) * 2012-04-05 2012-08-15 中国科学院宁波材料技术与工程研究所 医用α-半水硫酸钙粉体及硫酸钙人工骨材料的制备方法
CN104649284A (zh) * 2015-02-05 2015-05-27 华东理工大学 介孔硅酸镁、半水硫酸钙复合材料及其制备方法和应用
CN110227178A (zh) * 2019-07-30 2019-09-13 广东工业大学 一种生物陶瓷支架及其应用
CN110615676A (zh) * 2019-09-30 2019-12-27 季华实验室 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559326A (zh) * 2021-05-14 2021-10-29 南京航空航天大学 一种硅酸钙/硅酸镁生物骨多孔植入物及其制备方法和应用

Also Published As

Publication number Publication date
CN112408968B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
CN111070376B (zh) 一种3d打印仿生多孔生物陶瓷人工骨及其制备方法
Vorndran et al. 3D printing of ceramic implants
CN109650909A (zh) 一种基于光固化3d打印技术的磷酸钙骨诱导生物陶瓷支架及其制备方法
CN106178105B (zh) 一种表面多孔的医用聚醚醚酮及其制备方法和应用
CN107185033A (zh) 一种抗感染生物陶瓷人工骨及其应用
WO2008095307A1 (en) Bioceramic implants having bioactive substance
KR101357673B1 (ko) 인산 마그네슘을 포함하는 경조직 재생용 지지체 조성물, 이를 포함하는 경조직 재생용 지지체 및 이들의 제조방법
CN109650872A (zh) 一种基于自由挤出式3d打印技术的磷酸钙多孔生物陶瓷支架及其制备方法
CN113262325B (zh) 一种3d打印定制程序化特异生物功能促进骨组织修复再生支架材料及其制备方法
CN114956803B (zh) 一种基于3d打印的骨诱导磷酸钙陶瓷及制备方法和应用
Liu Fabrication of bioceramic bone scaffolds for tissue engineering
CN112408968B (zh) 一种生物活性3d打印陶瓷及其制备方法
CN111773432A (zh) 镁基非晶-磷酸钙/硅酸钙复合填充物及其制备与应用
CN114560691A (zh) 抗菌型的光固化3d打印生物陶瓷材料及其制备方法与应用
Liu et al. Advances in the use of calcium silicate-based materials in bone tissue engineering
CN100506292C (zh) 一种多孔结构钛种植体及制备方法
CN114404656A (zh) 核-壳结构纤维功能无机生物材料、制备方法及应用
KR20160136345A (ko) 기능성 인자를 함유하는 나노 스캐폴드 및 이의 제조방법
Ivanchenko et al. Making calcium phosphate biomaterials
EP2933241B1 (en) Method for producing a porous calcium polyphosphate structure
CN112220964A (zh) 一种复合生物陶瓷粉及其制备的复合生物陶瓷人工骨和制备方法
CN112603603A (zh) 一种兼具有抗菌和促骨作用的个性化假体及其制造方法
CN112552035A (zh) 一种可诱导生物活性3d打印陶瓷及其制备方法
CN109331222B (zh) 可原位形成3d多孔支架的骨修复材料及其制备和应用
CN110755682A (zh) 含生物玻璃的硫酸钙骨水泥及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant