CN112393398A - 用于双制冷式空调的控制方法、控制装置及双制冷式空调 - Google Patents

用于双制冷式空调的控制方法、控制装置及双制冷式空调 Download PDF

Info

Publication number
CN112393398A
CN112393398A CN202011091821.2A CN202011091821A CN112393398A CN 112393398 A CN112393398 A CN 112393398A CN 202011091821 A CN202011091821 A CN 202011091821A CN 112393398 A CN112393398 A CN 112393398A
Authority
CN
China
Prior art keywords
adsorption
refrigeration
evaporation
flow rate
evaporation part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011091821.2A
Other languages
English (en)
Inventor
代传民
劳春峰
魏伟
许文明
马晨
齐兆乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Smart Technology R&D Co Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Smart Technology R&D Co Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Smart Technology R&D Co Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Smart Technology R&D Co Ltd
Priority to CN202011091821.2A priority Critical patent/CN112393398A/zh
Publication of CN112393398A publication Critical patent/CN112393398A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及空调智能制冷技术领域,公开一种用于双制冷式空调的控制方法。控制方法包括:在双制冷式空调运行第一模式时,获取室外侧的室外环境温度;其中,第一模式包括:冷媒换热系统处于待机或停机模式,吸附制冷系统处于吸附制冷模式;若室外环境温度大于设定外环温阈值时,按照第一连通关系控制吸附制冷模式的运行;其中,第一连通关系包括:第一蒸发部与第一吸附部断开连通,第二蒸发部与第二吸附部保持连通;第一蒸发部与第二蒸发部保持连通。本公开实施例提供的控制方法能够调整两个蒸发部及其对应的两个吸附部内的吸附介质输送方式。本申请还公开一种用于双制冷式空调的控制装置及双制冷式空调。

Description

用于双制冷式空调的控制方法、控制装置及双制冷式空调
技术领域
本申请涉及空调智能制冷技术领域,例如涉及一种用于双制冷式空调的控制方法、控制装置及双制冷式空调。
背景技术
随着当今世界科学技术的进步,空调的结构设计以及制冷性能也随之得到了长足的发展,目前的空调从其制冷原理来看,主要分为以下几个类型:
(1)、冷媒制冷,其是利用制冷剂在气液两态变化过程中进行吸热或放热的原理,从而将室内热量排出至室外环境中;
(2)、吸附式制冷,其是利用制冷剂被吸附剂吸附和解吸过程中分别进行放热和吸热的原理,实现室内热量的转移;
(3)、蒸汽喷射式制冷,其是依靠蒸汽喷射器的抽吸作用使制冷剂在抽吸产生的真空环境中蒸发实现的制冷目的;
(4)、热电式制冷,其是利用“塞贝克”效应的逆反应——珀尔帖效应的原理达到制冷目的,常见的热电式制冷方式为半导体制冷。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
上述制冷技术中,冷媒制冷和吸附式制冷是分别采用不同的制冷结构设计实现的制冷操作,且各有优缺点,目前的空调产品一般也仅是采用其中一种制冷结构设计,通过单一制冷技术进行制冷。因此,如何将上述两种制冷技术应用于同一空调并有效提升其性能是空调产品设计的一个全新思路。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于双制冷式空调的控制方法、控制装置及双制冷式空调,以解决现有技术中未有利用冷媒制冷和吸附式制冷两种制冷技术共同实现空调制冷工作的技术问题。
在一些实施例中,用于双制冷式空调的控制方法包括:
在双制冷式空调运行第一模式时,获取室外侧的室外环境温度;其中,第一模式包括:冷媒换热系统处于待机或停机模式,吸附制冷系统处于吸附制冷模式;
若室外环境温度大于设定外环温阈值时,按照第一连通关系控制吸附制冷模式的运行;
其中,第一连通关系包括:第一蒸发部与第一吸附部断开连通,第二蒸发部与第二吸附部保持连通,第一蒸发部与第二蒸发部保持连通。
在一些实施例中,用于双制冷式空调的控制装置包括:
处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行如前文一些实施例中的用于双制冷式空调的控制方法。
在一些实施例中,双制冷式空调包括:
冷媒换热系统,主要包括室内换热器、室外换热器、压缩机和节流装置;
一个或多个吸附制冷系统,每一吸附制冷系统包括:
第一蒸发部和第二蒸发部,分别设置于冷媒换热系统的室内换热器处,第一蒸发部与第二蒸发部之间构造有可通断地第一吸附介质输送流路;
第一吸附部,设置于冷媒换热系统的室外换热器处,第一吸附部与第一蒸发部之间构造有可通断地第二吸附介质输送流路;
第二吸附部,设置于冷媒换热系统的压缩机处,第二吸附部与第二蒸发部之间构造有可通断地第三吸附介质输送流路,且与第一吸附部之间构造有可通断地第四吸附介质输送流量;
如前文一些实施例中的用于双制冷式空调的控制装置。
本公开实施例提供的用于双制冷式空调的控制方法、装置及双制冷式空调,可以实现以下技术效果:
本公开实施例提供的用于双制冷式空调的控制方法能够在双制冷空调运行第一模式的情况下,根据室外环境温度调节吸附制冷阶段中吸附制冷系统的管路连接通断状态,其中,吸附制冷的冷量是通过解吸蓄冷阶段中利用冷媒换热系统排出的热量进行蓄积的,通过改变管路连接通断状态,可以调整两个蒸发部及其对应的两个吸附部内的吸附介质输送方式,从而使吸附制冷系统的运行状态与当前工况相适配,以保证吸附制冷模式的工作效率;本公开实施例并不是简单地将两种制冷系统叠加在同一空调中,是充分考虑了两者制冷原理而巧妙的实现两套制冷结构以及冷媒制冷和解吸蓄冷两个过程的结合,不仅简化了结合后空调的产品结构,也有效提高了空调整体制冷性能。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的双制冷式空调的结构示意图;
图2是本公开实施例提供的用于双制冷式空调的控制方法的流程示意图;
图3是本公开实施例提供的用于双制冷式空调的控制装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
图1是本公开实施例提供的双制冷式空调的结构示意图。
如图1所示,本公开实施例提供了一种双制冷式空调,包括冷媒换热系统和吸附制冷系统;其中,冷媒换热系统可以是单冷式冷媒换热系统,其可用于对室内环境进行制冷、除湿等功能,也可以是冷暖式冷媒换热系统,其可用于对室内环境进行制冷、除湿和制热等功能。吸附制冷系统可用于在其运行吸附制冷模式时对室内环境进行制冷的功能。
在一些可选的实施例中,以冷暖式冷媒换热系统为例,该冷媒换热系统主要包括室内换热器11、室外换热器12、压缩机13和节流装置14等部件;室内换热器11、室外换热器12、节流装置14和压缩机13通过冷媒管路连接构成冷媒循环回路,冷媒通过冷媒循环回路沿不同运行模式所设定的流向流动,实现其不同的运行模式功能。
这里,双制冷式空调包括室内机和室外机,其中,室内换热设置于室内机,室内机中还配置有用于驱动室内空气与室内换热器11进行热交换的室内风机;室外换热器12和压缩机13等设置于室外机中,室外机中也配置有用于室外空气与室外换热器12进行热交换的室外风机,其中,室外换热器12设置于室外风机的进风侧。
在实施例中,双制冷式空调的冷媒换热系统的运行模式包括制冷模式、除湿模式和制热模式等,其中,制冷模式一般应用在夏季高温工况,用于降低室内环境温度;除湿模式也一般用于夏季高温高湿工况,用于降低室内环境湿度;制热模式一般应用在冬季低温工况,用于提升室内环境温度。
冷媒换热系统运行制冷模式时所设定的冷媒流向是压缩机13排出的高温冷媒先流经室外换热器12与室外环境换热,之后在流入室内换热器11与室内环境进行换热,最后冷媒回流至压缩机13重新进行压缩操作;这一过程中,流经室外换热器12的冷媒向室外环境放出热量,流经室内换热器11的冷媒从室内环境中吸收热量,通过冷媒在冷媒循环回路中的循环流动,可以持续地将室内的热量排出到室外环境中,从而可以达到降低室内环境温度的制冷目的。
冷媒换热系统运行除湿模式时所限定的冷媒流向与制冷模式的冷媒流向相同,区别在于,空调运行除湿模式时通过调整一些运行参数,如减小节流装置14的流量开度等,可以使流入室内换热器11的冷媒的温度和压力更低,从而使室内换热器11随着冷媒的吸热蒸发能够达到更低的温度,这样,当室内换热器11的表面温度低于当前工况的露点温度时,流经室内换热器11的室内空气中的水汽就能够凝结在室内换热器11上,从而达到降低室内空气湿度的目的。
在制热模式运行时所设定的冷媒流向指压缩机13排出的高温冷媒先流经室内换热器11与室外环境换热,之后在流入室外换热器12与室内环境进行换热,最后冷媒回流至压缩机13重新进行压缩操作;这一过程中,流经室内换热器11的冷媒向室内环境放出热量,流经室外换热器12的冷媒从室外环境中吸收热量,通过冷媒在冷媒循环回路中的循环流动,可以持续地将室外的热量释放到室内环境中,从而可以达到提高室内环境温度的制热目的。
在一些可选的实施例中,冷媒换热系统的各个部件采用现有技术中已有的冷媒换热系统的连接结构进行组装配合,在此不作赘述。
在一些可选的实施例中,双制冷式空调设置有两个吸附制冷系统,包括第一吸附制冷系统和第二吸附制冷系统,两个吸附制冷系统均能够执行解吸蓄冷和吸附蓄冷两个流程。
其中,第一吸附制冷系统包括第一吸附部21和第一蒸发部231,其中,第一吸附部21设置于冷媒换热系统的室外换热器12处,其内部填充有吸附剂,其用于在解吸蓄冷阶段吸收室外换热器12的热量后放出吸附介质,以及在吸附制冷阶段对吸附介质进行吸附并放出热量;第一蒸发部231设置于室内侧,其用于储存在解吸蓄冷阶段来自第一吸附部21的液态吸附介质,以及在吸附制冷阶段从室内环境吸收热量并将汽化后的吸附介质输送至第一吸附部21。
在一些实施例中,第一吸附部21设置于室外风机和室外换热器12之间。这里,由于室外换热器12设置于室外风机的进风侧,因此,在室外风机的驱动作用下,室外换热器12散失的热量可以先流经夹设在室外风机和室外换热器12之间的第一吸附部21,从而使第一吸附部21能够在解吸蓄冷阶段吸收大量的热量用于解吸蓄冷;同时,第一吸附部21也处于室外风机的进风侧,因此在吸附制冷阶段同样也可以利用室外风机的驱动作用将第一吸附部21释放的热量散失到室外环境中。
可选的,室外换热器12为板状结构,且其横截面轮廓呈半环抱室外风机的形式;因此,为了提高第一吸附部21与室外换热器12之间的换热效果,本实施例中第一吸附部21的整体形状与室外换热器12相适配,也设计成半环抱室外风机的形式,并贴合室外换热器12设置,从而有效增加第一吸附部21与室外换热器12之间的热交换面积,提高对室外换热器12的废热利用效率。
可选的,第一吸附制冷系统的第一吸附部21沿室外换热器12的横向或者纵向设置,第一吸附部21设计成与其对应室外换热器12的部位相适配的形状,以保证两者的换热效率。
第二吸附制冷系统包括第二吸附部22和第二蒸发部232,其中,第二吸附部22设置于冷媒换热系统的压缩机13器处,其内部填充有吸附剂,其用于在解吸蓄冷阶段吸收压缩机13的热量后放出吸附介质,以及在吸附制冷阶段对吸附介质进行吸附并放出热量;第二蒸发部232设置于室内侧,其用于储存在解吸蓄冷阶段来自第二吸附部22的液态吸附介质,以及在吸附制冷阶段从室内环境吸收热量并将汽化后的吸附介质输送至第二吸附部22。
在一些实施例中,第二吸附部22整体呈环绕于压缩机13的至少部分机体的环抱结构,以增加压缩机13与第二吸附部22之间的热交换面积,提高换热量。
可选的,第二吸附部22为中空的筒状结构,中空的空间可用于容置压缩机13及其相关部件,这样,在压缩机13及其相关部件在向外散发热量时,可以使大部分热量传导给第二吸附部22,以提升第二吸附部22的解吸效率;其中,第二吸附部22内部形成有流通吸附介质的流路。
可选的,第二吸附部22贴合压缩机13设置。贴合设置的方式能够使热量直接通过固体导热的方式从压缩机13传导至第二吸附部22,有效降低了热量损失,提高了对压缩机13废热的利用效率。
可选的,第一吸附部21与第二吸附部22之间构造有第三吸附介质输送流路;这样,在解吸蓄冷和吸附蓄冷阶段,气态吸附介质能够在第一吸附部21和第二吸附部22之间的流动,从而提高吸附制冷系统整体的解吸蓄冷效果以及吸附制冷效果。
可选的,第一蒸发部231和第二蒸发部232为板翅状结构,板翅状结构能够有效提高在解吸蓄冷阶段蒸发部内的吸附介质与室内环境的热交换效果,增强吸热制冷能力;同时,第一蒸发部231和第二蒸发部232内部形成有流通吸附介质的流路,该吸附介质的流路与吸附介质输送流路相连通。
在一些可选的实施例中,室内换热器11为纵截面呈折线状并半环抱室内风机的结构形式;因此,同样为了提高蒸发部23与室内环境之间的热交换效果,本实施例中,两个蒸发部的整体形状与室内换热器11相适配,也设计成半环抱室内风机的形式,且贴合室内换热器11设置,以增大蒸发部与流经室内机的气流的热交换面积,提升吸热制冷能力。
这里,为使得两个吸附制冷系统的蒸发部能够均匀地从室内环境中吸收热量,两个吸附制冷系统的第一蒸发部231和第二蒸发部232也采用并排设置的方式;可选的,第一蒸发部231和第二蒸发部232沿室内换热器11的横向或者纵向并排设置,第一蒸发部231和第二蒸发部232设计成与其对应室内换热器11的部位相适配的形式。
可选的,第一蒸发部231和第二蒸发部232之间也构造有第四吸附介质输送流路;这样,在解吸蓄冷和吸附蓄冷阶段,液态和气态吸附介质能够在第一蒸发部231和第二蒸发部232之间的流动,从而提高吸附制冷系统整体的解吸蓄冷效果以及吸附制冷效果。
另外,第一吸附制冷系统还包括第一中间散热部24;其中,第一中间散热部24设置于第一吸附介质输送流路上,其可用于在解吸蓄冷阶段接收第一吸附部21输送的气态吸附介质并对其进行散热冷凝,以使至少部分气态吸附介质液化,并将液化后的吸附介质继续输送至第一蒸发部231进行储存。
这里,第一中间散热部24设置于室外侧,其是通过与室外环境的热交换实现对吸附介质的散热冷凝;在冷媒换热系统运行冷媒制冷模式时,室外换热器12向外排出热量,受其温度影响,第一吸附部21的温度一般是要高于室外环境温度,因此,第一吸附部21受高温热量影响释放的气态吸附介质流入第一中间散热部24后,热量被散失到室外环境中,从而使至少部分气态吸附介质重新凝结成液态。
同时,第二吸附制冷系统还包括第二中间散热部25;其中,第二中间散热部25设置于第二吸附介质输送流路上,其可用于在解吸蓄冷阶段接收第二吸附部22输送的气态吸附介质并对其进行散热冷凝,以使至少部分气态吸附介质液化,并将液化后的吸附介质继续输送至第二蒸发部232进行储存。
这里,第二中间散热部25也设置于室外侧,其是通过与室外环境的热交换实现对吸附介质的散热冷凝;在冷媒换热系统运行冷媒制冷模式时,压缩机13向外排出热量,受其温度影响,第二吸附部22的温度一般是要高于室外环境温度,因此,第二吸附部22受高温热量影响释放的气态吸附介质流入第二中间散热部25后,热量被散失到室外环境中,从而使至少部分气态吸附介质重新凝结成液态。
可选的,第一中间散热部24和第二中间散热部25为平流式散热器。
在一些实施例中,第一中间散热部24和第二中间散热部25设置于冷媒换热系统的室外机的背板、侧板或者底板位置,且远离室外机的出风口设置,从而可以避免室外机排出的高温空气影响中间散热部的散热效果。
优选的,第一中间散热部24和第二中间散热部25设置于底板位置,这种设置形式下,室外机可以为两个中间散热部起到遮挡阳光的作用,从而为两个中间散热部提供更加适宜的散热温度环境。
或者,由于室外机的背板设置有进风口,第一中间散热部24和第二中间散热部25也可以临近进风口设置,从而利用室外风机的驱动作用,加快中间散热部周围环境气流的流动,从而提高散热效果。
在本实施例中,第一吸附部21与第一蒸发部231之间构造有第一吸附介质输送流路,吸附介质可经由第一吸附介质输送流路在第一吸附部21、第一中间散热部24和第一蒸发部231之间进行流动。
这里,第一吸附介质输送流路包括第一解吸流路和第一吸附流路,其中,第一解吸流路为用于解吸蓄冷阶段吸附介质输送的流路,第一吸附流路为用于吸附蓄冷阶段吸附介质输送的流量。
其中,在第一解吸流路中,第一吸附部21、第一中间散热部24和第一蒸发部231依次串联连接,从而使得在解吸蓄冷阶段吸附介质从第一吸附部21流出后,依次进入第一中间散热部24和第一蒸发部231,并最终在蒸发部23内以液态的形式保存。
可选的,第一解吸流路上设置有一单向阀,该单向阀限定吸附介质仅能按照“第一吸附部21→第一中间散热部24→第一蒸发部231”的流向进行输送;这里,该单向阀可以设置在第一吸附部21和第一中间散热部24之间的流路上,或者,也可以设置在第一中间散热部24和第一蒸发部231之间的流路上。
在第一吸附流路中,第一蒸发部231和第一吸附部21串联连接,从而使得在吸附制冷阶段吸附介质从第一蒸发部231流出后,经由该第一吸附流路进入第一吸附部21,并重新被第一吸附部21内的吸附剂吸附。
可选的,第一吸附流路上设置有一单向阀,该单向阀限定吸附介质仅能按照“第一蒸发部231→第一吸附部21”的流向进行输送。
可选的,将第一解吸流路设置为主流路,并将第一吸附流路与第一中间散热部24并联设置,因此第一解吸流路的靠近第一吸附部21的非并联流路段也可用于在吸附制冷阶段的吸附介质的输送。
类似的,第二吸附制冷系统的第二吸附部22与第二蒸发部232之间构造有第二吸附介质输送流路,吸附介质可经由第二吸附介质输送流路在第二吸附部22、第二中间散热部25和第二蒸发部232之间进行流动。
这里,第二吸附介质输送流路包括第二解吸流路和第二吸附流路,其中,第二解吸流路为用于解吸蓄冷阶段吸附介质输送的流路,第二吸附流路为用于吸附蓄冷阶段吸附介质输送的流量。
这里,第二吸附介质输送流路的设置方式可以参照前一实施例中的第一吸附介质输送流路,在此不作赘述。
在本实施例中,吸附制冷系统还包括三个控制阀,其中第一控制阀26设置于第一吸附介质输送流路上,用于控制第一吸附介质输送流路的通断状态以及流量,第二控制阀27设置于第二吸附介质输送流路上,用于控制第二吸附介质输送流路的通断状态以及流量,第三控制阀28设置于第三吸附介质输送流路上,用于控制第三吸附介质输送流路的通断状态以及流量。这里,每一控制阀设置于上述实施例中解吸流路的靠近对应吸附部的非并联流路段上,从而可以仅通过该一个控制阀就能够实现对其吸附部的解吸蓄冷和吸附制冷两个阶段的流量通断控制。
或者,也可以分别在每一吸附介质输送流路各自的解吸流路和吸附流路上分别设置一控制阀,以分别通过各自的控制阀控制对应流路的通断状态以及流量。
下面对本公开实施例中的吸附制冷系统与冷媒换热系统两者的配合工作方式进行说明:
在本实施例中,吸附制冷系统的运行模式主要包括解吸蓄冷模式和吸附制冷模式,其中,解吸蓄冷模式对应前文实施例中的解吸蓄冷阶段,其主要是用于蓄积“冷量”;而吸附制冷模式对应前文实施例中的吸附制冷阶段,其主要是用于将解吸蓄冷阶段蓄积的“冷量”释放出来,从而实现对其所在的室内侧的制冷降温。
这里,吸附制冷系统运行解吸蓄冷模式是在冷媒换热系统运行冷媒制冷模式或冷媒除湿模式的前提下运行的。这里,在冷媒换热系统运行冷媒制冷模式时,室外换热器12和压缩机13同时放出热量,热量各自传递至第一吸附部21和第二吸附部22后,两个吸附部内吸附剂所吸附的吸附介质吸热,并解吸成气态吸附介质,之后经由解吸流路进入各自对应的中间散热部进行冷凝,冷凝得到的液态吸附介质分别进入第一蒸发部231和第二蒸发部232,以作为蓄积的“冷量”。
而吸附制冷系统运行吸附制冷模式是在冷媒换热系统未运行冷媒制冷模式或冷媒除湿模式的前提下运行的。这里,在冷媒换热系统未运行冷媒制冷模式或冷媒除湿模式时,室外换热器12和压缩机13均停止工作且不对外放热,因此第一吸附部21的温度相比于室外换热器12放热时要低,第二吸附部22的温度相比于压缩机13放热时也要低,从而使得两个吸附部内的吸附剂开始重新对吸附介质进行吸附,第一蒸发部231和第二蒸发部232内的液态吸附介质在吸附介质浓度、压力以及室内环境温度等多种因素的共同影响下,开始吸热蒸发成气态吸附介质,并经由各自的吸附流路回流至第一吸附部21和第二吸附部22,这一过程中,吸附介质从室内环境吸收热量,并在吸附介质被吸附剂重新吸附后,将热量释放到吸附部所在的室外环境中,因此,通过该相比于解吸蓄冷阶段逆向的吸附介质流动,就能够实现对室内环境的吸附制冷降温。
这里,在解吸蓄冷模式和吸附制冷模式下,可以仅启用第一吸附部21和第二吸附部22中的一个,或者,启用第一吸附部21和第二吸附部22中的两个。同时,也可以仅启用第一蒸发部231和第二蒸发部232中的一个,或者,启用第一蒸发部231和第二蒸发部232中的两个。
示例性的,在吸附制冷模式下,一种控制方式是仅启用第一吸附部21,而蒸发部则可以控制仅启用第一蒸发部231(第一蒸发部231和第二蒸发部232之间的第四吸附介质输送流路断开),或者同时启用第一蒸发部231和第二蒸发部232(第一蒸发部231和第二蒸发部232之间的第四吸附介质输送流路连通),这样,通过改变启用的蒸发部的数量可以改变吸热速率。
其中,第一蒸发部231和第二蒸发部232之间的第四吸附介质输送流路的通断状态通过设置于其上的第四控制阀29进行控制。
图2是本公开实施例提供的用于双制冷式空调的控制方法的流程示意图。
如图2所示,本公开实施例中提供了一种用于双制冷式空调的控制方法,可选的,该控制方法可应用于如图1实施例中所示出的双制冷式空调;该控制方法可用于解决现有技术中未有利用冷媒制冷和吸附式制冷两种制冷技术共同实现空调制冷工作的问题;在实施例中,该控制方法的主要流程步骤包括:
S201、在双制冷式空调运行第一模式时,获取室外侧的室外环境温度;
在本实施例中,第一模式包括:冷媒换热系统处于待机或停机模式,吸附制冷系统处于吸附制冷模式;
在本实施例中,吸附制冷系统运行吸附制冷模式时,蒸发部内的液态吸附介质是在双制冷式空调在前一次或多次运行冷媒制冷模式的过程中蓄积的。
这里,在冷媒换热系统运行冷媒制冷模式时,吸附制冷系统处于解吸蓄冷模式;室外换热器排出热量,使得其周围环境温度也随之升高,因此靠近室外换热器设置的吸附制冷系统的吸附部中的吸附介质吸收热量后脱离吸附剂,实现“解吸”,解吸后的吸附介质随吸附介质输送流路流向中间换热部,这里,中间换热部的温度要低于室外换热器的温度,因此,吸附介质放热冷凝,并继续随吸附介质输送流路流入室内侧的蒸发部,实现“蓄冷”。而在双制冷式空调停止运行冷媒制冷模式后,控制吸附制冷系统退出解吸蓄冷模式并控制阻断吸附介质输送流路,使吸附介质无法回流至吸附部。
因此,在需要吸附制冷系统运行吸附制冷模式的情况下,可以导通吸附介质输送流路;这里,在吸附制冷系统运行吸附制冷模式时,冷媒换热系统处于待机状态或者停机状态,冷媒换热系统的室外换热器不向外排出热量,以避免冷媒换热系统运行冷媒制冷模式时室外换热器温度过高所导致的吸附制冷模式无法正常进行的问题。室外换热器的周围环境温度接近于之前解吸蓄冷时双制冷式空调停止运行冷媒制冷模式后室外换热器周围环境的温度,吸附部也是可以重新进行吸附介质的吸附,进而使蒸发部内的液态吸附介质在吸附压力的作用下吸热蒸发,从而达到吸附制冷的目的。
在控制运行第一模式时,冷媒换热系统处于停机或者待机模式,通过吸附制冷模式替代冷媒制冷模式对室内环境进行制冷降温,可以减少冷媒换热系统的运行能耗,降低空调的使用成本。
在一些可选的实施例中,双制冷式空调的室外机设置有一温度传感器,该温度传感器可用于检测室外机所处的室外环境的实时温度;因此步骤S201中的室外环境温度可通过该温度传感器检测得到。
S202、若室外环境温度大于设定外环温阈值时,按照第一连通关系控制吸附制冷模式的运行。
在一些可选的实施例中,设定外环温阈值是用于表征室外环境温度对第一吸附部和第二吸附部进行吸附介质吸附时的影响大小的参数;这里,在吸附制冷模式下,蒸发部内的吸附介质从室内侧吸收热量并蒸发为气态吸附介质,之后随吸附介质输送流路流回吸附部,并被吸附部内的吸附剂吸附后释放出热量;因此,吸附部的散热速度的快慢会影响到吸附剂对吸附介质的吸附效率,这里,吸附部是与室外环境进行热交换,因此室外环境温度的高低能够决定吸附部的散热速率。在本实施例中,在室外环境温度大于设定外环温阈值的情况下,室外环境温度较高,对两个吸附部的散热速率影响较大,而在室外环境温度小于或等于设定外环温阈值的情况下,对两个吸附部的散热速率影响较小。
可选的,第一蒸发部和第二蒸发部通过第一吸附介质输送流路相连通,第一吸附部与第一蒸发部通过第二吸附介质输送流路相连通,第二吸附部与第二蒸发部通过第三吸附介质输送流路相连通,第二吸附部与第一吸附部通过第四吸附介质输送流路相连通;这里,上述四条吸附介质输送流路上分别设置有可控制其通断状态的控制阀,则在本实施例中,可以通过对不同吸附介质输送流路上的控制阀的开闭状态控制,实现对其对应的吸附介质输送流路的导通或者阻断操作。
在本实施例中,在室外环境温度大于设定外环温阈值时,按照第一连通关系控制吸附制冷模式的运行。其中,第一连通关系包括:第一蒸发部与第一吸附部断开连通,第二蒸发部与第二吸附部保持连通,第一蒸发部与第二蒸发部保持连通。
这里,在室外环境温度大于设定外环温阈值的情况下,室内环境温度对第一吸附部和第二吸附部的介质吸附过程的影响都较大,但是由于在解吸蓄冷阶段受压缩机散热温度影响的第二吸附部的解吸量和解吸效率均高于受室外换热器影响的第一吸附部,因此吸附制冷阶段中第二吸附部对吸附介质的吸附能力要高于第一吸附部,因此本实施例中通过第一连通关系调整吸附制冷系统的各个部件之间的连通关系,将第一蒸发部与第一吸附部断开连通,第二蒸发部与第二吸附部保持连通,使得仅启用第二吸附部进行吸附介质的吸附,其制冷效果较好;同时控制第一蒸发部与第二蒸发部保持连通,这样,第一蒸发部内的液态吸附介质也能够经由第二蒸发部被第二吸附部吸附,从而提高两个蒸发部的吸热效率。
在本实施例中,在按照第一连通关系进行控制时,可以通过关闭第二吸附介质输送流路上的控制阀,开启第一吸附介质输送流路和第三吸附介质输送流路上的控制阀的方式实现。
本公开实施例提供的用于双制冷式空调的控制方法能够在双制冷空调运行第一模式的情况下,根据室外环境温度调节吸附制冷阶段中吸附制冷系统的管路连接通断状态,其中,吸附制冷的冷量是通过解吸蓄冷阶段中利用冷媒换热系统排出的热量进行蓄积的,通过改变管路连接通断状态,可以调整两个蒸发部及其对应的两个吸附部内的吸附介质输送方式,从而使吸附制冷系统的运行状态与当前工况相适配,以保证吸附制冷模式的工作效率;本公开实施例并不是简单地将两种制冷系统叠加在同一空调中,是充分考虑了两者制冷原理而巧妙的实现两套制冷结构以及冷媒制冷和解吸蓄冷两个过程的结合,不仅简化了结合后空调的产品结构,也有效提高了空调整体制冷性能。
在一些可选的实施例中,第一吸附介质流量是根据压缩机的壳体温度与室外环境温度之间的第一温度差值确定的;其中,第一吸附介质流量为吸附制冷模式下从第二蒸发部流向第二吸附部的流量;压缩机的壳体温度是在吸附制冷系统处于解吸蓄冷模式时检测得到的。
这里,在冷媒换热系统运行冷媒制冷模式时,吸附制冷系统处于解吸蓄冷模式,由于第二吸附部临近压缩机设置,因此压缩机的壳体温度能够反映出在该温度条件下第二吸附部的解吸速率;而室外环境温度则是在吸附制冷系统处于吸附制冷模式时检测的得到的,其能够影响到第二吸附部的散热量,则第二吸附部在解吸蓄冷和吸附制冷两个阶段所处的不同温度环境之间的差异则能够影响到对吸附介质的吸附效率。因此本实施例中根据压缩机的壳体温度与室外环境温度之间的第一温度差值控制第一吸附介质流量,以使其能够与当前的流量输送需求相适配。
可选的,根据压缩机的壳体温度与室外环境温度之间的第一温度差值确定第一吸附介质流量,包括:当第一温度差值小于或等于第一设定温差阈值时,第一吸附介质流量为第一流量;当第一温度差值大于第一设定温差阈值时,第一吸附介质流量为第二流量;其中,第一流量小于第二流量。
这里,第一吸附介质流量与第一温度差值成正相关关系,即第一温度差值越大,则第二吸附部的吸附能力就越强,则第一吸附介质流量就设定为更大的数值;反之,则第一吸附介质流量设定为更小的数值。
在本实施例中,设置于第三吸附介质输送流路上的控制阀不仅能够控制第三吸附介质输送流路的通断状态,同时也可以通过改变流量开度的方式,对流经第三吸附介质输送流路的吸附介质的流量进行调节。
可选的,双制冷式空调的室外机还设置有一温度传感器,该温度传感器设置于压缩机的机体上,其可用于检测压缩机机体的外壳的实时温度;因此压缩机的壳体温度可通过该温度传感器检测得到。
在一些可选的实施例中,本公开用于双制冷式空调的控制方法还包括:若室外环境温度小于或等于设定外环温阈值时,按照第二连通关系控制吸附制冷模式的运行。
在本实施例中,在室外环境温度小于或等于设定外环温阈值的情况下,对两个吸附部的散热速率影响较小,因此按照第二连通关系控制吸附制冷模式的运行。其中,第二连通关系包括:第一蒸发部与第一吸附部保持连通,第二蒸发部与第二吸附部保持连通;第一蒸发部与第二蒸发部保持连通。这里,相比于第一连通关系,第二连通关系是将第一蒸发部与第一吸附部保持连通,使得第一蒸发部的液态吸附介质可以经由第二吸附介质输送流路输送至第一蒸发部,从而与第二吸附部同时进行吸附介质的输送,有效提高了对室内环境的制冷量和制冷效率。
在本实施例中,在按照第一连通关系进行控制时,可以通过开启第一吸附介质输送流路、第二吸附介质输送流路和第三吸附介质输送流路上的控制阀的方式实现。
在一些可选的实施例中,第二吸附介质流量是根据室外换热器的外盘管温度与室外环境温度之间的第二温度差值确定的;其中,第二吸附介质流量为吸附制冷模式下从第一蒸发部流向第一吸附部的流量;室外换热器的外盘管温度是在吸附制冷系统处于解吸蓄冷模式时检测得到的。
在一些可选的实施例中,第二吸附介质流量是根据室外换热器的外盘管温度与室外环境温度之间的第二温度差值确定的;其中,第二吸附介质流量为吸附制冷模式下从第一蒸发部流向第一吸附部的流量;室外换热器的外盘管温度是在吸附制冷系统处于解吸蓄冷模式时检测得到的。
这里,在冷媒换热系统运行冷媒制冷模式时,吸附制冷系统处于解吸蓄冷模式,由于第一吸附部临近室外换热器设置,因此室外换热器的外盘管温度能够反映出在该温度条件下第一吸附部的解吸速率;而室外环境温度则是在吸附制冷系统处于吸附制冷模式时检测的得到的,其能够影响到第一吸附部的散热量,则第一吸附部在解吸蓄冷和吸附制冷两个阶段所处的不同温度环境之间的差异则能够影响到对吸附介质的吸附效率。因此本实施例中根据室外换热器的外盘管温度与室外环境温度之间的第二温度差值控制第二吸附介质流量,以使其能够与当前的流量输送需求相适配。
可选的,根据室外换热器的外盘管温度与室外环境温度之间的第二温度差值确定第二吸附介质流量,包括:当第二温度差值小于或等于第二设定温差阈值时,第二吸附介质流量为第三流量;当第二温度差值大于第二设定温差阈值时,第二吸附介质流量为第四流量;其中,第三流量小于第四流量。
这里,第二吸附介质流量与第二温度差值成正相关关系,即第二温度差值越大,则第一吸附部的吸附能力就越强,则第二吸附介质流量就设定为更大的数值;反之,则第二吸附介质流量设定为更小的数值。
在本实施例中,设置于第二吸附介质输送流路上的控制阀不仅能够控制第二吸附介质输送流路的通断状态,同时也可以通过改变流量开度的方式,对流经第二吸附介质输送流路的吸附介质的流量进行调节。
可选的,双制冷式空调的室外机还设置有一温度传感器,该温度传感器设置于室外换热器的盘管位置,其可用于检测室外换热器的盘管的实时温度;因此外盘管温度可通过该温度传感器检测得到。
在一些可选的实施例中,本公开用于双制冷式空调的控制方法还包括:在满足吸附制冷完成条件时,控制吸附制冷系统退出吸附制冷模式。
在本实施例中,吸附制冷完成条件是用于表征吸附制冷系统是否具有制冷能力的判断条件;在满足吸附制冷完成条件的情况下,则吸附制冷系统不具备制冷能力,则控制吸附制冷系统退出吸附制冷模式;而在不满足吸附制冷完成条件的情况下,则吸附制冷系统仍具备制冷能力,则控制吸附制冷系统继续运行吸附制冷模式。
可选的,吸附制冷完成条件包括:第一蒸发部的吸附介质量小于或等于第一设定介质量阈值,且第二蒸发部的吸附介质量小于或等于第二设定介质量阈值。
可选的,第一设定介质量阈值为第一蒸发部的最大吸附介质量的10%、20%等等;第二设定介质量阈值为第二蒸发部的最大吸附介质量的10%、20%等等。
这里,蒸发部内的吸附介质是以液态的形式存在,因此吸附介质量的变化也是能够通过液态的液位高低体现的,本公开在蒸发部内设置有一液位传感器,该液位传感器可用于检测蒸发部内液态吸附介质的液位高低变化情况,进而通过液位高低变化情况确定蒸发部的吸附介质量。
在上述实施例中,本公开用于双制冷式空调的控制方法的步骤还包括:在吸附制冷系统进入吸附制冷模式时,控制室外风机以第一转速运行;而在吸附制冷系统进入解吸蓄冷模式时,控制室外风机以第二转速运行。
在本实施例中,第一转速大于第二转速。这里,在吸附制冷系统进入吸附制冷模式时,则控制室外风机以数值较大的第一转速运行,以提高吸附部的散热效果,进而提升吸附制冷系统的制冷效果;而在吸附制冷系统进入解吸蓄冷模式时,主要是要利用冷媒换热系统的室外换热器的热量进行吸附部的吸附介质的解吸,因此,控制室外风机以数值较小的第二转速运行,可以减少室外风机驱动热量散热到室外环境中,而使得热量可以集中在吸附部的周围环境中,以提高解吸速率。这里,双制冷式空调根据吸附制冷系统的运行模式的启停状态灵活的调整室外风机的转速,即可以提高吸附制冷效果,又能够提升解吸蓄冷模式下的蓄冷效果。
示例性的,在吸附制冷系统进入吸附制冷模式时,室外风机的第一转速为700r/min;而在吸附制冷系统进入解吸蓄冷模式时,室外风机的第二转速为400r/min。
图3是本公开实施例提供的用于双制冷式空调的控制装置的结构示意图。
本公开实施例提供了一种用于双制冷式空调的控制装置,其结构如图3所示,包括:
处理器(processor)300和存储器(memory)301,还可以包括通信接口(Communication Interface)302和总线303。其中,处理器300、通信接口302、存储器301可以通过总线303完成相互间的通信。通信接口302可以用于信息传输。处理器300可以调用存储器301中的逻辑指令,以执行上述实施例的用于双制冷式空调的控制方法。
此外,上述的存储器301中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器301作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器300通过运行存储在存储器301中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于双制冷式空调的控制方法。
存储器301可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器301可以包括高速随机存取存储器,还可以包括非易失性存储器。
这里,本公开实施提供的一种双制冷式空调还包括前文实施例中所示出的用于双制冷式空调的控制装置。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于双制冷式空调的控制方法。
本公开实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于双制冷式空调的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

1.一种应用于双制冷式空调的控制方法,其特征在于,所述双制冷式空调包括冷媒换热系统和吸附制冷系统;其中,所述吸附制冷系统包括设置于室内侧的第一蒸发部和第二蒸发部、分别设置于所述冷媒换热系统的室外换热器处和压缩机处的第一吸附部和第二吸附部;所述第一蒸发部与所述第一吸附部可通断地相连通,所述第二蒸发部与所述第二吸附部可通断地相连通;所述第一蒸发部与所述第二蒸发部可通断地相连通;所述第一吸附部与所述第二吸附部可通断地相连通;
所述控制方法包括:
在所述双制冷式空调运行第一模式时,获取室外侧的室外环境温度;其中,所述第一模式包括:所述冷媒换热系统处于待机或停机模式,所述吸附制冷系统处于吸附制冷模式;
若所述室外环境温度大于设定外环温阈值时,按照第一连通关系控制所述吸附制冷模式的运行;
其中,所述第一连通关系包括:所述第一蒸发部与所述第一吸附部断开连通,所述第二蒸发部与所述第二吸附部保持连通,所述第一蒸发部与所述第二蒸发部保持连通。
2.根据权利要求1所述的控制方法,其特征在于,所述第一吸附介质流量是根据所述压缩机的壳体温度与所述室外环境温度之间的第一温度差值确定的;
其中,所述第一吸附介质流量为所述吸附制冷模式下从所述第二蒸发部流向所述第二吸附部的流量;所述压缩机的壳体温度是在所述吸附制冷系统处于解吸蓄冷模式时检测得到的。
3.根据权利要求2所述的控制方法,其特征在于,所述根据压缩机的壳体温度与所述室外环境温度之间的第一温度差值确定第一吸附介质流量,包括:
当所述第一温度差值小于或等于第一设定温差阈值时,所述第一吸附介质流量为第一流量;
当所述第一温度差值大于所述第一设定温差阈值时,所述第一吸附介质流量为第二流量;
其中,所述第一流量小于所述第二流量。
4.根据权利要求1所述的控制方法,其特征在于,还包括:
若所述室外环境温度小于或等于所述设定外环温阈值时,按照第二连通关系控制所述吸附制冷模式的运行;
其中,所述第二连通关系包括:所述第一蒸发部与所述第一吸附部保持连通,所述第二蒸发部与所述第二吸附部保持连通;所述第一蒸发部与所述第二蒸发部保持连通。
5.根据权利要求4所述的控制方法,其特征在于,所述第二吸附介质流量是根据所述室外换热器的外盘管温度与所述室外环境温度之间的第二温度差值确定的;
其中,所述第二吸附介质流量为所述吸附制冷模式下从所述第一蒸发部流向所述第一吸附部的流量;所述室外换热器的外盘管温度是在所述吸附制冷系统处于解吸蓄冷模式时检测得到的。
6.根据权利要求5所述的控制方法,其特征在于,所述根据室外换热器的外盘管温度与所述室外环境温度之间的第二温度差值确定所述第二吸附介质流量,包括:
当所述第二温度差值小于或等于第二设定温差阈值时,所述第二吸附介质流量为第三流量;
当所述第二温度差值大于所述第二设定温差阈值时,所述第二吸附介质流量为第四流量;
其中,所述第三流量小于所述第四流量。
7.根据权利要求1至6任一项所述的控制方法,其特征在于,还包括:
在满足吸附制冷完成条件时,控制所述吸附制冷系统退出所述吸附制冷模式。
8.根据权利要求7所述的控制方法,其特征在于,所述吸附制冷完成条件包括:
第一蒸发部的吸附介质量小于或等于第一设定介质量阈值,且第二蒸发部的吸附介质量小于或等于第二设定介质量阈值。
9.一种应用于双制冷式空调的控制装置,其特征在于,所述双制冷式空调包括冷媒换热系统和吸附制冷系统;其中,所述吸附制冷系统包括设置于室内侧的第一蒸发部和第二蒸发部、分别设置于所述冷媒换热系统的室外换热器处和压缩机处的第一吸附部和第二吸附部;所述第一蒸发部与所述第一吸附部可通断地相连通,所述第二蒸发部与所述第二吸附部可通断地相连通;所述第一蒸发部与所述第二蒸发部可通断地相连通;所述第一吸附部与所述第二吸附部可通断地相连通;
所述控制装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至8任一项所述的应用于双制冷式空调的控制方法。
10.一种双制冷式空调,其特征在于,包括:
冷媒换热系统,主要包括室内换热器、室外换热器、压缩机和节流装置;
一个或多个吸附制冷系统,每一所述吸附制冷系统包括:
第一蒸发部和第二蒸发部,分别设置于所述冷媒换热系统的室内换热器处,所述第一蒸发部与所述第二蒸发部之间构造有可通断地第一吸附介质输送流路;
第一吸附部,设置于所述冷媒换热系统的室外换热器处,所述第一吸附部与所述第一蒸发部之间构造有可通断地第二吸附介质输送流路;
第二吸附部,设置于所述冷媒换热系统的压缩机处,所述第二吸附部与所述第二蒸发部之间构造有可通断地第三吸附介质输送流路,且与所述第一吸附部之间构造有可通断地第四吸附介质输送流路;
如权利要求9所述的应用于双制冷式空调的控制装置。
CN202011091821.2A 2020-10-13 2020-10-13 用于双制冷式空调的控制方法、控制装置及双制冷式空调 Pending CN112393398A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011091821.2A CN112393398A (zh) 2020-10-13 2020-10-13 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011091821.2A CN112393398A (zh) 2020-10-13 2020-10-13 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Publications (1)

Publication Number Publication Date
CN112393398A true CN112393398A (zh) 2021-02-23

Family

ID=74596644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011091821.2A Pending CN112393398A (zh) 2020-10-13 2020-10-13 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Country Status (1)

Country Link
CN (1) CN112393398A (zh)

Similar Documents

Publication Publication Date Title
CN112880144A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
US9267696B2 (en) Integrated membrane dehumidification system
US6324860B1 (en) Dehumidifying air-conditioning system
US11333412B2 (en) Climate-control system with absorption chiller
JP4946894B2 (ja) 廃熱利用システム
CN111442493B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393400A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
JP2016080310A (ja) 冷却システム
JP2002243302A (ja) 吸収式冷暖房装置
CN111442497B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880146A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880143A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393402A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393401A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN114353292A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393399A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880147A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393398A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN111442494B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN106989438B (zh) 空调设备、多联室内机系统及其控制方法
CN111442496B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880247A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393403A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880145A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393404A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination