CN112390786B - 一种具有aie特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用 - Google Patents

一种具有aie特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用 Download PDF

Info

Publication number
CN112390786B
CN112390786B CN202010997166.0A CN202010997166A CN112390786B CN 112390786 B CN112390786 B CN 112390786B CN 202010997166 A CN202010997166 A CN 202010997166A CN 112390786 B CN112390786 B CN 112390786B
Authority
CN
China
Prior art keywords
magnetic resonance
aie
fluorescence
resonance contrast
amphiphilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010997166.0A
Other languages
English (en)
Other versions
CN112390786A (zh
Inventor
唐本忠
秦安军
王俪蓉
王志明
万清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010997166.0A priority Critical patent/CN112390786B/zh
Publication of CN112390786A publication Critical patent/CN112390786A/zh
Application granted granted Critical
Publication of CN112390786B publication Critical patent/CN112390786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • A61K49/143Peptides, e.g. proteins the protein being an albumin, e.g. HSA, BSA, ovalbumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Manufacturing & Machinery (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Optics & Photonics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明属于生物医学材料领域,公开了一种具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用。该方法包括:将具有磁共振成像性能的聚集诱导发光(AIE)荧光探针装载在两亲性结构的生物大分子上,经过偶联固定形成大尺寸的带有间隙结构的纳米颗粒。该纳米颗粒的制备,以生物大分子为载体,既可以限制AIE分子内部运动又能使水分子自由进出与钆配合物接触保证了荧光和磁共振信号的同时增强,为发展新型双模态成像探针提供了一定的指导意义。
Figure DDA0002692934400000011

Description

一种具有AIE特性的荧光和磁共振造影信号同时增强的两亲 性分子、纳米颗粒及制备方法与应用
技术领域
本发明属于生物医学材料领域,特别涉及一种具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用。
背景技术
双模态成像在癌症的早期诊断和治疗中起着至关重要的作用。荧光成像操作简便、灵敏度高,但是受限于穿透深度;磁共振成像无电离和核辐射,并且具有无限的组织穿透深度,但是灵敏度低。因此,将两者结合可以实现优势互补,弥补各自的不足。分子型荧光和磁共振双模态成像探针由于其良好的生物相容性而备受关注。其构成元素为荧光部分和磁共振造影部分的共价连接。其中,磁共振造影部分以钆配合物为主,通过影响周围水质子的弛豫时间来改变造影信号。因此,钆配合物必须与水环境中的氢质子接触。而弛豫性能提升的主要策略是延长造影剂的旋转相关时间(τR)和周围水分子的扩散相关时间(τD)。对于荧光部分,由于一般的荧光材料在高浓度或者聚集状态下荧光猝灭的不足,限制了其在荧光增强方面的有效应用。与此相反,聚集诱导发光(Aggregation-Induced Emission,AIE)材料越聚集荧光越强。将其与磁共振造影部分结合,利用AIE部分的聚集特性来形成大尺寸的纳米材料来实现荧光和磁共振信号的同时增强已有报道(ACS Appl.Mater.Interfaces2014,6,10783)。但是,由于AIE部分较强的疏水性,很容易产生将磁共振造影剂包裹在纳米颗粒内部的现象无法实现磁共振信号的提升。因此,这种策略对分子的设计以及合成的条件要求比较高,不是一种通用性策略。因此,亟需开发一种具有普适性的合成方法来同时提高荧光和磁共振信号,以达到降低使用剂量和增强成像的效果,为新材料的开发提供借鉴意义。
发明内容
为了克服上述现有合成技术的不足,本发明的目的是提供一种具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用。
本发明的首要目的是发明一种基于AIE特性的荧光和磁共振造影信号同时增强的纳米材料。
本发明的又一目的是提供上述纳米材料的制备方法,该方法简单有效、原料易得。
本发明的再一目的是实现上述纳米材料在细胞和活体上的成像应用。
本发明开发一种基于AIE特性的荧光和磁共振信号同时增强的创新型策略来解决两者无法同时提高的问题,该策略将对新型双模态成像材料的开发提供指导和借鉴意义。
本发明的目的至少通过如下技术方案之一实现。
本发明提供的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子,其结构通式如下所示:
Figure GDA0003232377440000021
其中,M是顺磁性离子,M为Gd3+、Mn2+、Fe2+中的一种;R1为C6-12的烷基链,R1的末端为羧基、叠氮基、氨基中的一种;
D为电子供体,结构为三苯胺基、四苯基乙烯基及其带有烷基链R2的三苯胺基、四苯基乙烯基中的一种,结构如下所示:
Figure GDA0003232377440000022
其中,R2为C1-12的烷基链或者甲氧基。
具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的AIE部分为具有疏水性质的且具有强的电子供体(Donor)和电子受体(Acceptor)的结构。其中,电子受体为萘并三唑,R1为C6-12的烷基链,其末端为羧基、叠氮基、氨基中的一种,结构如下所示:
Figure GDA0003232377440000031
所述AIE部分中,电子供体为三苯胺基、四苯基乙烯基及其带有烷基链R2的三苯胺基、四苯基乙烯基中的一种,结构如下所示:
Figure GDA0003232377440000032
其中,R2为C1-12的烷基链或者甲氧基。
优选地,所述AIE部分的电子供体为三苯胺;电子受体为萘并三唑,其上的R1为十一酸;所述顺磁性离子为Gd3+,其末端为氨基;所述两亲性结构为牛血清白蛋白(BSA)。
本发明提供的一种制备具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的方法,包括如下步骤:
以4,9-二溴萘并三唑和芳香环衍生物为原料,通过Suzuki偶联反应,得到具有AIE特性的D-A结构的物质,然后将所述具有AIE特性的D-A结构的物质与顺磁性配合物分子在溶剂中混合,得到混合液,进行亲核取代反应,通过纯化(硅胶柱层析法,洗脱剂为二氯甲烷/甲醇,体积比为10:1),得到所述具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子。
进一步地,所述芳香环衍生物为三苯胺基、四苯基乙烯基、带有烷基链的三苯胺基及带有烷基链的四苯基乙烯基中的一种以上;所述4,9-二溴萘并三唑和芳香环衍生物的摩尔比为1:2-1:4。
进一步地,所述顺磁性配合物分子的离子为Gd3+、Mn2+、Fe2+中的一种以上,所述顺磁性配合物分子的配体为DOTA、DTPA、DPDP中的一种;所述具有AIE特性的D-A结构的物质与顺磁性配合物分子的摩尔比为1:1-1:2;所述溶剂为二氯甲烷、四氢呋喃、N,N-二甲基甲酰胺中的一种以上,所述具有AIE特性的D-A结构的物质在溶剂中的浓度为5-50mM。
进一步地,所述亲核取代反应的温度为30-60℃,亲核取代反应的时间为6-12小时。
本发明提供的一种包含所述的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒,其结构式如下所示:
Figure GDA0003232377440000041
n是重复单元,n的取值范围为2-10;
其中,
Figure GDA0003232377440000042
表示为两亲性结构物质;所述两亲性结构物质为具有疏水性空腔的生物大分子白蛋白、病毒衣壳、核酸、抗原、抗体中的一种。
本发明提供的一种制备上述的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒的方法,化学反应方程式如下所示:
Figure GDA0003232377440000051
所述具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子为带有可修饰官能团疏水性质的AIE部分和具有亲水性质的顺磁性造影剂;所述两亲性结构物质为带有疏水空腔的生物大分子;最终形成的纳米颗粒是疏松的带有间隙孔道的结构。
本发明提供的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒的制备方法,先以4,9-二溴萘并三唑和芳香环衍生物为原料,通过Suzuki偶联反应得到具有AIE特性的D-A结构;然后通过亲核取代反应连接上可修饰官能团,进一步与顺磁性造影剂结合;与生物大分子相互作用之后,经过去溶剂化和戊二醛的作用下,得到具有间隙孔道结构的纳米颗粒。
本发明提供的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒的制备方法,包括如下步骤:
将所述具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子溶解在有机溶剂中,得到有机相,然后在搅拌状态下将有机相滴加在两亲性结构物质的水溶液中,边滴加边搅拌(去溶剂化,滴加到一定体积后溶液稍浑浊即停止滴加),得到混合液,往所述混合液中加入戊二醛偶联剂,在避光条件下搅拌处理,超滤纯化,得到所述包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒。得到的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒可以分散在磷酸盐缓冲溶液中进行保存。
进一步地,所述有机溶剂为丙酮、甲醇、乙醇、四氢呋喃中的一种,所述有机相中,具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的浓度为0.02-2mM;所述有机相与两亲性结构物质的水溶液的体积比为0.5:1-1:1;所述两亲性结构物质的水溶液的浓度为2-45mg/mL;所述具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子与两亲性结构物质的摩尔比为0.5:1-3:1;所述戊二醛偶联剂的浓度为2wt%-5wt%;所述戊二醛偶联剂与两亲性结构物质的水溶液的体积比为1:500-1:200;所述在避光条件下搅拌处理的时间为4-12h;所述超滤纯化使用的超滤管分子截流量为30K-100k。
本发明提供的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒能够应用在细胞荧光和磁共振双模态成像、活体肿瘤成像中。
本发明提供的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒可以应用在细胞和活体生物成像中。
本发明通过在4,9-二溴萘并三唑的两侧引入运动型(转动/振动)电子给体,构筑成具有AIE特性的荧光部分;然后利用亲核取代在三唑的中间氮原子上引入十一酸,与含有氨基的顺磁性造影剂Gd-DOTA进行缩合反应,得到两亲性的NGd分子;进一步将其与血清白蛋白发生疏水相互作用,通过去溶剂化和戊二醛固定的方法得到具有大尺寸、疏松间隙结构的纳米颗粒。相比于小分子,由于AIE部分分子内运动受阻,荧光增强;与此同时,大尺寸使得造影剂的旋转相关时间延长,疏松间隙结构能够减缓水分子的扩散,提高扩散相关时间,两者共同作用使得磁共振造影信号增强。另外,生物大分子具有良好的生物相容性和生物易降解性保证了纳米材料的生物安全性。因此,本发明提供的策略能够为高性能荧光和磁共振双模态成像材料的开发提供切实可行的借鉴与指导意义。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明提供的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的制备方法,以生物大分子为载体,既可以限制AIE分子内部运动又能使水分子自由进出与钆配合物接触保证了荧光和磁共振信号的同时增强;
(2)本发明提供的含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米材料,其制备方法简单、原料易得,具有良好的生物相容性;
(3)本发明提供的含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米材料能够实现细胞层面的荧光和磁共振成像;
(4)本发明提供的含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米材料可以在低于已报道剂量的5倍的情况下实现小鼠的肝脏和肿瘤的磁共振成像。
附图说明
图1为基于实施例1所得材料NGd在不同水含量条件下的荧光光谱图;
图2a和图2b分别为实施例2所得材料NGd-ACs的透射电镜表征结果图和动态光散射表征结果。(A)透射电镜表征结果;(B)动态光散射表征结果,粒径分布图。
图3a为NGd分子在二甲亚砜、水和BSA水溶液中的荧光光谱与NGd-ACs的荧光光谱的对比图;图3b为NGd分子在水和BSA水溶液中的弛豫率,与NGd-ACs、临床造影剂Gd-DOTA弛豫率的对比图。
图4a为四种材料的细胞梯度幻影成像。其中,I为NGd分子,II为NGd-ACs,III为临床造影剂Gd-DOTA,IV为空白对照组。图4b为图4a中的细胞造影信号和荧光信号的信噪比。
图5为利用荧光共聚焦显微镜技术对NGd和NGd-ACs的细胞荧光成像。
图6为电感耦合等离子体质谱(ICP-MS)定量测试每个细胞对NGd-ACs、NGd和Gd-DOTA的内吞量。
图7为利用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)的方法对NGd和NGd-ACs的细胞存活率进行评估结果图。
图8a和图8b为通过尾静脉分别注射6μmolGd(III)/Kg小鼠体重的NGd-ACs和临床造影剂Gd-DOTA的肝脏和皮下肿瘤成像图;图8c为图8a中肝脏的信噪比随时间变化情况图;图8d为图8b中肿瘤部位的信噪比随时间变化情况图。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
实施例1
一种具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子(NGd)的制备
Figure GDA0003232377440000081
合成路线如下:
Figure GDA0003232377440000091
(1)根据先前文献报道(J.Mater.Chem.2008,18,806),通过溴化反应制备中间体产物化合物1。将含有1.7mL溴(10.4g,43mmol)的50mL冰醋酸逐渐滴加到70mL含2,3-二氢萘-2,3-二胺(NA)(2.5g,16mmol)的冰醋酸溶液中,在室温搅拌4h。之后,将去离子水加到溶液中,滤出沉淀物,并用冰醋酸和水洗涤。干燥后获得棕色粉末(3.8g,81%)。
(2)据先前文献合成中间产物化合物2(ACS Appl.Mater.Inter.2016,8,6117)。将15mL的亚硝酸钠水溶液(3.0g,33.0mmol)逐滴添加至30mL的含化合物1(3.16g,10mmol)的冰醋酸中。在室温下搅拌30分钟后,将沉淀物滤出并用水洗涤以获得棕色粉末。粗品不经纯化直接使用。将此棕色粉末(2.5g,7.6mmol)溶解在30mL超干N,N-二甲基甲酰胺中,并在搅拌下加入氢氧化钠(11.4mmol,456mg)。接着将11-溴癸酸(4.1g,15.2mmol)溶解在20mL N,N-二甲基甲酰胺溶液中,滴加到反应液中,并在室温下搅拌24h。反应完成后,用稀盐酸将溶液调至微酸性。粗溶液用二氯甲烷/水萃取以除去N,N-二甲基甲酰胺,有机层用无水硫酸镁干燥,最后通过柱色谱法纯化,使用乙酸乙酯/石油醚作为洗脱剂,得到粉末(2.8g,73%)。
1H NMR(DMSO,500MHz):δ11.88(s,1H),8.33(m,2H),7.70(m,2H),4.91(t,20H),2.17(m,4H),1.32-1.20(m,14H).13C NMR(DMSO,500MHz):δ174.9 142.4,130.9,128.1,126.9,108.5,58.1,34.1,29.8,29.2,29.1,28.9,28.7,26.3,24.9。
(3)中间产物化合物3通过Suzuki反应合成。(4-(双(4-甲氧基苯基)氨基)苯基)硼酸(2.1g,6mmol)、化合物2(1.53g,3mmol)和四(三苯基膦)钯(116mg,0.1mmol)的混合物在氮气下搅拌。用注射器注入20mL甲苯和12mL碳酸钾(2M)水溶液,回流24小时。反应完成后,将粗溶液用二氯甲烷/水萃取以除去N,N-二甲基甲酰胺,将有机层收集用无水硫酸镁干燥,最后通过乙酸乙酯/石油醚混合物作为洗脱剂的柱色谱法纯化,得到产物粉末3(1.7g,89%)。
1H NMR(DMSO,500MHz):δ8.04(d,2H),7.45(d,2H),7.35(d,2H),7.19(d,2H),6.96(d,2H),8.92(d,2H),4.80(t,2H),3.76(s,12H),1.98(t,2H),1.87(t,2H),1.26-1.15(m,14H).13C NMR(DMSO,500MHz):δ174.9,156.5,148.3,141.8,140.3,133.6,132.8,132.5,132.3,132.0,131.9,129.2,127.8,118.3,115.5,55.6,34.1,30.1,29.2,28.9,26.4,24.9.
(4)将化合物3(100mg,0.1mmol),1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)(28.7mg,0.15mmol),N-羟基琥珀酰亚胺(NHS)(17.3mg,0.15mmol)溶于干燥N,N-二甲基甲酰胺(10mL)并在室温下搅拌1h,得到反应液。化合物4(92mg,0.15mmol,按照文献Nanoscale 2017,9,4516合成)溶于N,N-二甲基甲酰胺(3mL),然后加入反应液中在30-60℃下搅拌6-12h。之后,将反应液用二氯甲烷/水萃取,有机层收集用无水硫酸镁干燥,最后通过甲醇/二氯甲烷作为洗脱剂的柱色谱法纯化,得到浅黄色粉末状化合物5(99.5mg,65%)。
1H NMR(DMSO,500MHz):δ9.20(s,1H),8.15~8.11(m,2H),7.50~7.48(d,4H),7.31~7.28(q,2H),7.22~7.20(d,8H),7.08~7.06(d,4H),6.92(d,8H),5.33(t,2H),4.82~4.79(t,2H),3.81(s,12H),3.28~3.22(m,4H),2.91~2.76(m,2H),2.67~2.59(m,1H),2.54~2.49(q,5H),2.35~2.14(m,19H),1.86~1.83(m,2H),1.62~1.55(m,4H),1.46~1.26(m,37H).13C NMR(DMSO,500MHz):δ177.82,177.57,175.02,172.94,170.64,157.45,149.82,143.82,141.63,133.36,131.33,129.18,128.42,128.04,127.87,127.72,125.63,121.71,120.37,116.12,91.90,56.78,54.75,45.25,43.64,39.49,37.49,36.54,35.73,33.21,32.45,31.67,31.01,30.96,30.86,30.70,30.59,30.44,30.36,29.98,29.24,27.95,26.24,24.01,15.93,15.20.
(5)将化合物5在室温下溶解于3mL三氟乙酸中以进行脱保护,搅拌3小时后,通过多次旋转蒸发除去过量的三氟乙酸和少量的二氯甲烷,得到棕色油状产物。然后,将棕色油状产物溶于甲醇。用稀氢氧化钠溶液将pH调节至5.0-6.0。将1.5倍当量的无水氯化钆溶解于甲醇中,并逐滴添加至上述棕色溶液中。在60℃反应12小时后,通过蒸发除去甲醇。为了纯化,将粗产物再次溶于二氯甲烷中,并将过量的钆离子用水洗涤多次,收集有机相,旋转蒸发,以出去有机溶剂得到棕色化合物6(命名为NGd)。MALDI-TOF-MS(m/z)calculated forC79H90N11O12[M+]:1542.6,found:1542.3037.
实施例2白蛋白纳米颗粒NGd-ACs的制备
Figure GDA0003232377440000111
NGd分子溶解在二甲亚砜中,配制16.7mM的钆浓度作为储备液,并保存在4℃的冰箱中。NGd-ACs通过去溶剂和戊二醛偶联的方法合成(J.Mater.Chem.B 2017,5,8004)。将181.4μLNGd用四氢呋喃稀释至20mL,并逐滴加入50mL牛血清白蛋白(BSA)(20mg/mL)水溶液中。NGd/BSA的摩尔比为1:2,将所得混合物在室温搅拌30分钟。在400rpm的恒定搅拌下,将四氢呋喃逐滴添加至上述混合物中,直到溶液变得略微混浊。然后加入100μL的2.5wt%戊二醛水溶液,并用铝箔避光在室温下搅拌。4小时后,将混合物旋转蒸发在室温下除去有机溶液。NGd-ACs用超速离心管(MWCO=30kDa)超滤纯化3次,并在超声下将白蛋白纳米颗粒分散在磷酸缓冲液中。通过电感耦合等离子体原子发射光谱法(ICP-AES)测量钆的浓度。
实施例3FL/MRI两亲性双模态分子NGd的AIE特性表征
图1为实施例1中的NGd在不同水含量条件下的荧光光谱图。图1为随着水含量增加NGd(10μM)在水/二甲亚砜(v/v)混合溶剂中的荧光发射谱图。从图1中可以看出,在含水量为20%~70%之间时具有明显的AIE特性,在超过70%后,由于聚集体变大沉淀,导致局部浓度降低,荧光强度减弱。
实施例4白蛋白纳米颗粒NGd-ACs的粒径表征
图2a和图2b为实施例2中的NGd-ACs的粒径表征。图2a为透射电子显微镜结果;图2b为动态光散射数据结果。从结果中看出,NGd-ACs的粒径大约在160nm。
实施例5FL/MR双模态探针NGd和NGd-ACs在溶液状态下的荧光和弛豫性能表征
图3a和图3b是实施例1和实施例2中的NGd和NGd-ACs的荧光光谱和磁共振造影性能测试。其中,图3a是NGd分别在四氢呋喃、97%的水含量、97%的水中加入BSA(BSA/NGd=1:2),以及NGd-ACs的荧光光谱。从该图结果中可以看出,相比于NGd在水溶剂条件下的荧光强度,NGd-ACs的荧光强度提高了7倍;相对于NGd在四氢呋喃溶剂条件下的荧光强度,NGd-ACs的荧光强度增强了5倍。这种增强要归功于NGd的分子内运动被BSA的疏水空腔限制,即分子内运动受限,使得荧光增强。并且,NGd-ACs的发射峰的位置明显蓝移,这是由于NGd分子与BSA之间的静电作用所致。图3b是NGd分子在水、BSA水溶液(BSA/NGd=1:2)中以及NGd-ACs的弛豫率与临床上磁共振造影剂马根维显(Gd-DTPA)的比较。NGd-ACs的弛豫率为85.10mM-1s-1,是NGd在水中的弛豫率(10.91mM-1s-1)的8倍,在BSA水溶液中的弛豫率(28.41mM-1s-1)提高了将近3倍,比临床上的造影剂弛豫率提高了17倍。白蛋白纳米颗粒弛豫率的提升要归功于整体分子的旋转相关时间(τR)延长和周围水分子的扩散相关时间(τD)延长。从增强的荧光强度和弛豫率数据上可以证明白蛋白笼构筑的几何限域策略能够实现荧光和弛豫性能的同时增强。
实施例6NGd和NGd-ACs在细胞水平下的荧光和弛豫性能表征
通过离心的方法分别收集孵育了NGd(I)、NGd-ACs(II)、Gd-DTPA(III)、空白组的细胞,然后进行荧光和磁共振造影成像。其中,图4a为浓缩细胞的磁共振成像。对于荧光成像,主要是将进行完磁共振成像的离心管放在BIO-RAD ChemiDocTM MP凝胶成像系统上,在435nm的激发下进行的凝胶成像。结果显示,NGd-ACs的荧光最强,其次是NGd;由于Gd-DOTA没有荧光发射,所以为检测到荧光信号。图4b采集图4a中磁共振成像信号和荧光成像的信噪比。从信噪比结果可以看出,用NGd-ACs孵育之后的细胞磁共振成像信号和荧光信号比小分子NGd提高了3-4倍,证明NGd-ACs能够在细胞层面上进行很好的双模态成像。
图5是用荧光共聚焦显微镜观察NGd和NGd-ACs被细胞摄取的情况。从图5中可以看出,NGd-ACs较多地被细胞摄取,而NGd被细胞摄取的量比较少。这一现象主要归功于两个原因。第一,NGd-ACs相比于小分子NGd,能够很好地分散在细胞培养基中,并且具有良好的稳定性;第二,白蛋白会与细胞表面的gp60受体结合,促使细胞对白蛋白纳米颗粒的内吞。
为了定量证明细胞更多地摄取NGd-ACs,ICP-MS测量细胞内的钆离子浓度,如图6所示。每个细胞对NGd-ACs、NGd和Gd-DOTA的摄取量分别为195.6±5.3,116.1±4.8,74.5±8.5fg Gd(III)/cell。这一结果定量证明了NGd-ACs更容易被细胞摄取。
实施例7NGd和NGd-ACs的细胞毒性评估
以HeLa细胞作为研究对象,利用MTT的方法对NGd和NGd-ACs的细胞毒性进行评估。从图7的结果可以看出,NGd-ACs在钆的浓度为100μM的情况下仍具有较高的细胞存活率,而小分子NGd在较高的浓度下已经开始表现出一定的细胞毒性。这说明,将小分子NGd装在蛋白笼的结构中可以提高分子的生物相容性。
实施例8NGd-ACs的活体磁共振造影成像
以4T1乳腺癌细胞为模型,将其种植在Balb/c小鼠皮下建立肿瘤动物模型。当小鼠皮下肿瘤体积大小为50mm3后,进行活体的磁共振造影成像。如图8a、图8b、图8c及图8d所示,与临床上造影剂Gd-DTPA相比,尾静脉注射6μmolGd(III)/Kg小鼠体重的NGd-ACs,与注射造影剂之前(pre-i)相比,可以观察到肝脏和肿瘤部位明显变亮。并且肝脏部位在3小时时达到峰值,肿瘤部位在7小时时达到峰值,而注射相同剂量的对照组小鼠,肝脏和肿瘤部位的信号基本没有变亮。这说明NGd-ACs可以作为T1加权的磁共振成像造影剂进行活体的磁共振造影成像。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

1.一种具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子,其特征在于,结构式如下所示:
Figure FDA0003378092130000011
2.一种制备权利要求1所述的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的方法,其特征在于,包括如下步骤:
Figure FDA0003378092130000012
为原料,通过Suzuki偶联反应,得到具有AIE特性的D-A结构的物质,然后将所述具有AIE特性的D-A结构的物质与顺磁性配合物分子在溶剂中混合,得到混合液,进行亲核取代反应,通过纯化,得到所述具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子。
3.根据权利要求2所述的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的制备方法,其特征在于,所述
Figure FDA0003378092130000013
Figure FDA0003378092130000014
的摩尔比为1:2-1:4。
4.根据权利要求2所述的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的制备方法,其特征在于,所述具有AIE特性的D-A结构的物质与顺磁性配合物分子的摩尔比为1:1-1:2;所述溶剂为二氯甲烷、四氢呋喃、N,N-二甲基甲酰胺中的一种以上,所述具有AIE特性的D-A结构的物质在溶剂中的浓度为5-50mM。
5.根据权利要求2-4任一项所述的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的制备方法,其特征在于,所述亲核取代反应的温度为30-60℃,亲核取代反应的时间为6-12小时。
6.一种包含权利要求1所述的具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒,其特征在于,结构式如下所示:
Figure FDA0003378092130000021
n是重复单元,n的取值范围为2-10;
所述
Figure FDA0003378092130000022
Figure FDA0003378092130000023
其中,
Figure FDA0003378092130000024
表示为两亲性结构物质;所述两亲性结构物质为具有疏水性空腔的生物大分子白蛋白、病毒衣壳、核酸、抗原、抗体中的一种。
7.一种制备权利要求6所述的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒的方法,其特征在于,化学反应方程式如下所示:
Figure FDA0003378092130000031
8.根据权利要求7所述的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒的制备方法,其特征在于,包括如下步骤:将所述具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子溶解在有机溶剂中,得到有机相,然后在搅拌状态下将有机相滴加在两亲性结构物质的水溶液中,得到混合液,往所述混合液中加入戊二醛偶联剂,在避光条件下搅拌处理,超滤纯化,得到所述包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒。
9.根据权利要求8所述的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒的制备方法,其特征在于,所述有机溶剂为丙酮、甲醇、乙醇、四氢呋喃中的一种,所述有机相中,具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的浓度为0.02-2mM;所述有机相与两亲性结构物质的水溶液的体积比为0.5:1-1:1;所述两亲性结构物质的水溶液的浓度为2-45mg/mL;所述具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子与两亲性结构物质的摩尔比为0.5:1-3:1;所述戊二醛偶联剂的浓度为2wt%-5wt%;所述戊二醛偶联剂与两亲性结构物质的水溶液的体积比为1:200-1:500;所述在避光条件下搅拌处理的时间为4-12h;所述超滤纯化使用的超滤管分子截流量为30K-100K。
10.权利要求6所述的包含具有AIE特性的荧光和磁共振造影信号同时增强的两亲性分子的纳米颗粒在制备细胞荧光试剂和制备磁共振双模态成像试剂、肿瘤成像试剂中的应用。
CN202010997166.0A 2020-09-21 2020-09-21 一种具有aie特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用 Active CN112390786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010997166.0A CN112390786B (zh) 2020-09-21 2020-09-21 一种具有aie特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010997166.0A CN112390786B (zh) 2020-09-21 2020-09-21 一种具有aie特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用

Publications (2)

Publication Number Publication Date
CN112390786A CN112390786A (zh) 2021-02-23
CN112390786B true CN112390786B (zh) 2022-02-15

Family

ID=74595715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997166.0A Active CN112390786B (zh) 2020-09-21 2020-09-21 一种具有aie特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用

Country Status (1)

Country Link
CN (1) CN112390786B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349756B (zh) * 2021-12-15 2024-02-20 南京邮电大学 一种aie有机小分子及其制备方法和应用
CN114507247B (zh) * 2022-01-19 2023-08-11 华南理工大学 一种两亲性钆配合物及实现诊疗一体化的纳米胶束
CN116400068B (zh) * 2023-02-13 2023-09-22 泉州圣源警用侦察设备有限公司 一种用于含dna的潜在生物痕迹显现的试剂及显现方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390143B (zh) * 2015-07-17 2020-01-07 中国科学院大连化学物理研究所 肿瘤靶向核磁共振/荧光双模态成像造影剂及其制备和应用
CN107987825A (zh) * 2017-12-19 2018-05-04 国家纳米科学中心 一种用于细胞成像的制剂及其制备方法和用途
JP2019147751A (ja) * 2018-02-26 2019-09-05 セイコーエプソン株式会社 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
CN111234080A (zh) * 2020-02-11 2020-06-05 浙江理工大学 Aie聚合物纳米粒子及其制备和作为喷墨打印墨水着色剂的应用

Also Published As

Publication number Publication date
CN112390786A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN112390786B (zh) 一种具有aie特性的荧光和磁共振造影信号同时增强的两亲性分子、纳米颗粒及制备方法与应用
Bogdan et al. Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition
Ali et al. Red fluorescent carbon nanoparticle-based cell imaging probe
Liu et al. Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging
Huang et al. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery
CN104974745B (zh) 两亲性的具有聚集诱导发光特性的发光物及其应用
Rowe et al. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers
Gerion et al. Paramagnetic silica-coated nanocrystals as an advanced MRI contrast agent
Tsotsalas et al. Functionalized nanocontainers as dual magnetic and optical probes for molecular imaging applications
EP2121040A1 (en) Compositions containing metal oxide particles and their uses
Chen et al. Tumor-acidity activated surface charge conversion of two-photon fluorescent nanoprobe for enhanced cellular uptake and targeted imaging of intracellular hydrogen peroxide
Chen et al. Acyclic cucurbit [n] uril conjugated dextran for drug encapsulation and bioimaging
JP6141186B2 (ja) 非常に効率的なエネルギー移動及び調整可能なストークシフトを特徴とする複数の色素がドープされたシリカナノ粒子
Maddahfar et al. Stable and highly efficient antibody–nanoparticles conjugation
CN102380109B (zh) 一种两亲性多糖包裹超顺磁纳米粒子构建的磁共振造影剂及其制备方法
Kumar et al. Rose Bengal attached and dextran coated gadolinium oxide nanoparticles for potential diagnostic imaging applications
Wang et al. Preparation Fe3O4@ chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging
Mehravi et al. Breast cancer cells imaging by targeting methionine transporters with gadolinium-based nanoprobe
Sun et al. NaGdF4: Nd@ NaGdF4 core-shell down-conversion nanoparticles as NIR-II fluorescent probes for targeted imaging of bacteria
Lipani et al. High-relaxivity and luminescent silica nanoparticles as multimodal agents for molecular imaging
Maghsoudinia et al. Bevacizumab and folic acid dual-targeted gadolinium-carbon dots for fluorescence/magnetic resonance imaging of hepatocellular carcinoma
Pinho et al. Silica nanoparticles for bimodal MRI–optical imaging by grafting Gd3+ and Eu3+/Tb3+ complexes
Guo et al. Rapid synthesis of amphiphilic europium complexes via ultrasonic treatment-assisted crosslinking reaction
Lee et al. One-pot bifunctionalization of silica nanoparticles conjugated with bioorthogonal linkers: application in dual-modal imaging
CN113227040A (zh) 纳米颗粒、包含该纳米颗粒的核磁共振成像造影剂及两性离子配体化合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant