CN112387982B - 一种激光增材过程功率联合调控方法 - Google Patents

一种激光增材过程功率联合调控方法 Download PDF

Info

Publication number
CN112387982B
CN112387982B CN202011131563.6A CN202011131563A CN112387982B CN 112387982 B CN112387982 B CN 112387982B CN 202011131563 A CN202011131563 A CN 202011131563A CN 112387982 B CN112387982 B CN 112387982B
Authority
CN
China
Prior art keywords
corner
power
value
points
molten pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011131563.6A
Other languages
English (en)
Other versions
CN112387982A (zh
Inventor
戴瑞麟
陈华斌
余锦
陆阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202011131563.6A priority Critical patent/CN112387982B/zh
Publication of CN112387982A publication Critical patent/CN112387982A/zh
Application granted granted Critical
Publication of CN112387982B publication Critical patent/CN112387982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及一种激光增材过程功率联合调控方法,包括以下步骤:步骤S1:离线轨迹规划阶段对角点位置的功率进行调整,得到角点位置的过程包括:对待成型零件的三维模型进行切片处理,获取切片层的轮廓曲线,利用角点响应函数计算轮廓曲线上各点的角点响应值,基于角点响应值,利用非极大抑制法从所有轮廓点中筛选出候选角点,将候选角点的角点响应值与阈值进行比较,得到角点位置;步骤S2:视觉监测阶段将调整后角点位置的功率与PID控制结合进行激光增材过程功率调控。与现有技术相比,可防止由于功率恒定而在尖角处产生较大的温度梯度,避免成型零件出现塌陷与凸起等缺陷,有效提升了成型零件的质量。

Description

一种激光增材过程功率联合调控方法
技术领域
本发明涉及激光增材质量控制技术领域,尤其是涉及一种激光增材过程功率联合调控方法。
背景技术
在激光增材的过程中,模型的尖角加工处相比其他区域会覆盖更多的金属粉末,热量不能快速散发。由于粉末间的空隙较大,相较于实体材料热传导系数低,热量不能快速散发至周围的粉末材料,使得周围覆盖的粉末材料温度不能及时升高,从而在加工处存在很大的温度梯度。较大的温度梯度导致成型件非常容易发生翘曲变形等问题。然而,现有的方法例如专利CN111451500A“一种钛合金阀杆激光增材修复方法”,在激光增材过程中,在模型的所有区域采用恒定的功率值,忽视了模型边缘尖角处的特殊结构,此处会产生较大的温度梯度,导致加工件在尖角处存在塌陷、凸起等缺陷。因此,现有的方法无法在激光增材的过程中进行功率自适应调整,成型零件存在质量较差的问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种激光增材过程功率联合调控方法。
本发明的目的可以通过以下技术方案来实现:
一种激光增材过程功率联合调控方法,该方法包括以下步骤:
步骤S1:离线轨迹规划阶段对角点位置的功率进行调整,得到角点位置的过程包括:
对待成型零件的三维模型进行切片处理,获取切片层的轮廓曲线,
利用角点响应函数计算轮廓曲线上各点的角点响应值,
基于角点响应值,利用非极大抑制法从所有轮廓点中筛选出候选角点,
将候选角点的角点响应值与阈值进行比较,得到角点位置;
步骤S2:视觉监测阶段将调整后角点位置的功率与PID控制结合进行激光增材过程功率调控。
所述的步骤S2包括:
步骤S21:获取熔池图像并提取熔池的长宽特征;
步骤S22:结合调整后角点位置的功率,通过PID控制动态调整功率大小,使熔池的长宽比趋于设定值。
所述提取熔池的长宽特征的过程包括:
对熔池图像进行高斯滤波;
对高斯滤波后的图像进行阈值分割;
提取阈值分割后图像的轮廓,对轮廓进行拟合后得到熔池的长宽特征。
所述的熔池图像通过工业CCD相机获取,所述工业CCD相机连接微距镜头。
所述工业CCD相机设有中心波长905nm的滤光片。
所述工业CCD相机设辅助光源。
所述的角点响应函数为:
Figure BDA0002735337390000021
其中,S(Pk)表示点Pk处的角点响应值,dk,1表示点Pk与前后间距3个点的两点Pk-L、Pk+L构成的三角形的底边的长度,dk,2与dk,3分别表示三角形的两条腰的长度。
非极大值抑制法筛选候选角点时,采用单调递减的双向队列数据结构存储当前邻域的最大角点响应值的索引,当遍历到一个新元素时,将队尾小于该元素的索引弹出,然后检查队首最大值元素的索引是否还在滑动窗口区间内,若不在则弹出最大值元素的索引。
所述对角点位置的功率进行调整的计算公式为:
Figure BDA0002735337390000022
其中,Pcorner表示调整后角点位置的功率,Pinit表示初始设定的功率值,α表示调整系数,s表示角点位置的角点响应值。
所述的阈值为0.15。
与现有技术相比,本发明具有以下优点:
(1)结合角点检测方法,对角点位置进行发现,并在离线轨迹规划时对该位置的功率进行了自适应的调整,从而防止由于功率恒定而在尖角处产生较大的温度梯度,避免成型零件出现塌陷与凸起等缺陷,有效提升了成型零件的质量。
(2)采用非极大值抑制法筛选候选角点时,采用了单调递减的双向队列来存储当前滑动窗口的最大角点响应值的索引,相比于嵌套遍历的方法,减少了寻找角点的时间复杂度。
(3)对熔池形态进行在线监测时,使用了微距镜头,使得尺寸较小的激光熔池也能被清晰地观察到。
(4)熔池图像采集时利用了辅助光源与窄带滤光片,过滤了激光的干扰,使得采集的图像更加清晰。
(5)在离线轨迹规划角点位置功率调整基础上,结合了PID控制在在线视觉监测过程中进行动态功率的实时调整,使得熔池的形态能够稳定在预期值附近,进一步提高成型件的质量。
附图说明
图1为本发明的流程图;
图2为本发明的激光增材系统示意图;
图3为本发明的阈值分割结果示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例
本实施例提供
如图1所示,本申请提出一种激光增材过程的离线轨迹规划与在线视觉监测的功率联合调控方法,如图1所示,包括:
1、对待成型零件的三维模型进行切片处理,获取切片层的轮廓曲线。
在本实施例中,输入的三维模型首先需要切片处理,以STL格式进行读取,该格式的文件采用了三角形面片近似地拟合逼近模型表面的方法来表达模型。三角形面片数据格式由三个顶点坐标数据和一个表示三角形面片方向的外矢量数据所组成。在对模型进行分层切片处理时,需要先设定切片层厚,然后读取三角形面片,根据切片层厚度和切平面所在高度,对三角形面片进行分组划分。首先进行切平面高度与三角形面片位置关系的判断,若切平面高度低于某三角角面片z坐标的最低值,则无需继续判断排列在该三角面片之后的三角面片;同理,若切平面高度高于某三角面片z坐标的最高值,也无须继续判断该三角形面片之前的三角形面片。这样可以有效减少判断的次数,从而提高切片效率。之后根据三角形面片邻接关系找到与其邻接的三角面片,再求交点,按照这个过程依次求得相邻的交点,最后回到初始的交点,得到一条封闭的多边形轮廓曲线,将其存储在相应的数据结构中。
2、利用角点响应函数计算轮廓曲线上各点的角点响应值。
其中,角点响应函数指直接反应该轮廓曲线上每个点在当前位置的弯曲程度的函数:
Figure BDA0002735337390000041
其中,S(Pk)表示点Pk处的角点响应值,dk,1表示点Pk与前后间距3个点的两点Pk-L、Pk+L构成的三角形的底边的长度,dk,2与dk,3分别表示三角形的两条腰的长度。
在本实施例中,采用1减去三角形底边长与三角形腰长和的比例作为角点响应函数,该函数计算方式简单,计算量小,在数据点个数非常庞大时,也能很好地应用,另一方面,在角点相距较近时,也能将各个角点识别出来,准确度十分高,并且可以保证,当角点响应值越大时,该处越尖锐。
3、基于角点响应值,利用非极大抑制法从所有轮廓点中筛选出候选角点。
一个点需要满足两个条件才能成为角点。第一个条件是该点处的角点响应值和其某一邻域内的点的曲率值相比为极大值点,该极大值主要通过非极大值抑制的方法来寻找。非极大值抑制是一种局部最大搜索的方法,这个局部代表的是一个邻域。在本实施例中,采用一个单调递减的双向队列来存储当前邻域的最大角点响应值的索引,每次遍历到一个新元素,将队尾小于该元素的索引弹出,然后检查队首最大值元素的索引是否还在滑动窗口区间内,若不在则弹出最大值元素的索引,从而可以在O(N)的时间复杂度内将候选角点筛选出来。
4、将候选角点的角点响应值与阈值进行比较,得到角点位置。
成为角点的第二个条件是该点的角点响应值需要大于事先设定的阈值,在本实施例中选择阈值时,需要使得角点处的角度小于120°,因此根据余弦定理,可以计算出阈值为0.15。
5、对角点位置的功率进行调整,并添加调整后角点位置的功率命令至机器人代码中。
在本实施例中,对角点位置的功率进行调整的规则为:
Figure BDA0002735337390000051
其中,Pcorner表示调整后角点位置的功率,Pinit表示初始设定的功率值,α表示调整系数,s表示角点位置的角点响应值。
通过该规则对功率进行自适应调整可以使得尖锐度越大的尖角处功率越低,从而有效降低了温度梯度。之后,将调整的功率通过laser=命令添加到机器人代码。
6、输出机器人代码至激光增材系统中进行增材制造,并通过工业CCD相机采集熔池图像。
如图2所示,本实施例中的激光增材系统包括工控机、CCD相机、辅助光源、微距镜头、滤光片、通讯模块、机器人、激光器、水冷机与送粉器。机器人与激光器和送粉器相连,用于在增材过程中提供激光和粉末,水冷机与激光器相连,用于对激光器进行水冷降温。CCD相机与辅助光源相连,并使用微距镜头进行采像,将尺寸较小的激光熔池进行放大,图像更加清晰。微距镜头前方配备有中心波长905nm的滤光片,可以有效地过滤激光的干扰。CCD相机与工控机连接,用于将采集的图像传输到工控机中。本实施例中,CCD相机与辅助光源通过夹具与激光头相连,通过夹具可以自由调整CCD相机与辅助光源的相对位置,两者调整到合适的角度约为130°至150°之间,在此范围内可以使得辅助光源压住激光的干扰,采集得到清晰的熔池图像。辅助光源的控制盒中装有同步触发板,可以使辅助光源的触发时机和CCD相机的采像时机同步。
7、提取熔池的长宽特征。
在本实施例中,采用了简单高效的阈值分割法对采集到的熔池图像进行处理并进行了特征提取,如图3所示,主要包括以下几个过程:
(1)对采集得到的熔池图像进行高斯滤波,剔除随机噪声点。
(2)对滤波后的图像进行阈值分割,将像素值大于阈值的像素点的像素值设置为255,否则设置为0。
(3)提取阈值分割后的图像的轮廓,并进行拟合,获取熔池的长度与宽度。
8、通过PID控制器动态调整功率大小,使得熔池的长宽比稳定在设定值附近。
在本实施例中,将图像处理获取的熔池的长宽比与设定值的偏差作为PID控制器的输入,将PID控制器的输出作为激光增材系统的功率输入,使得熔池的长宽比能够稳定在一个设定的期望值附近,以此提升成型件的质量。

Claims (8)

1.一种激光增材过程功率联合调控方法,其特征在于,该方法包括以下步骤:
步骤S1:离线轨迹规划阶段对角点位置的功率进行调整,得到角点位置的过程包括:
对待成型零件的三维模型进行切片处理,获取切片层的轮廓曲线,
利用角点响应函数计算轮廓曲线上各点的角点响应值,
基于角点响应值,利用非极大值抑制法从所有轮廓点中筛选出候选角点,
将候选角点的角点响应值与阈值进行比较,将角点响应值大于所述阈值的候选角点作为角点,并得到角点位置;
步骤S2:视觉监测阶段将调整后角点位置的功率与PID控制结合进行激光增材过程功率调控;
所述的步骤S2包括:步骤S21:获取熔池图像并提取熔池的长宽特征;步骤S22:结合调整后角点位置的功率,通过PID控制动态调整功率大小,使熔池的长宽比趋于设定值;
所述的角点响应函数为:
Figure FDA0003116326830000011
其中,S(Pk)表示点Pk处的角点响应值,dk,1表示点Pk与前后间距3个点的两点Pk-L、Pk+L构成的三角形的底边的长度,dk,2与dk,3分别表示三角形的两条腰的长度。
2.根据权利要求1所述的一种激光增材过程功率联合调控方法,其特征在于,所述提取熔池的长宽特征的过程包括:
对熔池图像进行高斯滤波;
对高斯滤波后的图像进行阈值分割;
提取阈值分割后图像的轮廓,对轮廓进行拟合后得到熔池的长宽特征。
3.根据权利要求1所述的一种激光增材过程功率联合调控方法,其特征在于,所述的熔池图像通过工业CCD相机获取,所述工业CCD相机连接微距镜头。
4.根据权利要求3所述的一种激光增材过程功率联合调控方法,其特征在于,所述工业CCD相机设有中心波长905nm的滤光片。
5.根据权利要求3所述的一种激光增材过程功率联合调控方法,其特征在于,所述工业CCD相机设辅助光源。
6.根据权利要求1所述的一种激光增材过程功率联合调控方法,其特征在于,非极大值抑制法筛选候选角点时,采用单调递减的双向队列数据结构存储当前邻域的最大角点响应值的索引,当遍历到一个新元素时,将队尾小于该元素的索引弹出,然后检查队首最大值元素的索引是否还在滑动窗口区间内,若不在则弹出最大值元素的索引。
7.根据权利要求1所述的一种激光增材过程功率联合调控方法,其特征在于,所述对角点位置的功率进行调整的计算公式为:
Figure FDA0003116326830000021
其中,Pcorner表示调整后角点位置的功率,Pinit表示初始设定的功率值,α表示调整系数,s表示角点位置的角点响应值。
8.根据权利要求1所述的一种激光增材过程功率联合调控方法,其特征在于,所述的阈值为0.15。
CN202011131563.6A 2020-10-21 2020-10-21 一种激光增材过程功率联合调控方法 Active CN112387982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011131563.6A CN112387982B (zh) 2020-10-21 2020-10-21 一种激光增材过程功率联合调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011131563.6A CN112387982B (zh) 2020-10-21 2020-10-21 一种激光增材过程功率联合调控方法

Publications (2)

Publication Number Publication Date
CN112387982A CN112387982A (zh) 2021-02-23
CN112387982B true CN112387982B (zh) 2021-10-12

Family

ID=74596991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011131563.6A Active CN112387982B (zh) 2020-10-21 2020-10-21 一种激光增材过程功率联合调控方法

Country Status (1)

Country Link
CN (1) CN112387982B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101707B (zh) * 2021-11-22 2022-12-09 南昌大学 激光增材制造功率控制方法、系统、介质及电子设备
CN114226757B (zh) * 2021-12-14 2023-04-11 上海交通大学 一种融合温度和图像信息的激光ded制造控制系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936760A (zh) * 2009-06-30 2011-01-05 宝山钢铁股份有限公司 大型料场料堆视觉测量系统
CN105328187A (zh) * 2015-11-21 2016-02-17 天津清研智束科技有限公司 实现电子束宽幅扫描的控制装置、方法以及增材制造设备
CN108492306A (zh) * 2018-03-07 2018-09-04 鞍钢集团矿业有限公司 一种基于图像轮廓的x型角点提取方法
CN109949361A (zh) * 2018-12-16 2019-06-28 内蒙古工业大学 一种基于单目视觉定位的旋翼无人机姿态估计方法
WO2019209709A1 (en) * 2018-04-24 2019-10-31 Honeywell Federal Manufacturing & Technologies, Llc Computer-aided design file format for additive manufacturing and methods of file generation
CN111179356A (zh) * 2019-12-25 2020-05-19 北京中科慧眼科技有限公司 基于Aruco码的双目相机标定方法、装置、系统和标定板
CN111354035A (zh) * 2020-03-17 2020-06-30 陕西高速机械化工程有限公司 一种桥梁动态荷载自动检测与反演系统及方法
CN111640157A (zh) * 2020-05-28 2020-09-08 华中科技大学 一种基于神经网络的棋盘格角点检测方法及其应用
CN111694014A (zh) * 2020-06-16 2020-09-22 中国科学院西安光学精密机械研究所 一种基于点云模型的激光非视域三维成像场景建模方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936760A (zh) * 2009-06-30 2011-01-05 宝山钢铁股份有限公司 大型料场料堆视觉测量系统
CN105328187A (zh) * 2015-11-21 2016-02-17 天津清研智束科技有限公司 实现电子束宽幅扫描的控制装置、方法以及增材制造设备
CN108492306A (zh) * 2018-03-07 2018-09-04 鞍钢集团矿业有限公司 一种基于图像轮廓的x型角点提取方法
WO2019209709A1 (en) * 2018-04-24 2019-10-31 Honeywell Federal Manufacturing & Technologies, Llc Computer-aided design file format for additive manufacturing and methods of file generation
CN109949361A (zh) * 2018-12-16 2019-06-28 内蒙古工业大学 一种基于单目视觉定位的旋翼无人机姿态估计方法
CN111179356A (zh) * 2019-12-25 2020-05-19 北京中科慧眼科技有限公司 基于Aruco码的双目相机标定方法、装置、系统和标定板
CN111354035A (zh) * 2020-03-17 2020-06-30 陕西高速机械化工程有限公司 一种桥梁动态荷载自动检测与反演系统及方法
CN111640157A (zh) * 2020-05-28 2020-09-08 华中科技大学 一种基于神经网络的棋盘格角点检测方法及其应用
CN111694014A (zh) * 2020-06-16 2020-09-22 中国科学院西安光学精密机械研究所 一种基于点云模型的激光非视域三维成像场景建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小功率激光模具自动修复 CCD 标定技术;刘立君等;《焊接学报》;20151231;第1-3页 *

Also Published As

Publication number Publication date
CN112387982A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN112387982B (zh) 一种激光增材过程功率联合调控方法
CN108637435B (zh) 一种基于视觉与弧压传感的三维焊缝跟踪系统及方法
US20080314878A1 (en) Apparatus and method for controlling a machining system
US20200269340A1 (en) Active Laser Vision Robust Weld Tracking System and Weld Position Detection Method
CN111300144B (zh) 基于图像处理的刀具磨损状态自动检测方法
CN111192307B (zh) 基于激光切割三维零部件的自适应纠偏方法
CN110223345B (zh) 基于点云的配电线路作业对象位姿估计方法
CN110153567A (zh) 一种基于图像识别的激光切割系统
CN109136912B (zh) 一种激光熔覆离焦量在线监测与负反馈状态识别方法
Zhang et al. Narrow-seam identification and deviation detection in keyhole deep-penetration TIG welding
CN101549468A (zh) 基于影像的刀具在线检测与补偿系统及方法
CN112529858A (zh) 一种基于机器视觉的焊缝图像处理方法
CN107688028B (zh) 一种激光增材制造搭接率在线监测方法
CN107354453B (zh) 立面激光熔覆成形工艺中计算临界搭接率的方法的用途
CN114372725A (zh) 一种基于数字孪生的增材制造系统成形监测系统及方法
CN112296999A (zh) 一种基于机器视觉的不规则工件加工路径生成方法
JP5927728B2 (ja) 画像霧除去装置、画像霧除去方法及び画像処理システム
CN102519387B (zh) 一种电子束焊接熔池形状参数的视觉检测方法
JP4942764B2 (ja) 加工材の幾何学的形状を検知するためのシステム及び方法
CN116228798B (zh) 基于机器视觉的铁塔智能切割检测方法
CN113560574A (zh) 3d打印缺陷修复方法
CN115213563B (zh) 激光智能焊接方法及系统
CN108372304B (zh) 一种3d加工方法及3d加工设备
CN114932292B (zh) 一种窄间隙被动视觉焊缝跟踪方法及系统
CN115187567A (zh) 一种金属增材制造熔池成形方向及宽度检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant