CN112387290A - Fe3O4负载的金属纳米颗粒的制备方法及其应用 - Google Patents

Fe3O4负载的金属纳米颗粒的制备方法及其应用 Download PDF

Info

Publication number
CN112387290A
CN112387290A CN202011159488.4A CN202011159488A CN112387290A CN 112387290 A CN112387290 A CN 112387290A CN 202011159488 A CN202011159488 A CN 202011159488A CN 112387290 A CN112387290 A CN 112387290A
Authority
CN
China
Prior art keywords
solution
metal
sodium borohydride
chloride solution
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011159488.4A
Other languages
English (en)
Inventor
刘湘
王祎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202011159488.4A priority Critical patent/CN112387290A/zh
Publication of CN112387290A publication Critical patent/CN112387290A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本文发明了Fe3O4载体参与的催化剂来催化产氢,以硼氢化钠为原料,然后以不同金属以及不同金属比例制得催化剂,分散到水中催化硼氢化钠产氢。本实验中由于催化剂具有磁性效果,因此回收利用较为方便,并且具有良好的产氢效果,本文采用此方法制备了十二种不同的金属配比以及不同金属催化剂来催化硼氢化钠产氢,其中Ni2Pt@Fe3O4、Ni2Pd@Fe3O4、Ni2Rh@Fe3O4具有最优越的催化产氢效果。

Description

Fe3O4负载的金属纳米颗粒的制备方法及其应用
技术领域
本发明涉及Fe3O4负载的金属纳米颗粒的制备方法及其应用,属于功能材料领域。
背景技术
近年来人口和经济的快速增长导致了世界范围内对能源的需求不断增加,不断增长的化石燃料消耗导致大量温室气体排放,特别是二氧化碳,导致全球变暖和极端气候变化。开发以可再生能源为基础的清洁替代燃料是最重要关注的问题之一。氢由于其能量密度高、可再生性好,被认为是一种有吸引力的绿色燃料,也是一种很有前途的高效能源载体,可用于应对未来的能源挑战。从环境和经济的角度来看,可再生能源系统的发展都是一个关键问题,人们对石油短缺和温室气体排放的担忧日益加剧,这激发了人们对向氢经济转型的兴趣。但是蒸汽重整、煤气化、水的高温热解、水的电解等传统制氢方法效率低、能耗高,利用大规模、低能耗,无污染氢生产技术对绿色经济社会和工业生产的发展,具有重要意义。
从文献报道来看,Fe3O4负载的NiPt金属纳米颗粒尚未报道,并且具有非常好的催化效果,具有合成方法简单、合成时间较短、纳米颗粒易负载、催化效率高等优点。在金属纳米颗粒产氢具有良好的发展前景。
发明内容
本发明的技术方案以Fe3O4负载金属纳米颗粒为催化剂催化硼氢化钠水解产氢,此方法包括以下步骤:
Fe3O4负载的金属纳米颗粒制备方法,包括以下步骤:
步骤1:将去离子水预热到60-70℃,然后加入FeCl3·6H2O及FeSO4·7H2O,搅拌;
步骤2:将氨水预热到60-70℃后滴加到步骤1的溶液中搅拌反应,产物经冷却离心洗涤,干燥即可得到Fe3O4
步骤3:称取步骤2所制的Fe3O4分散到水中,超声分散均匀;
步骤4:向步骤3中加入金属溶液,搅拌2-3h后加如NaBH4,继续搅拌反应,产物经离心洗涤、真空干燥即可制得Fe3O4负载的金属纳米颗粒。
步骤1中FeCl3·6H2O及FeSO4·7H2O的质量比为1.6-2.0:1。
所述的氨水的体积浓度为0.01-0.05%。
步骤4中,所述的金属溶液包括贱金属溶液及贵金属溶液的混合物,其中,贱金属溶液包括氯化镍、氯化铁、氯化钴、氯化铜中的任意一种;贵金属溶液包括氯化氯化铂、氯化铑、四氯金酸、四氯钯酸钾的任意一种。其中,金属溶液的物质的量浓度为2.84×10-2 mmol/mL。
贱金属溶液及贵金属溶液的混合物中,贱金属与贵金属的元素摩尔比为0.5-3。优选为贱金属与贵金属的元素摩尔比为2。
Fe3O4、金属溶液、NaBH4的物质的量比为0.3-0.5:0.4-0.6:0.4-0.6。作为优选方案, Fe3O4、金属溶液、NaBH4的物质的量比为0.4319:0.0568:0.5551。
本发明将所述制备得到的Fe3O4负载的金属纳米颗粒作为催化剂在催化硼氢化钠产氢上的应用。
催化硼氢化钠产氢过程中Fe3O4负载的金属纳米颗粒的量是硼氢化钠的0.5-2.0%。
作为优选方案,催化硼氢化钠产氢过程中Fe3O4负载的金属纳米颗粒的量是硼氢化钠的1.0%。
Fe3O4负载的金属纳米颗粒催化硼氢化钠产氢步骤如下:
步骤1:称取磁性Fe3O4负载的金属纳米颗粒25mg于产氢反应瓶内,再用注射器打入4mL水,封口置于30℃水浴锅中搅拌;
步骤2:称取1mmol NaBH4溶于1mL水中;
步骤3:用注射器吸取步骤2中的硼氢化纳溶液,注入步骤1中的反应瓶中,立即开始计时并封好口;
步骤4:每间隔10s记录对应时间下的氢气体积。
附图说明
图1是实施例1制备的Fe3O4的TEM图。
图2是实施例1制备的Fe3O4的XRD图。
图3是本发明制备的Ni2Pt@Fe3O4的TEM图。
图4是本发明制备的Ni2Pt@Fe3O4的XRD图。
图5是本发明制备的NiPt2@Fe3O4的TEM图。
图6是本发明制备的NiPt@Fe3O4的TEM图。
图7是本发明制备的Ni3Pt@Fe3O4的TEM图。
图8是本发明制备的Pt@Fe3O4的TEM图。
图9是本发明制备的Ni@Fe3O4的TEM图。
图10是Fe3O4负载不同Pt、Ni比例以及纯Pt与纯Ni所制得的纳米颗粒催化1 mmolNaBH4水解的产氢速率图。
图11是实施例1制备的Fe3O4的磁性效果图,A为Fe3O4溶解在水中的,B为瓶外加磁铁后的效果图。
图12是ZIF-8的磁性效果图,A为ZIF-8溶解在水中的,B为瓶外加磁铁后的效果图。
图13是Ni2Pt@Fe3O4纳米颗粒五次循环后的产氢效果。
图14是ZIF-8负载的NiPt纳米颗粒两次循环后的产氢效果。
图15是本发明制备的Ni2Pd@Fe3O4的TEM图。
图16是本发明制备的Ni2Rh@Fe3O4的TEM图。
图17是本发明制备的Ni2Au@Fe3O4的TEM图。
图18是Fe3O4负载的Ni与不同贵金属所制得的纳米颗粒催化1mmol NaBH4水解的产氢速率图。
图19是本发明制备的Fe2Pt@Fe3O4的TEM图。
图20是本发明制备的Cu2Pt@Fe3O4的TEM图。
图21是本发明制备的Co2Pt@Fe3O4的TEM图。
图22是Fe3O4负载的Pt与不同贱金属所制得的纳米颗粒催化1mmol NaBH4水解的产氢速率图。
具体实施方式
实施例1
本发明采用的制备方案包括以下步骤:
步骤1:量取180mL的去离子水,预热到70℃,然后加0.17g FeCl3·6H2O和0.11gFeSO4· 7H2O,搅拌1h;
步骤2:取0.4mL氨水稀释到20mL预热到70℃,滴加到步骤1中的溶液中搅拌10min,冷却离心洗涤,60℃干燥4h,制备得到Fe3O4
图1是制备的Fe3O4的TEM图,从图中可以看出Fe3O4是类球形颗粒,分散均匀。
图2是制备的Fe3O4的XRD图,从图中可以看Fe3O4的特征峰与标准卡片(标准卡片的编号是PDF#01-1111)相匹配,表明Fe3O4成功合成。
实施例2
步骤1、2同实施例1;
步骤3:称取步骤2所制的Fe3O4 100mg,分散到5mL水中,超声5min,搅拌30min;
步骤4:向步骤3中加2mL的氯化镍溶液与氯化铂溶液的混合溶液或氯化镍溶液或氯化铂溶液,之后搅拌2h,加(1mL,21mg)NaBH4,搅拌30min后离心洗涤干燥,60℃真空过夜,即可制得Fe3O4负载的金属纳米颗粒。
氯化镍溶液的物质的量浓度为2.84×10-2mmol/mL、氯化铂溶液的物质的量浓度为2.84×10-2mmol/mL。
吸取氯化镍溶液1ml,吸取氯化铂溶液2ml,混合得到氯化镍溶液体积:氯化铂溶液体积=1:2的溶液,吸取混合之后的溶液2ml作为制备纳米颗粒的金属溶液,因为氯化镍与氯化铂物质的量浓度相等,因此镍与铂的物质的量比为1:2,得到的产品标记为 NiPt2@Fe3O4
氯化镍溶液吸取1ml,氯化铂溶液吸取1ml,制备混合溶液,镍与铂的物质的量比为1:1,得到的产品标记为NiPt@Fe3O4
氯化镍溶液吸取2ml,氯化铂溶液吸取1ml,制备混合溶液,镍与铂的物质的量比为2:1时,得到的产品标记为Ni2Pt@Fe3O4
氯化镍溶液吸取3ml,氯化铂溶液吸取1ml,制备混合溶液,镍与铂的物质的量比为3:1时,得到的产品标记为Ni3Pt@Fe3O4
仅添加物质的量浓度为2.84×10-2mmol/mL的氯化铂溶液时,得到的产品标记为Pt@Fe3O4
仅添加物质的量浓度为2.84×10-2mmol/mL的氯化镍溶液时,得到的产品标记为Ni@Fe3O4
图3是本发明制备的Ni2Pt@Fe3O4的TEM图,从图中可以看出Ni2Pt@Fe3O4中的金属纳米颗粒分散较为均匀,没有明显的团聚现象,类球形为Fe3O4,黑色斑点为NiPt纳米颗粒。
图4是本发明制备的Ni2Pt@Fe3O4的XRD图,从图中可以看出Ni2Pt@Fe3O4的衍射峰与Fe3O4可以很好的匹配。
图5是本发明制备的NiPt2@Fe3O4的TEM图,从图中可以看出类似球形的是 Fe3O4,黑色斑点是NiPt纳米颗粒。
图6是本发明制备的NiPt@Fe3O4的TEM图,其中球形的是Fe3O4,上面的黑点是 NiPt纳米颗粒,可以看出纳米颗粒没有发生团聚现象。
图7是本发明制备的Ni3Pt@Fe3O4的TEM图,图中黑色小点是NiPt纳米颗粒,大的球形是Fe3O4
图8是本发明制备的Pt@Fe3O4的TEM图,图中黑色点是Pt纳米颗粒,大的球形是Fe3O4
图9是本发明制备的Ni@Fe3O4的TEM图,Fe3O4是图中类球形的物质,Ni纳米颗粒是黑色斑点,可以看出这些黑色斑点没有发生团聚现象。
采用NiPt2@Fe3O4、NiPt@Fe3O4、Ni2Pt@Fe3O4、Ni3Pt@Fe3O4、Pt@Fe3O4、 Ni@Fe3O4催化剂催化硼氢化钠水解产氢,具体步骤如下:
步骤1:分别称取NiPt2@Fe3O4、NiPt@Fe3O4、Ni2Pt@Fe3O4、Ni3Pt@Fe3O4、Pt@Fe3O4、 Ni@Fe3O4 25mg于产氢反应瓶内,再用注射器打入4mL水,封口置于30℃水浴锅中搅拌;
步骤2:称取1mmol NaBH4溶于1mL水中;
步骤3:用注射器吸取步骤2中的硼氢化纳溶液,注入步骤1中的反应瓶中,立即开始计时并封好口;
步骤4:每间隔10s记录对应时间下的氢气体积。
图10是NiPt2@Fe3O4、NiPt@Fe3O4、Ni2Pt@Fe3O4、Ni3Pt@Fe3O4、Pt@Fe3O4、 Ni@Fe3O4所制得的纳米颗粒催化1mmol NaBH4水解的产氢速率图,从图中可以看出, 1min内,Ni2Pt@Fe3O4产生了75.5mL气体,反应速度是最快的,而Ni@Fe3O4只产生7.5 mL气体,反应速度是最慢的。
图11是Fe3O4的磁性效果,A瓶内是把其溶解在水中,是黑色浑浊溶液,B瓶外是磁铁,可以看出黑色物质被吸附在磁铁上。
本实施例以Ni2Pt@Fe3O4纳米颗粒以催化硼氢化钠水解产氢的步骤进行5次循环,即在步骤4完成后收集Ni2Pt@Fe3O4纳米颗粒再次实施步骤1-4,循环5次,其效果如图13。从图13中可以看出循环5次后Ni2Pt@Fe3O4依然保持良好的催化活性,是因为图3所表示的Fe3O4的磁性效果,才能使Ni2Pt@Fe3O4纳米颗粒方便回收,损失较少,且活性维持较好。
本发明以不具有任何磁性的ZIF-8作为对比案例,其中,ZIF-8为沸石咪唑酯骨架材料。其制备方法参考北京交通大学硕士专业学位论文《金属有机骨架材料ZIF-8的制备及吸附性能研究》,李耀,2015年。
图12是ZIF-8的磁性效果,A瓶内是把其溶解在水中,是黑色浑浊溶液,B瓶外是磁铁,可以看出磁铁并不能吸附黑色物质,ZIF-8是没有磁性的。
图14是ZIF-8负载的NiPt纳米颗粒的两次循环,从图中可以看出循环2次后,活性就下降很多,是因为此催化剂没有磁性,再回收的时候有部分损失。
实施例3
步骤1、2同实施例1;
步骤3:称取步骤2所制的Fe3O4 100mg,分散到5mL水中,超声5min,搅拌30min;
步骤4:向步骤3中加2mL氯化镍溶液与四氯钯酸钾溶液的混合溶液,其中氯化镍溶液的物质的量浓度为2.84×10-2mmol/mL、四氯钯酸钾溶液的物质的量浓度为2.84×10-2 mmol/mL,氯化镍溶液吸取2ml,四氯钯酸钾溶液吸取1ml,混合之后,得到氯化镍溶液体积:四氯钯酸钾溶液体积=2:1的溶液,吸取混合之后的溶液2ml作为制备纳米颗粒的金属溶液,因为氯化镍与四氯钯酸钾物质的量浓度相等,因此镍与钯的物质的量比为2:1,之后搅拌2h,加(1mL,21mg)NaBH4,搅拌30min后离心洗涤干燥,60℃真空过夜,即可制得 Fe3O4负载的金属纳米颗粒,得到的产品标记为Ni2Pd@Fe3O4
图15是本发明制备的Ni2Pd@Fe3O4的TEM图,其目的是显示Ni2Pd@Fe3O4中的黑色斑点即金属纳米颗粒分散较为均匀,没有明显的团聚现象。
实施例4
步骤1、2同实施例1;
步骤3:称取步骤2所制的Fe3O4 100mg,分散到5mL水中,超声5min,搅拌30min;
步骤4:向步骤3中加2mL的氯化镍溶液与氯化铑溶液的混合溶液,其中氯化镍溶液的物质的量浓度为2.84*10-2mmol/mL、氯化铑溶液的物质的量浓度为2.84*10-2mmol/mL,氯化镍溶液吸取2ml,氯化铑溶液吸取1ml,混合之后,得到氯化镍溶液体积:氯化铑溶液体积=2:1的溶液,吸取混合之后的溶液2ml作为制备纳米颗粒的金属溶液,因为氯化镍与氯化铑物质的量浓度相等,因此镍与铑的物质的量比为2:1,之后搅拌2h,加(1mL,21 mg)NaBH4,搅拌30min后离心洗涤干燥,60℃真空过夜,即可制得Fe3O4负载的金属纳米颗粒,得到的产品标记为Ni2Rh@Fe3O4
图16是本发明制备的Ni2Rh@Fe3O4的TEM图,图中类球形的物质是Fe3O4,黑色物质是NiRh纳米颗粒,可以看出纳米颗粒分散性较好。
实施例5
步骤1、2同实施例1;
步骤3:称取步骤2所制的Fe3O4 100mg,分散到5mL水中,超声5min,搅拌30min;
步骤4:向步骤3中加2mL氯化镍与四氯金酸的混合溶液,其中氯化镍溶液的物质的量浓度为2.84*10-2mmol/mL、四氯金酸溶液的物质的量浓度为2.84*10-2mmol/mL,氯化镍溶液吸取2ml,四氯金酸溶液吸取1ml,混合之后,得到氯化镍溶液体积:四氯金酸溶液体积=2:1的溶液,吸取混合之后的溶液2ml作为制备纳米颗粒的金属溶液,因为氯化镍与四氯金酸物质的量浓度相等,因此镍与金的物质的量比为2:1,之后搅拌2h,加(1mL,21 mg)NaBH4,搅拌30min后离心洗涤干燥,60℃真空过夜,即可制得Fe3O4负载的金属纳米颗粒,得到的产品标记为Ni2Au@Fe3O4。图17是本发明制备的Ni2Au@Fe3O4的TEM图,从图中可以看出,黑色斑点是NiAu纳米颗粒,分散较为均匀,没有明显的团聚现象,类球形是Fe3O4
采用Ni2Pd@Fe3O4、Ni2Rh@Fe3O4、Ni2Au@Fe3O4纳米颗粒催化硼氢化钠水解产氢,具体步骤如下:
步骤1:分别称取Ni2Pd@Fe3O4、Ni2Rh@Fe3O4、Ni2Au@Fe3O4 25mg于3个产氢反应瓶内,再分别用注射器打入4mL水,封口置于30℃水浴锅中搅拌;
步骤2:称取1mmol NaBH4溶于1mL水中;
步骤3:用注射器吸取步骤2中的硼氢化纳溶液,注入步骤1中的3个反应瓶中,立即开始计时并封好口;
步骤4:每间隔10s记录对应时间下的氢气体积。
图18是Fe3O4负载的Ni与不同贵金属所制得的纳米颗粒催化1mmol NaBH4水解的产氢速率图,可以看出,在1min内,Ni2Pd@Fe3O4与Ni2Rh@Fe3O4
分别产生85.5mL和86.5mL气体,反应速率较快,而Ni2Au@Fe3O4只有54mL气体,反应速率最慢。
实施例6
步骤1、2同实施例1;
步骤3:称取步骤2所制的Fe3O4 100mg,分散到5mL水中,超声5min,搅拌30min;
步骤4:其中氯化铁溶液的物质的量浓度为2.84*10-2mmol/mL、氯化铂溶液的物质的量浓度为2.84*10-2mmol/mL,氯化铁溶液吸取2ml,氯化铂溶液吸取1ml,混合之后,得到氯化铁溶液体积:氯化铂溶液体积=2:1的溶液,吸取混合之后的溶液2ml来作为制备纳米颗粒的金属溶液,因为氯化铁与氯化铂物质的量浓度相等,因此铁与铂的物质的量比为2:1,之后搅拌2h,加(1mL,21mg)NaBH4,搅拌30min后离心洗涤干燥,60℃真空过夜,即可制得 Fe3O4负载的金属纳米颗粒,得到的产品标记为Fe2Pt@Fe3O4
采用Fe2Pt@Fe3O4催化剂催化硼氢化钠水解产氢,具体步骤如下:
Figure BDA0002743833190000081
步骤1:称取Fe2Pt@Fe3O4 25mg于产氢反应瓶内,再用注射器打入4mL水,封口置于 30℃水浴锅中搅拌;
步骤2:称取1mmol NaBH4溶于1mL水中;
步骤3:用注射器吸取步骤2中的硼氢化纳溶液,注入步骤1中的反应瓶中,立即开始计时并封好口;
步骤4:每间隔10s记录对应时间下的氢气体积。
图19是本发明制备的Fe2Pt@Fe3O4的TEM图,可看出Fe2Pt@Fe3O4中的黑色小的FePt纳米颗粒分散较为均匀,没有明显的团聚现象。图中的类球形的物质是Fe3O4
实施例7
步骤1、2同实施例1;
步骤3:称取步骤2所制的Fe3O4 100mg,分散到5mL水中,超声5min,搅拌30min;
步骤4:其中氯化铜溶液的物质的量浓度为2.84*10-2mmol/mL、氯化铂溶液的物质的量浓度为2.84*10-2mmol/mL,氯化铜溶液吸取2ml,氯化铂溶液吸取1ml,混合之后,得到氯化铜溶液体积:氯化铂溶液体积=2:1的溶液,吸取混合之后的溶液2ml来作为制备纳米颗粒的金属溶液,因为氯化铜与氯化铂物质的量浓度相等,因此铜与铂的物质的量比为2:1,之后搅拌2h,加(1mL,21mg)NaBH4,搅拌30min后离心洗涤干燥,60℃真空过夜,即可制得 Fe3O4负载的金属纳米颗粒,得到的产品标记为Cu2Pt@Fe3O4
采用Cu2Pt@Fe3O4催化剂催化硼氢化钠水解产氢,具体步骤如下:
Figure BDA0002743833190000082
步骤1:称取Cu2Pt@Fe3O4 25mg于产氢反应瓶内,再用注射器打入4mL水,封口置于 30℃水浴锅中搅拌;
步骤2:称取1mmol NaBH4溶于1mL水中;
步骤3:用注射器吸取步骤2中的硼氢化纳溶液,注入步骤1中的反应瓶中,立即开始计时并封好口;
步骤4:每间隔10s记录对应时间下的氢气体积。
图20是本发明制备的Cu2Pt@Fe3O4的TEM图,图中球形物质是Fe3O4,黑色的小的物质是CuPt纳米颗粒,可看出纳米颗粒无明显聚集现象。
实施例8
步骤1、2同实施例1;
步骤3:称取步骤2所制的Fe3O4 100mg,分散到5mL水中,超声5min,搅拌30min;
步骤4:其中氯化钴溶液的物质的量浓度为2.84*10-2mmol/mL、氯化铂溶液的物质的量浓度为2.84*10-2mmol/mL,氯化钴溶液吸取2ml,氯化铂溶液吸取1ml,混合之后,得到氯化钴溶液体积:氯化铂溶液体积=2:1的溶液,吸取混合之后的溶液2ml来作为制备纳米颗粒的金属溶液,因为氯化钴与氯化铂物质的量浓度相等,因此钴与铂的物质的量比为2:1,之后搅拌2h,加(1mL,21mg)NaBH4,搅拌30min后离心洗涤干燥,60℃真空过夜,即可制得 Fe3O4负载的金属纳米颗粒,得到的产品标记为Co2Pt@Fe3O4
采用Co2Pt@Fe3O4催化剂催化硼氢化钠水解产氢,具体步骤如下:
Figure BDA0002743833190000091
步骤1:称取Co2Pt@Fe3O4 25mg于产氢反应瓶内,再用注射器打入4mL水,封口置于 30℃水浴锅中搅拌;
步骤2:称取1mmol NaBH4溶于1mL水中;
步骤3:用注射器吸取步骤2中的硼氢化纳溶液,注入步骤1中的反应瓶中,立即开始计时并封好口;
步骤4:每间隔10s记录对应时间下的氢气体积。
图21是本发明制备的Co2Pt@Fe3O4的TEM图,黑色小的物质是CoPt纳米颗粒,且分散较为均匀,大的类球形的是Fe3O4,分散也较为均匀。
图22是Fe3O4负载的Pt与不同贱金属所制得的纳米颗粒催化1mmol NaBH4水解的产氢速率图,可以看出,在1min内,Ni2Pt@Fe3O4产生75.5mL气体,反应速率最快,而 Cu2Pt@Fe3O4和Fe2Pt@Fe3O4只产生31mL和37mL气体,反应速率较慢。

Claims (10)

1. Fe3O4负载的金属纳米颗粒制备方法,其特征在于,包括以下步骤:
步骤1:将去离子水预热到60-70℃,然后加入FeCl3•6H2O及FeSO4•7H2O,搅拌;
步骤2:将氨水预热到60-70℃后滴加到步骤1的溶液中搅拌反应,产物经冷却离心洗涤,干燥即可得到Fe3O4
步骤3:称取步骤2所制的Fe3O4分散到水中,超声分散均匀;
步骤4:向步骤3中依次加入金属溶液,搅拌2-3h后加入NaBH4,继续搅拌反应,产物经离心洗涤、真空干燥即可制得Fe3O4负载的金属纳米颗粒。
2.根据权利要求1所述的Fe3O4负载的金属纳米颗粒制备方法,其特征在于,步骤1中所述的FeCl3•6H2O及FeSO4•7H2O的质量比为1.6-2.0:1。
3.根据权利要求1所述的Fe3O4负载的金属纳米颗粒制备方法,其特征在于,所述的氨水的体积浓度为0.01-0.05%。
4. 根据权利要求1所述的Fe3O4负载的金属纳米颗粒制备方法,其特征在于,步骤4中,所述的金属溶液包括贱金属溶液和/或贵金属溶液的混合物,其中,贱金属溶液包括氯化镍溶液、氯化铁溶液、氯化钴溶液、氯化铜溶液中的任意一种;贵金属溶液包括氯化铂溶液、氯化铑溶液、四氯金酸溶液、四氯钯酸钾溶液中的任意一种;其中,金属溶液的物质的量浓度为2.84×10-2 mmol/mL。
5.根据权利要求4所述的Fe3O4负载的金属纳米颗粒制备方法,其特征在于,贱金属溶液及贵金属溶液的混合物中,贱金属与贵金属的元素摩尔比为0.5-3。
6.根据权利要求5所述的Fe3O4负载的金属纳米颗粒制备方法,其特征在于,贱金属溶液及贵金属溶液的混合物中,贱金属与贵金属的元素摩尔比为2。
7.根据权利要求1所述的Fe3O4负载的金属纳米颗粒制备方法,其特征在于,
Fe3O4、金属溶液、NaBH4的物质的量比为0.3-0.5:0.4-0.6:0.4-0.6。
8.根据权利要求1-7任一项所述制备得到的Fe3O4负载的金属纳米颗粒作为催化剂在催化硼氢化钠产氢上的应用。
9.根据权利要求8所述的应用,催化硼氢化钠产氢过程中Fe3O4负载的金属纳米颗粒的量是硼氢化钠的0.5-2.0%。
10.根据权利要求9所述的应用,催化硼氢化钠产氢过程中Fe3O4负载的金属纳米颗粒的量是硼氢化钠的1.0%。
CN202011159488.4A 2020-10-26 2020-10-26 Fe3O4负载的金属纳米颗粒的制备方法及其应用 Pending CN112387290A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011159488.4A CN112387290A (zh) 2020-10-26 2020-10-26 Fe3O4负载的金属纳米颗粒的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011159488.4A CN112387290A (zh) 2020-10-26 2020-10-26 Fe3O4负载的金属纳米颗粒的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN112387290A true CN112387290A (zh) 2021-02-23

Family

ID=74595693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011159488.4A Pending CN112387290A (zh) 2020-10-26 2020-10-26 Fe3O4负载的金属纳米颗粒的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112387290A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113000048A (zh) * 2021-02-25 2021-06-22 三峡大学 MoS2负载Co纳米颗粒的制备方法及其应用
CN113881659A (zh) * 2021-09-24 2022-01-04 华南理工大学 一种固定化酶法制备橙皮素二氢查耳酮葡萄糖苷的方法
CN115646506A (zh) * 2022-10-09 2023-01-31 三峡大学 一种NiMoO4负载的PtNi纳米颗粒的合成方法及其应用
CN116139856A (zh) * 2023-02-24 2023-05-23 三峡大学 碳纳米管负载的Pt纳米催化剂的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QI-LONG ZHU ET AL: ""Controlled Synthesis of Ultrafine Surfactant-Free NiPt Nanocatalysts toward Efficient and Complete Hydrogen Generation from Hydrazine Borane at Room Temperature"", 《CATALYSIS》 *
洪若瑜等: ""磁性Fe3O4纳米颗粒制备方法的比较"", 《过程工程学报》 *
赵志伟等: "《磁性纳米材料及其在水处理领域中的应用》", 31 January 2018 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113000048A (zh) * 2021-02-25 2021-06-22 三峡大学 MoS2负载Co纳米颗粒的制备方法及其应用
CN113881659A (zh) * 2021-09-24 2022-01-04 华南理工大学 一种固定化酶法制备橙皮素二氢查耳酮葡萄糖苷的方法
CN113881659B (zh) * 2021-09-24 2024-02-20 华南理工大学 一种固定化酶法制备橙皮素二氢查耳酮葡萄糖苷的方法
CN115646506A (zh) * 2022-10-09 2023-01-31 三峡大学 一种NiMoO4负载的PtNi纳米颗粒的合成方法及其应用
CN116139856A (zh) * 2023-02-24 2023-05-23 三峡大学 碳纳米管负载的Pt纳米催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
CN112387290A (zh) Fe3O4负载的金属纳米颗粒的制备方法及其应用
Wu et al. Metal-catalyzed hydrolysis of ammonia borane: Mechanism, catalysts, and challenges
Alpaydın et al. A review on the catalysts used for hydrogen production from ammonia borane
CN102631932B (zh) 用于室温下肼分解制氢的镍基金属催化剂及其制备和应用
CN108816289B (zh) 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN104307530B (zh) 一种氧化石墨烯基稀土复合物催化材料及其制备方法
Zhang et al. Progress on iron-series metal-organic frameworks materials towards electrocatalytic hydrogen evolution reaction
Feng et al. Durable and high performing Ti supported Ni0. 4Cu0. 6Co2O4 nanoleaf-like array catalysts for hydrogen production
CN107670694B (zh) 一种金属负载型催化剂及其制备方法和应用
CN110586117B (zh) 一种Co3O4/CuMoO4复合物及其制备方法和应用
Zhang et al. Dry reforming of methane over Ni/SiO2 catalysts: Role of support structure properties
CN112844427A (zh) 一种Co-B-P-O纳米粒子负载还原氧化石墨烯复合材料及其制备方法和应用
CN114849750A (zh) 一种中空氮掺杂碳球负载金属催化剂及其制备方法和应用
Li et al. Oriented growth of δ-MnO2 nanosheets over core-shell Mn2O3@ δ-MnO2 catalysts: An interface-engineered effects for enhanced low-temperature methanol oxidation
Qiu et al. Hydrogen generation from ammonia borane hydrolysis catalyzed by ruthenium nanoparticles supported on Co–Ni layered double oxides
Wang et al. Electronic transfer enhanced coral-like CoxP loaded Ru nanoclusters as efficient catalyst for hydrogen generation via NaBH4 hydrolysis
Cheng et al. Application of metal-organic frameworks in CO2 hydrogenation
CN111137927A (zh) 一种钴酸镍铜纳米颗粒的制备方法及其在催化氨硼烷水解产氢上的应用
CN111151245A (zh) 一种以生物质活性炭为载体的金纳米花的催化剂及其制备方法和应用
CN105148918B (zh) 一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用
CN113000048B (zh) MoS2负载Co纳米颗粒的制备方法及其应用
CN107086314B (zh) 一种二维多孔贵金属基纳米催化剂的制备方法
CN102909083B (zh) 一种硅烷偶联剂杂化magadiite催化剂载体材料、制备方法及应用
Zhang et al. Hydrolytic dehydrogenation of NH3BH3 over Cu/CoOx (OH) y nanocomposite for H2 evolution
He et al. Construction of anchoring traps-reinforced ultrafine ruthenium nanoparticles as efficient catalysts for boosting H2 production from ammonia-borane hydrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210223

RJ01 Rejection of invention patent application after publication