CN112368784A - 用于核反应堆的核燃料的燃料混合物的添加剂 - Google Patents
用于核反应堆的核燃料的燃料混合物的添加剂 Download PDFInfo
- Publication number
- CN112368784A CN112368784A CN201880095383.1A CN201880095383A CN112368784A CN 112368784 A CN112368784 A CN 112368784A CN 201880095383 A CN201880095383 A CN 201880095383A CN 112368784 A CN112368784 A CN 112368784A
- Authority
- CN
- China
- Prior art keywords
- isotopes
- nuclear
- stable
- uranium
- isotope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims description 20
- 239000000446 fuel Substances 0.000 title claims description 16
- 239000000654 additive Substances 0.000 title claims description 12
- 239000003758 nuclear fuel Substances 0.000 title claims description 11
- 230000000996 additive effect Effects 0.000 title description 6
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 38
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 230000004992 fission Effects 0.000 claims abstract description 15
- 229910052778 Plutonium Inorganic materials 0.000 claims abstract description 14
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 229910052793 cadmium Inorganic materials 0.000 claims description 12
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 12
- 229910052753 mercury Inorganic materials 0.000 claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 230000009466 transformation Effects 0.000 abstract description 4
- 230000005611 electricity Effects 0.000 abstract description 3
- 239000002699 waste material Substances 0.000 abstract description 2
- 230000000977 initiatory effect Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000012668 chain scission Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052781 Neptunium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- LFNLGNPSGWYGGD-UHFFFAOYSA-N neptunium atom Chemical compound [Np] LFNLGNPSGWYGGD-UHFFFAOYSA-N 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
本发明评估了原子反应堆的功能,其中在通过裂变链反应由稳定的铀同位素产生电能的过程中,形成了额外的中子,除了发电外,该中子还可以用于将某些元素转换为其他元素,特别是将某些选定的特定元素的稳定同位素转换为其它元素的稳定同位素,它们利用的事实是各元素在工业中具有不同的价格和用途。这些变化是通过已知的元素转换方程描述的,然而主要由于缺乏天然中子源,它们尚未在实践中使用,借助于本发明,目前被认为是核废料(它们被吸收在反应堆的控制棒中,被认为是不希望的部分,可能会引发不受控制的裂变反应)的中子源被用于在核反应堆中产生电能,或者被用于产生军事上敏感的可裂变钚,由于可能的军事滥用,目前不允许将钚用于商业用途。
Description
技术领域
本发明涉及用于核反应堆的核燃料混合物的添加剂,所述添加剂使用稳定的镉同位素和稳定的汞同位素,然后通过在用于核反应堆的核铀燃料的燃料混合物的原始成分的裂变链反应过程产生的中子,对这些稳定的天然同位素进行核转换。
背景技术
对于核铀型反应堆,至今使用的核燃料的燃料混合物包括铀元素,其来自两种天然存在的稳定的铀同位素,所述铀在含铀矿的地点开采:
同位素是这样一种元素,即元素的原子核中具有相同的质子数=质子的数目相同(对于铀,原子核中质子数为92)且原子核中的中子数不同(对于同位素,原子核中的中子数等于143,对于同位素,原子核中的中子数为146)。原子核中的质子和中子的总和为原子核的核数(对于同位素是235,对于同位素是238)。在天然条件下,铀同位素以如下所述存在:为天然铀总量的0.72%,为天然铀总量的99.274%。中子辐照后,这两种同位素将在核反应堆中经历两种完全不同类型的反应。
方程式[1]:
这意味着在过程开始时,浓缩到2.5–3%且有时高达5%的同位素混合物会受到中子的影响,这将引发裂变链反应并导致该同位素的核分裂成两个尺寸近似相等的核,同时产生两个元素(在这种情况下,氪和钡两种同位素是不稳定的,它们根据已知方程式进一步衰变,人们称它们为放射性废物)。
在这种衰变中,平均产生3个中子,并释放出160.5MeV的热量,该热量将用于加热核反应堆一次回路(primary circuit)中的水,通过热交换器,该热量将进一步加热核反应堆二次回路(secondary circuit)中的水,并将其转化为蒸汽,这使得蒸汽发生器的涡轮旋转并随后发电。产生的三个中子中,一个将用来重复裂变链反应,这就是为什么称其为链反应,因为这一个中子与可裂变同位素反应并进一步分裂,而另外两个中子必须有秩序地包含在内,以使反应保持可控。这两个中子被另一个铀同位素(特别是不可裂变的同位素)捕获,引起温和(moderating)反应(也可以称为倍增或增殖反应,因为其中还会成倍增加和产生(bred)其他同位素,并形成新的可裂变同位素)。
2)温和(倍增或增殖)核反应是这样的:裂变反应产生的剩余两个中子被铀的同位素、特别是捕获,该铀的同位素根据方程式[2]中所述的反应将这些中子吸收到其核中。它不再引起裂变链反应,但是变成了新的铀同位素该不稳定并且将发射电子(β负辐射),然后转换为镎同位素,特别是该也不稳定并且将发射额外的电子(β负辐射),然后转换成相当稳定的钚同位素,特别是该也是可裂变的,还用来发电(因为它也是中子的来源),也用于军事用途,特别是用于制造核钚弹。钚也有剧毒并不得出售。
方程式[2]:
现有技术的缺陷:
1)出于军事目的可能滥用钚
2)生成的钚的高毒性
3)钚不可能用于商业用途
4)对产生的中子的评估不足,这通常被认为是浪费
5)发电的经济效益降低。
发明内容
通过根据本发明所述的将提议的添加剂加入到用于核反应堆的核燃料的燃料混合物中,基本上消除了上述缺陷和缺点,其实质是将添加剂加入到核燃料中,且所述添加剂包括稳定的镉同位素,特别是同位素,通过由包含铀同位素的原始核铀燃料组分的裂变链反应产生的中子,使这些天然稳定的镉同位素转换为稳定的银同位素,特别是它们部分替代了用于军事用途的钚的生成,特别是同位素的生成,同时生成的稳定的银同位素可用于商业用途。
和/或
用于核反应堆的核燃料的燃料混合物中的添加剂包括稳定的汞同位素,特别是稳定的天然同位素,在原始核铀燃料组分的裂变链反应过程中由铀同位素产生的中子,使得汞同位素核转换为稳定的金同位素,特别是它们部分替代了用于军事用途的钚、特别是同位素的形成,由此产生的稳定的金同位素可以在商业上使用。
目前,大多数中子被捕获在反应堆控制棒中,在那里被吸收,或者一部分中子被用于生产钚同位素,同位素,其可再次用于发电,类似于铀同位素也用于生产原子弹,这是和平利用核能所不希望的过程。可以说,除了生产钚同位素以外,大多数中子都没有使用,也没有经济影响,并且由于可能的军事用途,钚是无法销售的。
具体实施方式
用于核裂变反应堆的燃料混合物的提议:
根据本发明的技术特征,加入到当前使用的铀核燃料的燃料混合物中的添加剂包括在天然开采的铀矿中发现的铀同位素,特别是其中天然存在的同位素为天然铀总量的0.72%,天然存在的同位素为天然铀总量的99.274%,该矿石被浓缩到铀可裂变同位素的浓度为铀混合物总量的2.5%-3%,有时甚至达到铀混合物总量的5%。
本发明提议将其它元素的同位素加入到已经使用的核燃料混合物中,该同位素不仅吸收中子,还可以增加发电的技术和经济收益。本发明人正在研究假设各种元素同位素的核转换的已知过程。
主要是关于这种效果的使用,其原因在于,在地球表面上发现的各种元素的含量不同,因此其单价也不同。由于工业中每种元素都有不同的用途,因此价格也有所不同,因此要使它具有一定数量的可用量,本发明可以将较便宜和价值较小的元素转换为其他较昂贵和稀有的元素。这些转换过程是已知的。这里使用的可能性是由以下事实造成的:在核反应堆发电过程中产生的中子源未被充分利用(除了用于军事用途的可裂变的生产)。
本发明提供了核燃料混合物的新成分:
当前的核燃料混合物+添加剂,所述添加剂包括:
方程式[3]:
方程式[4]:
本发明的实际意义的至少一个示例的描述:
实施例1
将镉同位素(特别是和)加入到当前用于核反应堆的铀核燃料的混合物中,在添加两个作为裂变反应中的盈余生成的中子后,根据方程式[1],其转换为两个不稳定的镉同位素和如方程式[3]所述,在核转换过程中,这两个不稳定的镉同位素在电子辐照(β负辐射)后转换为两个稳定的银同位素和
方程式[3]:
因此,在核反应堆中产生了银的稳定同位素,其在经济上比原始的镉同位素更有价值。
实施例2
与当前用于核反应堆的核铀燃料混合物相似,添加了汞同位素,特别是在添加一个中子后,其转换为不稳定的汞同位素并且在发射电子(β负辐射)后,在核转换过程中,该不稳定的汞同位素转换为稳定的金同位素这些反应根据方程式[4]进行:
方程式[4]:
这样,在核反应堆中生成了稳定的金同位素,其在经济上比原始的汞同位素更有价值。
在工业中的应用
Claims (1)
1.同位素作为用于核反应堆的核燃料的燃料混合物的添加剂的用途,所述添加剂包括稳定的镉同位素,特别是其特征在于,通过用于核反应堆的包含铀同位素的原始核铀燃料的裂变链反应产生的中子,使这些天然稳定的镉同位素核转换为稳定的银同位素,特别是并将部分替代用于军事用途的钚的生成,特别是同位素的生成,同时所述稳定的银同位素可用于商业用途,
和/或
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SK672018 | 2018-07-24 | ||
SKPP67-2018 | 2018-07-24 | ||
PCT/SK2018/000010 WO2020022964A1 (en) | 2018-07-24 | 2018-12-03 | Addition into the fuel mixture of nuclear fuel for nuclear reactors |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112368784A true CN112368784A (zh) | 2021-02-12 |
Family
ID=69181099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880095383.1A Pending CN112368784A (zh) | 2018-07-24 | 2018-12-03 | 用于核反应堆的核燃料的燃料混合物的添加剂 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20210304906A1 (zh) |
EP (1) | EP3827443B1 (zh) |
JP (1) | JP7299301B2 (zh) |
CN (1) | CN112368784A (zh) |
CA (1) | CA3102767A1 (zh) |
DK (1) | DK3827443T3 (zh) |
HU (1) | HUE059377T2 (zh) |
WO (1) | WO2020022964A1 (zh) |
ZA (1) | ZA202100137B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3198856A (en) * | 1963-05-29 | 1965-08-03 | Joseph P Hammond | Method of fabricating a composite nuclear fuel core element |
GB1077384A (en) * | 1964-09-09 | 1967-07-26 | Ca Atomic Energy Ltd | A method of handling and fabricating a neutron responsive fuel |
DE1263937B (de) * | 1957-06-10 | 1968-03-21 | Gen Dynamics Corp | Kernreaktor-Brennstoffelement mit einer festen homogenen Mischung aus einem Moderator-Material und spaltbarem Material |
JPS60122386A (ja) * | 1983-10-13 | 1985-06-29 | ゼネラル・エレクトリツク・カンパニイ | 中性子吸収用制御体 |
JPH095473A (ja) * | 1995-06-16 | 1997-01-10 | Mitsubishi Heavy Ind Ltd | 原子炉制御棒 |
US20120207264A1 (en) * | 2009-10-30 | 2012-08-16 | Sven Van Den Berghe | Coated nuclear reactor fuel particles |
US20140153687A1 (en) * | 2010-03-01 | 2014-06-05 | Westinghouse Electric Sweden Ab | Fuel component and method of manufacturing of a fuel component |
RU2574274C1 (ru) * | 2014-09-15 | 2016-02-10 | Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" | Способ разделения радионуклидов кадмия и серебра |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3177069A (en) * | 1955-06-14 | 1965-04-06 | Commissariat Energie Atomique | Methods of manufacturing fissionable materials for use in nuclear reactors |
JPH0854484A (ja) * | 1994-08-10 | 1996-02-27 | Toshiba Corp | 原子炉の燃料集合体 |
JP3342968B2 (ja) * | 1994-10-20 | 2002-11-11 | 株式会社東芝 | 使用済燃料の再処理方法 |
JP2005030817A (ja) * | 2003-07-09 | 2005-02-03 | Toshihisa Shirakawa | 沸騰水型原子炉の核燃料集合体 |
KR20130114675A (ko) * | 2010-11-15 | 2013-10-17 | 아토믹 에너지 오브 캐나다 리미티드 | 재생된 감손 우라늄을 함유하는 핵연료, 핵연료 다발 및 그것을 포함하는 원자로 |
EP2718710B1 (en) * | 2011-06-06 | 2021-12-01 | Waters Technologies Corporation | Methods for quantifying target analytes in a sample |
CA2860128A1 (en) * | 2014-08-20 | 2016-02-20 | Ad Maiora Llc | Exothermic transmutation method |
-
2018
- 2018-12-03 DK DK18840092.3T patent/DK3827443T3/da active
- 2018-12-03 US US17/261,856 patent/US20210304906A1/en not_active Abandoned
- 2018-12-03 CA CA3102767A patent/CA3102767A1/en active Pending
- 2018-12-03 WO PCT/SK2018/000010 patent/WO2020022964A1/en active Application Filing
- 2018-12-03 JP JP2021504424A patent/JP7299301B2/ja active Active
- 2018-12-03 HU HUE18840092A patent/HUE059377T2/hu unknown
- 2018-12-03 EP EP18840092.3A patent/EP3827443B1/en active Active
- 2018-12-03 CN CN201880095383.1A patent/CN112368784A/zh active Pending
-
2021
- 2021-01-08 ZA ZA2021/00137A patent/ZA202100137B/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1263937B (de) * | 1957-06-10 | 1968-03-21 | Gen Dynamics Corp | Kernreaktor-Brennstoffelement mit einer festen homogenen Mischung aus einem Moderator-Material und spaltbarem Material |
US3198856A (en) * | 1963-05-29 | 1965-08-03 | Joseph P Hammond | Method of fabricating a composite nuclear fuel core element |
GB1077384A (en) * | 1964-09-09 | 1967-07-26 | Ca Atomic Energy Ltd | A method of handling and fabricating a neutron responsive fuel |
JPS60122386A (ja) * | 1983-10-13 | 1985-06-29 | ゼネラル・エレクトリツク・カンパニイ | 中性子吸収用制御体 |
JPH095473A (ja) * | 1995-06-16 | 1997-01-10 | Mitsubishi Heavy Ind Ltd | 原子炉制御棒 |
US20120207264A1 (en) * | 2009-10-30 | 2012-08-16 | Sven Van Den Berghe | Coated nuclear reactor fuel particles |
US20140153687A1 (en) * | 2010-03-01 | 2014-06-05 | Westinghouse Electric Sweden Ab | Fuel component and method of manufacturing of a fuel component |
RU2574274C1 (ru) * | 2014-09-15 | 2016-02-10 | Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" | Способ разделения радионуклидов кадмия и серебра |
Non-Patent Citations (1)
Title |
---|
R. SHERR, K. T. BAINBRIDGE: "Transmutation of Mercury by Fast Neutrons", 《THE PHYSICAL REVIEW》, 1 October 1949 (1949-10-01), pages 473 - 479 * |
Also Published As
Publication number | Publication date |
---|---|
EP3827443B1 (en) | 2022-03-16 |
JP7299301B2 (ja) | 2023-06-27 |
HUE059377T2 (hu) | 2023-09-28 |
CA3102767A1 (en) | 2020-01-30 |
JP2021532364A (ja) | 2021-11-25 |
US20210304906A1 (en) | 2021-09-30 |
ZA202100137B (en) | 2022-06-29 |
EP3827443A1 (en) | 2021-06-02 |
WO2020022964A1 (en) | 2020-01-30 |
DK3827443T3 (en) | 2022-05-09 |
BR112021001111A2 (pt) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nema | Application of accelerators for nuclear systems: accelerator Driven System (ADS) | |
Weaver et al. | Performance of thorium-based mixed-oxide fuels for the consumption of plutonium in current and advanced reactors | |
RU2654535C1 (ru) | Способ получения радионуклида никель-63 | |
CN112368784A (zh) | 用于核反应堆的核燃料的燃料混合物的添加剂 | |
Alhaj et al. | Towards proliferation-resistant thorium fuels | |
Warin | Status of the French research programme for actinides and fission products partitioning and transmutation | |
Kulikov et al. | Physical aspects for involvement of thermonuclear reactors into nuclear power systems | |
RU2537013C2 (ru) | Топливная композиция для водоохлаждаемых реакторов аэс на тепловых нейтронах | |
Tsvetkov et al. | Sustainable development of nuclear energy and the role of fast spectrum reactors | |
EP3961653A1 (en) | Remix - fuel for a nuclear fuel cycle | |
US3503848A (en) | Method for the concentration of u-236 in enriched uranium fuels and for more efficient utilization thereof | |
Horoshko et al. | Application of laser fusion to the production of fissile materials | |
US3620917A (en) | Method of operating a radioisotope radiation source | |
Perez-Gamboa et al. | A 232Th closed fuel cycle utilizing both a thermal and hybrid nuclear systems | |
Waris et al. | Preliminary study on LiF4-ThF4-PuF4 utilization as fuel salt of miniFUJI molten salt reactor | |
Dukert | Thorium and the third fuel | |
Lashina | FAST NEUTRON NUCLEAR POWER | |
CN110998746A (zh) | 热中子核电站水冷反应堆燃料结构 | |
Abdo | A STUDY OF THE USE OF A THORIUM FUEL CYCLE IN A MOLTEN SALT REACTOR | |
Rief et al. | Accelerator Driven Systems—Some Safety and Fuel Cycle Considerations | |
Ripani | Energy from nuclear fission | |
Elkhadrawi | Thorium Based Nuclear Reactors | |
Bomboni et al. | Nuclear waste impact reduction using multiple fuel recycling strategies | |
Sarma et al. | Nuclear Power in India: Viability of Thorium fuel utilization | |
Warin et al. | Neutronics, reactor systems and fuels for transmutation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |