CN113574612A - 核燃料循环再混合 - Google Patents

核燃料循环再混合 Download PDF

Info

Publication number
CN113574612A
CN113574612A CN201980093425.2A CN201980093425A CN113574612A CN 113574612 A CN113574612 A CN 113574612A CN 201980093425 A CN201980093425 A CN 201980093425A CN 113574612 A CN113574612 A CN 113574612A
Authority
CN
China
Prior art keywords
fuel
nuclear fuel
uranium
nuclear
plutonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980093425.2A
Other languages
English (en)
Inventor
奥列格·瓦西尔耶维奇·克留科夫
彼得·米哈伊洛维奇·加夫里洛夫
康斯坦丁·弗拉基米罗维奇·伊万诺夫
安热莉卡·维克托罗芙娜·哈佩斯卡亚
亚历山大·米哈伊洛维奇·帕夫洛维切夫
尤里·米哈伊洛维奇·谢姆琴科夫
尤里·斯捷潘诺维奇·费奥多罗夫
鲍里斯·雅科夫列维奇·西尔伯曼
维亚切斯拉夫·阿纳托列维奇·杜杜金
格列布·阿列克谢耶维奇·阿帕尔科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal State Owned Enterprise "mining And Chemical Union\
Original Assignee
Federal State Owned Enterprise "mining And Chemical Union\
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal State Owned Enterprise "mining And Chemical Union\ filed Critical Federal State Owned Enterprise "mining And Chemical Union\
Publication of CN113574612A publication Critical patent/CN113574612A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/46Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及核技术领域,特别是涉及带有热中子反应堆的核电站的铀钚氧化物核燃料。本发明的技术成果是开发了一种REMIX型燃料成分,允许从乏核燃料中回收的核裂变材料进入核燃料循环,并同时使用浓缩天然铀,以及确保解决处理以前分离的钚(包括武器级钚)的问题。通过在核反应堆寿命期间回收乏核燃料中的裂变材料,减少乏核燃料的数量(最多可回收5次),节省用于燃料制造的天然铀,并因此确保核燃料循环的自足性。本发明使得利用REMIX‑燃料来解决可能对封闭式核燃料循环造成的全部问题成为可能,同时考虑到反应堆的数量、天然铀的可用性、乏核燃料的累积量。

Description

核燃料循环再混合
技术领域
本发明属于核技术领域,特别是属于带有热中子反应堆的核电站的氧化物铀钚核燃料。
背景技术
目前,俄罗斯积累了约2.25万吨加工过的核燃料,每年从反应堆卸下的加工过的核燃料增加了650-700吨。乏核燃料管理战略设想了两种选择:利用铀和钚的回收和放射性废物的调节对乏核燃料进行后处理,或在地质构造中直接处置乏核燃料。
处理乏核燃料的最有效方式是将其纳入封闭的核燃料循环,对乏核燃料中含有的裂变材料(铀和钚)进行再处理并返回燃料循环(回收)。封闭式核燃料循环可以使用快中子和热反应堆来实现。在这种情况下,快速反应堆的燃料(混合氧化物核燃料)是铀-钚氧化物燃料,它是由贫化的废铀和从废核燃料中回收的钚制成。
通过使用REMIX燃料作为核电站燃料,包括从乏核燃料中分离出来的铀和钚,对部分再生铀进行浓缩,并加入浓缩天然铀,以提供与浓缩天然铀燃料同等的能量潜力(用于水动能反应堆),可以实现带有热中子反应堆的封闭核燃料循环。
一种已知的用于核电站水冷热中子反应堆的燃料成分[专利号RU 2537013,2014年12月27日公布],被选作原型,包括再生钚和氧化物形式的浓缩铀的混合物。浓缩再生铀被用作浓缩铀,其成分比例由能量潜力决定,相当于由浓缩天然铀提供100%反应堆堆芯负荷的新制备的核电站燃料的潜力。
特别是对于典型的乏核燃料燃烧量为50吉瓦*天/吨的水-水反应堆-1000来说,该成分含有回收的钚,其浓度高达5.25%的钚和4.2-3.5%的铀-235,与其他同位素混合在一起,同时提供与铀-235含量为4.33%的新鲜天然铀燃料相同的能量潜力。该成分可能含有再生钚和部分未经浓缩就与之一起回收的铀。
已知的燃料成分在专用间歇式反应堆中以最大燃耗模式进行辐照,过载次数增加,因此,就铀235同位素数量而言,这种乏核燃料(或整个乏核燃料)不再有兴趣在封闭式核燃料循环中循环使用。
在使用Purex工艺对乏核燃料进行后处理后,在与部分回收铀的混合物中获得钚的再提取,在后续阶段获得的铀的再提取被蒸发和脱硝,氧化铀被氟化,所产生的六氟化铀被铀-235富集到其含量为5-6%。该产品被脱氟,氧化物被溶解在上述再萃取物中,以达到计算的同位素组成。混合产品被脱硝,由此产生的铀和钚氧化物混合物的固体溶液被用于制造燃料颗粒,然后是燃料组件。可以在浓缩再生铀中加入少量(最多10%)的浓缩天然铀,以调整能量潜力。
已知燃料成分的缺点包括需要使用单独的技术路线来浓缩作为燃料成分之一的再生铀。
发明内容
本发明的目的是开发一种REMIX型燃料成分,其能量潜力相当于由浓缩天然铀制成的新制备的核电站燃料,并为热反应堆堆芯提供100%的装载。
本发明的技术成果是开发了一种REMIX型燃料成分,允许从乏核燃料中回收的核裂变材料进入核燃料循环,并同时使用浓缩天然铀,以及解决处置以前分离的钚(包括武器级)、减少乏核燃料和在前述期间内从乏核燃料中回收裂变材料的问题。
为了实现这一技术,核燃料循环的REMIX燃料包括再生钚和以氧化物形式存在的浓缩铀的混合物,提供与浓缩天然铀燃料相同的能量潜力,并有可能使反应堆堆芯100%加载热中子,因此,为了提供与浓缩天然铀燃料相同的能量潜力,REMIX燃料含有钚在WGPU型反应堆乏核燃料后处理中获得的钚239同位素含量超过51%的1-2质量%的铀,同位素铀235含量为19.75%的17-19%的浓缩天然铀,WGPU型反应堆乏核燃料后处理中获得的再生铀,质量分数超过80%。
REMIX燃料中再生铀和钚的特定含量使其有可能使用REMIX燃料来应对封闭式核燃料循环可能带来的全部挑战,同时考虑到反应堆的数量、天然铀的可用性以及乏核燃料的累积量。
用于REMIX燃料的源再生钚和铀可以是单独获得的产品,也可以是在乏核燃料后处理过程中分离出来的铀和钚的未分割的混合物。
在联邦国家单一制企业采矿和化学联合企业的实验和示范中心(联邦国家单一制企业采矿和化学联合企业)对水力发电反应堆的废核燃料进行放射化学(简化Purex工艺)后处理,可以获得未分割的铀和钚的混合物。部分天然铀的浓缩以及核燃料颗粒的制造、燃料元件的制造和燃料组件的生产是通过已知技术进行的。
燃料组件在水冷动力反应堆类型的系列反应堆中进行辐照(燃烧量超过50吉瓦*天/吨)。
REMIX燃料成分中的钚含量为1-2%(重量),这使得在稍作修改后(在人员辐射保护方面),可以尽可能有效地使用浓缩天然铀的核燃料制造线来制造REMIX燃料。

Claims (1)

1.核燃料循环的REMIX燃料包括再生钚和氧化物形式的浓缩铀的混合物,提供与浓缩天然铀燃料相同的能量潜力,并有可能使反应堆堆芯100%加载热中子,不同之处在于,REMIX燃料包含通过处理水冷动力反应堆类型的乏核燃料获得的钚,质量分数为1-2%,同位素钚239含量超过51%的浓缩天然铀;质量分数为17-19%,同位素铀235含量为19.75%的浓缩天然铀;质量分数为80%以上的来自水动力反应堆乏核燃料再处理的再生铀。
CN201980093425.2A 2019-03-26 2019-10-16 核燃料循环再混合 Pending CN113574612A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2019108804 2019-03-26
RU2019108804A RU2702234C1 (ru) 2019-03-26 2019-03-26 Ремикс - топливо ядерно-топливного цикла
PCT/RU2019/000740 WO2020197435A1 (ru) 2019-03-26 2019-10-16 Ремикс - топливо ядерно-топливного цикла

Publications (1)

Publication Number Publication Date
CN113574612A true CN113574612A (zh) 2021-10-29

Family

ID=68170988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980093425.2A Pending CN113574612A (zh) 2019-03-26 2019-10-16 核燃料循环再混合

Country Status (5)

Country Link
US (1) US20220367072A1 (zh)
EP (1) EP3961653B1 (zh)
CN (1) CN113574612A (zh)
RU (1) RU2702234C1 (zh)
WO (1) WO2020197435A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022146160A1 (ru) * 2020-12-29 2022-07-07 Акционерное Общество "Твэл" Тепловыделяющий элемент водо-водяного энергетического ядерного реактора

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018697A (en) * 1975-05-02 1977-04-19 Atlantic Richfield Company Fuel cycle management
US10170207B2 (en) * 2013-05-10 2019-01-01 Thorium Power, Inc. Fuel assembly
RU2537013C2 (ru) * 2012-12-07 2014-12-27 Открытое акционерное общество "Радиевый институт имени В.Г. Хлопина" Топливная композиция для водоохлаждаемых реакторов аэс на тепловых нейтронах
WO2016049768A1 (en) * 2014-10-01 2016-04-07 Zheng xian-jun Neutron source based on a counter-balancing plasma beam configuration
US10943703B2 (en) * 2017-02-09 2021-03-09 Kabushiki Kaisha Toshiba Fuel assembly, core design method and fuel assembly design method of light-water reactor
US10685757B2 (en) * 2017-03-31 2020-06-16 Battelle Memorial Institute Nuclear reactor assemblies, nuclear reactor target assemblies, and nuclear reactor methods

Also Published As

Publication number Publication date
WO2020197435A1 (ru) 2020-10-01
US20220367072A1 (en) 2022-11-17
RU2702234C1 (ru) 2019-10-07
EP3961653A4 (en) 2023-06-07
EP3961653A1 (en) 2022-03-02
EP3961653B1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
Salvatores et al. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges
Nash et al. Introduction to the reprocessing and recycling of spent nuclear fuels
Pigford et al. The plutonium fuel cycles
CN113574612A (zh) 核燃料循环再混合
Baetsle et al. Limitations of actinide recycle and fuel cycle consequences: a global analysis part 1: global fuel cycle analysis
RU2537013C2 (ru) Топливная композиция для водоохлаждаемых реакторов аэс на тепловых нейтронах
Nayak et al. Thorium technology development in an Indian perspective
Baetslé et al. Status and assessment report on actinide and fission product partitioning and transmutation
Sharrad et al. Nuclear fuel cycles: Interfaces with the Environment
RU2691621C1 (ru) Топливная композиция для водоохлаждаемых реакторов АЭС на тепловых нейтронах
Fedorov et al. Use of recovered uranium and plutonium in thermal reactors
Forsberg et al. Can thermal reactor recycle eliminate the need for multiple repositories?
Grol et al. Evaluation of technical and economic indicators of REMIX fuel application in the LWR fuel cycle
Pigford Thorium fuel cycles compared to uranium fuel cycles
Bays et al. Deep burn fuel cycle integration: Evaluation of two-tier scenarios
Boegel et al. Description of alternative steady-state fuel cycles
Heeb et al. Analysis of alternative light water reactor (LWR) fuel cycles
Korotkevich et al. Some aspects of the Russian nuclear fuel cycle development
Renier et al. Reuse in LWRs of Uranium Recovered from Spent Fuel: Neutronic Evaluation of Multiple Cycles of Reenrichment and Reactor Irradiation
Murray et al. Opportunities for the Multi Recycling of Used MOX Fuel in the US-12122
Anatoly et al. Fuel Cycle for Reactor SVBR-100
Poinssot et al. Main results of the French program on Partitioning and Transmutation of Minor Actinides
Laidler Development of separations technologies in the US partitioning and transmutation programme
Fleischman et al. Isotopic composition and radiological properties of uranium in selected fuel cycles
Deng Overview of spent fuel management in China

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination