CN112367887B - 多个机器人清洁器及其控制方法 - Google Patents

多个机器人清洁器及其控制方法 Download PDF

Info

Publication number
CN112367887B
CN112367887B CN201980045079.0A CN201980045079A CN112367887B CN 112367887 B CN112367887 B CN 112367887B CN 201980045079 A CN201980045079 A CN 201980045079A CN 112367887 B CN112367887 B CN 112367887B
Authority
CN
China
Prior art keywords
cleaner
mobile robot
trajectory information
movement
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980045079.0A
Other languages
English (en)
Other versions
CN112367887A (zh
Inventor
郭东勋
高在焕
权赫度
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority claimed from PCT/KR2019/005230 external-priority patent/WO2019212240A1/en
Publication of CN112367887A publication Critical patent/CN112367887A/zh
Application granted granted Critical
Publication of CN112367887B publication Critical patent/CN112367887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • G05D1/69
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4066Propulsion of the whole machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2857User input or output elements for control, e.g. buttons, switches or displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0027Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • G05D1/646
    • G05D1/692
    • G05D1/693
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Abstract

根据本公开的实施例的移动机器人可以包括:行进单元,其被配置为移动主体;存储器,其被配置为存储与主体的移动相对应的移动路径的轨迹信息;通信单元,其被配置为与发出信号的另一移动机器人通信;以及控制器,其被配置为基于信号识别另一移动机器人的位置,并基于识别的位置,控制另一移动机器人遵循与存储的轨迹信息相对应的移动路径。另外,响应于要由另一移动机器人遵循的与下一轨迹信息相对应的移动路径是否满足指定条件,控制器可以控制另一移动机器人的移动以去除存储的轨迹信息的至少部分,并允许另一移动机器人遵循与剩余的轨迹信息相对应的移动路径。

Description

多个机器人清洁器及其控制方法
技术领域
本公开涉及多个移动机器人及其控制方法,该多个移动机器人在其中的任何一个跟随其中另一个的同时自主移动。
背景技术
通常,移动机器人是在没有用户的操作的情况下在预定区域中移动同时自动执行预定操作的装置。移动机器人感测位于该区域中的障碍物,并通过靠近或远离此类障碍物移动来执行其操作。
这样的移动机器人可以包括在区域内移动的同时执行清洁的机器人清洁器。机器人清洁器是在没有用户的操作的情况下在自行移动的同时进行清洁的清洁器。
以此方式,随着这种在没有用户的操作的情况下在自行移动的同时进行清洁的机器人清洁器的发展,需要开发多个机器人清洁器,以在没有用户的操作的情况下在其中任何一个跟随其中的另一个的同时或者在彼此协作的同时进行清洁。
例如,现有技术文献WO2017-036532公开了一种方法,在该方法中,主机器人清洁器(以下称为主机器人)控制至少一个从机器人清洁器(以下称为从机器人)。
该现有技术文献公开了一种配置,在该配置中,主机器人通过使用障碍物检测装置来检测相邻的障碍物,并使用从障碍物检测装置得到的位置数据来确定其与从机机器人有关的位置。
另外,现有技术公开了一种配置,在该配置中,主机器人和从机器人使用无线局域网(WLAN)技术经由服务器彼此进行通信。
根据该现有技术文献,主机器人可以确定从机器人的位置,但是从机器人无法确定主机器人的位置。
此外,为了使从机器人使用现有技术文献中公开的配置来确定(决定)主机器人的位置,主机器人必须将主机器人确定的与从机器人有关的相对位置信息通过服务器发送给从机器人。
然而,现有技术未能公开主机器人经由服务器将相对位置信息发送到从机器人这样的配置。
另外,即使假定主机器人发送了相对位置信息,主机器人和从机器人也应该仅通过服务器进行通信。因此,当主机器人或从机器人位于难以与服务器通信的位置时,与服务器的这种通信可能断开。
在这种情况下,由于从机器人无法从服务器接收相对位置信息,因此从机器人无法知道主机器人的位置。因此,可能会出现以下问题:多个机器人清洁器之间的跟随或协作未有效地进行。
此外,机器人清洁器在移动以清洁指定的清洁空间的同时多次改变其移动方向。例如,经常需要根据清洁空间的形状、机器人清洁器的移动模式、障碍物的检测、地板的地形特征等频繁地改变当前的移动方向。因此,可能留下复杂的轨迹或可能形成复杂的移动路径。
当多个机器人清洁器中的任何一个跟随另一个清洁器进行协作清洁时,存在以下情况:跟随的清洁器难以遵循由领先的清洁器形成的复杂的移动路径。此外,即使有可能进行这种跟随,也存在整个清洁时间被延长的问题。对于能够协作的多个移动机器人也是如此。
发明内容
【技术问题】
本公开的一个目的是提供多个移动机器人及其控制方法,这些移动机器人能够在其任何一个遵循其另一个的移动路径的同时进行移动从而彼此之间没有干扰或碰撞。
此外,本公开的另一个目的是提供多个移动机器人及其控制方法,当多个移动机器人中的任何一个跟随其另一个时,这些移动机器人可以被控制以执行灵活的跟随而没有任何中断。
此外,本公开的又一个目的是提供多个移动机器人及其控制方法,当移动区域本身是复杂的区域或留下复杂的移动轨迹或形成复杂的移动路径时,或者在判断为在与领先的移动机器人相同的路径上移动的同时移动完成时间的延迟较大的情况下,这些移动机器人在考虑灵活性和清洁时间的情况下能够进行大致地跟随。
此外,本公开的又一个目的是提供多个移动机器人及其控制方法,在执行多个移动机器人之间的跟随移动的同时,当清洁空间为复杂的区域时,或者甚至当领先的移动机器人留下复杂的移动轨迹或形成复杂的移动路径时,这些移动机器人能够防止跟随被中断并且最小化移动完成时间的延迟的发生。
此外,本公开的又一个目的是提供多个移动机器人及其控制方法,这些移动机器人被实现为即使在可移动的区域由于多个移动机器人的类型和规格不同而彼此不同时,也在最小化移动完成延迟的同时继续进行跟随移动。
此外,本公开的又一个目的是提供多个移动机器人及其控制方法,这些移动机器人被实现为即使不需要跟随的移动机器人原样遵循领先的移动机器人的移动路径,但是在足以执行固有功能时也以预定的扇区单位进行跟随移动。
【技术方案】
因此,在本公开中,实现了在多个移动机器人中,跟随的移动机器人存储领先的移动机器人的轨迹信息,并且在遵循与存储的轨迹信息相对应的移动路径的同时移动,从而有效地执行灵活的跟随而不会出现任何中断。
另一方面,根据诸如多个移动机器人的类型和规格的差异、地板的状态、障碍物的存在、移动机器人的运行状态以及与轨迹信息相对应的移动路径的复杂性等情况,当对于移动完成时间和效率而言适合于跟随的移动机器人不能跟随或不跟随领先的移动机器人的移动路径时,可以优选地识别例外。
因此,当与随后的轨迹信息相对应的要由跟随的移动机器人遵循的移动路径满足预定条件时,实现了存储的轨迹信息的至少部分被去除并且遵循剩余的轨迹信息。
在此,与要被遵循的随后的轨迹信息相对应的移动路径是否满足预定条件可以由关于障碍物的信息、移动机器人的标识信息、与移动机器人的运行状态相关联的信息以及移动机器人所位于的地板状态信息确定,关于障碍物的信息是基于通过存储器、传感器和通信单元发送和接收的信号获取的。
具体地,根据本公开的实施例的移动机器人可以包括:行进单元,其被配置为移动主体;存储器,其被配置为存储与主体的移动相对应的移动路径的轨迹信息;通信单元,其被配置为与发出信号的另一移动机器人通信;以及控制器,其被配置为基于信号识别另一移动机器人的位置,并基于识别的位置,控制另一移动机器人遵循与存储的轨迹信息相对应的移动路径,其中,响应于要由另一移动机器人遵循的与下一轨迹信息相对应的移动路径是否满足指定条件,控制器控制另一移动机器人的移动以去除存储的轨迹信息的至少部分,并允许另一移动机器人遵循与剩余的轨迹信息相对应的移动路径。
此外,在一个实施例中,要由另一移动机器人遵循的与下一轨迹信息相对应的移动路径是否满足指定条件可以基于以下中的至少一个来确定:关于通过主体的传感器感测到的障碍物的信息、另一移动机器人的标识信息、与另一移动机器人的运行状态相关的信息以及另一移动机器人所位于的地板状态信息。
此外,在一个实施例中,存储在存储器中的轨迹信息中的由另一移动机器人遵循的轨迹信息可以从存储器中删除。
此外,在一个实施例中,当与要在另一移动机器人的当前位置处遵循的第一轨迹信息相对应的移动路径满足指定条件时,控制器可以发送控制命令,该控制命令用于将该另一移动机器人移动至与存储在第一轨迹信息之后的第二轨迹信息相对应的位置。
此外,在一个实施例中,至少一个中间轨迹信息可以包括在第一轨迹信息和第二轨迹信息之间,并且控制器可以响应于另一移动机器人移动到与第二轨迹信息相对应的位置,而从存储器中删除第一轨迹信息和一个或多个中间轨迹信息。
此外,在一个实施例中,当感测到多个障碍物已经接近要在另一移动机器人的当前位置处遵循的下一轨迹信息的位置时,控制器可以控制另一移动机器人跟随另一移动路径上的主体而不是遵循包括下一轨迹信息的移动路径。
此外,在一个实施例中,控制器可以控制移动以允许另一移动机器人遵循扇区单元中的与存储的轨迹信息相对应的移动路径,并且单个扇区可以包括与多个轨迹信息相对应的移动路径。
此外,在一个实施例中,控制器可以响应于满足指定条件而控制另一移动机器人在与对应于多个轨迹信息的主体的移动路径不同的移动路径上移动,并且不同的移动路径的路径长度可以比主体的移动路径短。
此外,在一个实施例中,控制器可以控制另一移动机器人在包括多个轨迹信息的扇区单元中的移动,响应于满足指定条件而去除当前扇区中的所有轨迹信息、基于另一移动机器人的当前位置和移动方向确定下一扇区、以及控制另一移动机器人遵循确定的下一扇区中的轨迹信息之一而移动。
此外,在一个实施例中,控制器可以在另一移动机器人远离主体移动以遵循确定的下一扇区中的轨迹信息之一时,输出控制命令以改变或停止主体的移动速度。
此外,在一个实施例中,控制器可以响应于未检测到主体在下一扇区中的下一轨迹信息而改变下一扇区的尺寸和位置中的至少一个以检测主体的下一轨迹信息。
此外,在一个实施例中,控制器可以响应于未检测到主体在下一扇区中的下一轨迹信息而增加扇区的数量以检测主体的下一轨迹信息。
此外,在一个实施例中,控制器可以响应于未检测到主体在下一扇区中的下一轨迹信息而停止另一移动机器人的移动,直到主体进入下一扇区为止。
此外,在一个实施例中,控制器可以响应于在预定时间段内主体的移动方向的变化大于参考次数而控制另一移动机器人的移动以在由从另一移动机器人的当前位置到主体的当前位置的最短直线连接的路径上移动而不是在与对于预定时间段检测到的主体的轨迹信息相对应的移动路径上移动。
此外,在一个实施例中,控制器可以响应于进入的移动区域的宽度是否被感测为小于参考范围而控制另一移动机器人的移动以去除在主体已经进入的移动区域中的主体的轨迹信息,并且在主体移出相关的移动区域之后遵循轨迹信息。
此外,在一个实施例中,控制器可以在确定主体进入的区域为另一移动机器人的非进入区域时将与移动停止命令相对应的信号发送到另一移动机器人,并且在感测到主体移出相关区域时,控制另一移动机器人遵循与移出相关区域之后存储的主体的轨迹信息相对应的移动路径而移动。
另外,根据本公开的实施例的多个移动机器人可以是包括第一移动机器人和第二移动机器人的多个移动机器人,其中,第一移动机器人与发出信号的第二移动机器人进行通信以识别第二移动机器人的位置,存储与第一移动机器人的移动相对应的移动路径的轨迹信息,并基于识别的第二移动机器人的位置来控制第二移动机器人遵循与存储的轨迹信息相对应的移动路径,并且响应于与下一轨迹信息相对应的要在第二移动机器人的当前位置处遵循的移动路径是否满足指定条件,第一移动机器人去除存储的轨迹信息的至少部分,并且控制第二移动机器人遵循与剩余的轨迹信息相对应的移动路径。
另外,根据本公开的实施例的移动机器人的控制方法可以包括:存储与移动机器人主体的移动相对应的移动路径的轨迹信息;与另一移动机器人通信,该另一移动机器人发出信号以识别另一移动机器人的位置;基于识别的位置,控制另一移动机器人的移动,使得另一移动机器人遵循与存储的轨迹信息相对应的移动路径;感测与下一轨迹信息相对应的要由另一移动机器人遵循的移动路径满足指定条件;以及根据感测控制另一移动机器人的移动,以去除存储的轨迹信息的部分,以使另一移动机器人遵循与剩余的轨迹信息相对应的移动路径。
此外,在一个实施例中,是否满足指定条件可以通过以下中的至少一个来确定:关于通过主体的传感器感测到的障碍物的信息、另一移动机器人的标识信息、与另一移动机器人的运行状态相关的信息以及另一移动机器人的当前位置处的地板状态信息。
此外,在一个实施例中,该方法还可以包括:从存储的轨迹信息中删除由另一移动机器人遵循的轨迹信息。
如上所述,根据本公开的实施例的多个移动机器人,跟随的移动机器人可以在正常时间顺序地跟随领先的移动机器人的移动轨迹的同时执行清洁,但是当在复杂的区域内检测到移动轨迹或移动轨迹形成复杂的扇区时,通过省略领先的移动机器人的移动轨迹的一部分而粗略地跟随领先的移动机器人,从而解决了移动完成时间的延迟问题,同时保持了根据跟随的清洁效率。
另外,当领先的移动机器人在短时间段内多次改变其移动方向或进入狭窄区域时,即使它没有遇到复杂的区域或扇区,跟随的移动机器人也可以被控制为直线移动并通过去除预定时间段内的移动轨迹或狭窄区域内的移动轨迹而跟随领先的机器人,从而最小化由于跟随引起的时间延迟。
【有益效果】
如上所述,根据本公开的实施例的多个机器人清洁器,第二清洁器可以被控制为在顺序地遵循第一清洁器的移动轨迹的同时正常地执行清洁,并且当在复杂的区域或复杂的扇区内检测到移动轨迹或移动轨迹形成复杂的路径时,在预定尺寸的扇区单元内粗略地跟随第一清洁器,从而解决了在复杂的情况下引起的时间延迟问题,同时保持了根据跟随的清洁效率。此外,即使不是处理复杂的区域或扇区的情况,当作为领先的清洁器的第一清洁器在短时间段内多次改变其移动方向或当领先的清洁器进入狭窄区域时,预定的时间段内或狭窄区域内的所有移动轨迹可以被去除,从而最小化由于跟随引起的时间延迟。而且,即使当第二清洁器在扇区单元内跟随第一清洁器时,扇区内的目标点也可以根据第一清洁器的移动信息来不同地选择,从而以平衡的方式满足诸如跟随控制的效率和时间延迟的最小化等相对的需求。
附图说明
被包括以提供对本发明的进一步理解并且被并入本说明书并构成本说明书的一部分的附图示出了本发明的实施例,并与说明书共同用于说明本发明的原理。在图中:
图1是示出根据本公开的移动机器人的示例的透视图。
图2是图1所示的移动机器人的平面图。
图3是图1所示的移动机器人的侧视图。
图4是示出根据本公开的实施例的移动机器人的示例性组件的框图。
图5A是示出根据本公开的实施例的多个移动机器人之间的网络通信的概念图,图5B是示出图5A的网络通信的示例的概念图。
图5C是示出根据本公开的实施例的在多个移动机器人之间的跟随移动的概念图。
图6、图7、图8A、图8B和图8C是用于具体说明在根据本公开的实施例的多个移动机器人彼此保持预定距离的同时更灵活地执行跟随的方法的视图。
图9和图10是用于说明根据本公开的实施例的跟随第一清洁器的第二清洁器基于障碍物信息执行扇区移动模式的示例性流程图和概念图。
图11A、图11B和图11C是用于说明根据本公开的实施例的在去除扇区单元内的移动轨迹的同时第二清洁器移动的示例性概念图。
图12A、图12B、图12C和图12D是用于说明根据本公开的实施例的在未检测到扇区单元的设置和第一清洁器的移动轨迹的情况下的处理的不同示例性概念图。
图13A、图13B、图13C和图13D是示出根据本公开的允许第二清洁器进入、但是第一清洁器的移动复杂的示例、因此第一清洁器在扇区单元中的移动轨迹被去除以允许第二清洁器沿最短距离移动的概念图。
图14A、图14B和图14C是用于说明根据本公开的实施例的当第二清洁器不能进入扇区单元时第一清洁器的移动方法的概念图。
图15A、图15B和图15C是示出根据本公开的修改的实施例的在移动机器人与其他移动装置之间的跟随注册和跟随控制的概念图。
具体实施方式
在下文中,将参照附图详细描述根据本公开的移动机器人。
在下文中,将详细给出本文公开的实施例的描述。在本说明书中使用的技术术语仅用于解释特定实施例,因此不应被解释为限制本文公开的技术的范围。
首先,本文公开的术语“移动机器人”可以与“(用于特定功能的)机器人”、“机器人清洁器”、“用于清洁的机器人”和“自主清洁器”的含义相同,因此这些术语将被等同地使用。
此外,本公开中公开的术语“多个移动机器人”可以用作“多个机器人清洁器”或“多个清洁器”。此外,术语“第一移动机器人”可以被称为“第一机器人”、“第一机器人清洁器”、“第一清洁器”或“领先的清洁器”。此外,“第二移动机器人”可以被称为“第二机器人”、“第二机器人清洁器”、“第二清洁器”或“跟随的清洁器”。
图1至图3示出了根据本公开的作为移动机器人的示例的机器人清洁器。
具体地,图1是示出根据本公开的移动机器人100的示例的透视图,图2是图1所示的移动机器人100的平面图,图3是图1所示的移动机器人100的侧视图。
在本说明书中,移动机器人、机器人清洁器以及执行自主移动的清洁器可以以相同的意义使用。此外,在本说明书中,被描述为多个移动机器人的示例的多个清洁器可包括图1至图3所示的配置的至少一部分。
参照图1至图3,机器人清洁器100在其自身在预定区域上移动的同时执行清洁地板的功能。这里提到的地板清洁包括吸地板上的灰尘(包括异物)或擦拭地板。
机器人清洁器100可包括清洁器主体110、清洁单元120、感测单元130和集尘器140。
除用于控制机器人清洁器100的控制器(未示出)之外,清洁器主体110还设置有各种组件。此外,清洁器主体110还设置有用于使机器人清洁器100移动的轮单元111。机器人清洁器100可以通过轮单元111向前、向后、向左和向右移动。
参照图3,轮单元111包括主轮111a和副轮111b。
主轮111a设置在清洁器主体110的两侧,并且被配置为根据控制器的控制信号在一个方向或另一方向上可旋转。每个主轮111a可被配置为彼此独立地被驱动。例如,每个主轮111a可以由不同的马达驱动。或者,每个主轮111a可以由设置在一个马达中的多个不同的轴驱动。
副轮111b被配置为与主轮111a一起支撑清洁器主体110,并通过主轮111a辅助机器人清洁器100的移动。副轮111b也可以设置在稍后要描述的清洁单元120上。
控制器被配置为以机器人清洁器100自主地在地板上移动的方式控制轮单元111的驱动。
同时,用于向机器人清洁器100供电的电池(未示出)安装在清洁器主体110上。该电池可以被配置为可充电的,并且被配置为可从清洁器主体110的底部拆卸。
在图1中,清洁单元120可以以从清洁器主体110的一侧突出的形式设置,以便吸取包含灰尘的空气或擦拭区域。这一侧可以是清洁器主体110沿向前方向F移动的一侧,即,清洁器主体110的前侧。
在该图中,清洁单元120被示出为具有从清洁器主体110的一侧向前以及左右两侧突出的形状。具体地,清洁单元120的前端部设置在与清洁器主体110的一侧向前间隔开的位置处,清洁单元120的左端部和右端部设置在在左右方向上与清洁器主体110的一侧间隔开的位置处。
由于清洁器主体110形成为圆形,并且清洁单元120的后端部的两侧从清洁器主体110向左右两侧突出,因此可以在清洁器主体110和清洁单元120之间形成空的空间(即,空隙)。空的空间是清洁器主体110的左右两端部与清洁单元120的左右两端部之间的空间,并且具有在机器人清洁器100的向内的方向上凹入的形状。
当障碍物进入空的空间中时,机器人清洁器100可能被障碍物阻挡而不能移动。为了防止这种情况,可以设置盖构件129以覆盖至少一部分空的空间。
盖构件129可以设置在清洁器主体110或清洁单元120上。根据本实施例,示出了盖构件129以突出的方式形成在清洁器的后端部的两侧上,并且设置为覆盖清洁器主体110的外周表面。
盖构件129设置为填充至少一部分空的空间,即,清洁器主体110和清洁单元120之间的空的空间。这可以得到实现能够防止障碍物进入空的空间中的结构,或者即使障碍物进入空的空间中也能轻松地逃离障碍物。
从清洁单元120突出的盖构件129可以被支撑在清洁器主体110的外周表面上。
如果盖构件129从清洁器主体110突出,则盖构件129可以被支撑在清洁单元120的后部上。根据该结构,当清洁单元120由于与障碍物的碰撞而受到冲击时,一部分冲击被传递到清洁器主体110从而被分散。
清洁单元120可以可拆卸地耦接到清洁器主体110。当清洁单元120从清洁器主体110拆卸时,擦拭模块(未示出)可以代替拆卸的清洁单元120而被可拆卸地耦接到清洁器主体110。
因此,当用户希望去除地板上的灰尘时,用户可以将清洁单元120安装在清洁器主体110上,而当用户想要擦拭地板时,用户可以将擦拭模块安装在清洁器主体110上。
当清洁单元120被安装在清洁器主体110上时,安装可以由上述的盖构件129引导。换句话说,由于盖构件129被设置为覆盖清洁器主体110的外周表面,所以清洁单元120相对于清洁器主体110的相对位置可以被确定。
清洁单元120可以设置有脚轮123。脚轮123被配置为辅助机器人清洁器100的移动,并且还支撑机器人清洁器100。
清洁器主体110设置有感测单元130。如图所示,感测单元130可以设置在清洁器主体110的清洁单元120所在的一侧,即,清洁器主体110的前侧。
感测单元130可以被设置为在清洁器主体110的上下方向上与清洁单元120重叠。感测单元130设置在清洁单元120的上部处以感测机器人清洁器100前方的障碍物或地理特征,从而位于机器人清洁器100最前处的清洁单元120不会与障碍物碰撞。
感测单元130可以被配置为除了该感测功能之外还执行另一种感测功能。
举例来说,感测单元130可以包括用于获取周围图像的摄像头131。摄像头131可以包括透镜和图像传感器。摄像头131可以将清洁器主体110的周围图像转换成可以由控制器处理的电信号。例如,摄像头131可以将与向上的图像相对应的电信号发送到控制器。与向上的图像相对应的电信号可以由控制器用来检测清洁器主体110的位置。
另外,感测单元130可以检测机器人清洁器100的移动表面或移动路径上的障碍物,例如墙壁、家具和跌落处(cliff)。此外,感测单元130可以感测执行电池充电的对接装置的存在。另外,感测单元130可以检测天花板信息,以便绘制机器人清洁器100的移动区域或清洁区域。
清洁器主体110设置有集尘器140,该集尘器140可拆卸地耦接到清洁器主体110,用于从吸入的空气中分离和收集灰尘。
集尘器140设置有覆盖集尘器140的集尘器盖150。在实施例中,集尘器盖150可以通过铰链耦接至清洁器主体110以可旋转。集尘器盖150可以固定到集尘器140或清洁器主体110以保持覆盖集尘器140的上表面。当集尘器盖150设置为覆盖集尘器140的上表面时,通过集尘器盖150可以防止集尘器140与清洁器主体110分离。
集尘器140的一部分可以容纳在集尘器容纳部中,而集尘器140的另一部分朝向清洁器主体110的后方(即,与向前的方向F相反的相反方向R)突出。
集尘器140设置有通过其引入包含灰尘的空气的入口和通过其排出与灰尘分离的空气的出口。当将集尘器140安装在清洁器主体110上时,入口和出口通过开口155彼此连通,开口155通过清洁器主体110的内壁形成。因此,可以形成清洁器主体110内部的进气通道和排气通道。
根据这种连接,通过清洁单元120引入的包含灰尘的空气通过清洁器主体110内部的进气通道流入集尘器140,并且空气在经过集尘器140的过滤器和旋风分离器(cyclone)的同时与灰尘分离。灰尘收集在集尘箱140中,空气从集尘箱140排出,然后通过清洁器主体110中的排出口112并最终通过排出口112排出到外部。
下面将参照图4描述与机器人清洁器100的组件有关的实施例。
根据本公开的实施例的机器人清洁器100或移动机器人可包括通信单元1100、输入单元1200、行进单元1300、感测单元1400、输出单元1500、电源单元1600、存储器1700、控制器1800和清洁单元1900,或其组合。
在此,不用说,图4所示的组件不是必需的,因此可以实现具有比图4所示的组件更多或更少的机器人清洁器。另外,如上所述,本公开中描述的多个机器人清洁器中的每一个可以等同地仅包括以下将要描述的组件中的一些。换句话说,多个机器人清洁器可以包括不同的组件。
在下文中,将描述每个组件。
首先,电源单元1600包括可由外部商用电源充电的电池,并向移动机器人供电。电源单元1600向移动机器人中包括的每个组件提供驱动功率,以供应移动机器人移动或执行特定功能所需的运行功率。
在此,控制器1800可以感测电池的剩余电量,并且当剩余电量不足时,控制电池1800将功率移动到连接到外部商用电源的充电基座,从而可以从充电基座供应充电电流,以为电池充电。另外,如上所述,本公开中描述的多个机器人清洁器中的每一个可以等同地仅包括以下将要描述的组件中的一些。输出单元1500可以在控制器的控制下显示剩余的电池电量水平。
电池可以位于机器人清洁器中心的下部,也可以位于左侧和右侧之一。在后一种情况下,移动机器人还可包括用于消除电池的重量偏差的平衡重量。
控制器1800基于人工智能技术执行处理信息的作用,并且可以包括至少一个模块,用于执行信息的学习、信息的推断、信息的感知以及自然语言的处理中的至少一个。
控制器1800可以使用机器学习技术来执行对诸如存储在清洁器中的信息、清洁器周围的环境信息、存储在可通信的外部存储中的信息等大量信息(大数据)的学习、推断和处理中的至少一项。此外,控制器1800可以基于使用机器学习技术学习到的信息来预测(或推断)清洁器的至少一项可执行操作,并控制清洁器执行至少一项预测的操作中最可行的操作。
机器学习技术是基于至少一种算法来收集和学习大量信息,并基于学习到的信息来判断和预测信息的技术。信息的学习是掌握信息的特征、规则和判断标准、量化信息和信息之间的关系、并使用量化的模式预测新数据的操作。
机器学习技术使用的至少一种算法可以是基于统计的算法,例如,使用树结构类型作为预测模型的决策树、复制神经网络架构和功能的人工神经网络、基于生物进化算法的遗传规划、将观察到的示例分布到类的子集中的聚类、通过从概率中随机提取的随机数来计算函数值的蒙特卡洛方法等。
作为机器学习技术的领域,深度学习是使用人工神经网络(ANN)或深度神经元网络(DNN)算法执行信息的学习、判断和处理中的至少一项的技术。深度神经网络(DNN)可以具有链接层并在层之间转移数据的结构。可以采用该深度学习技术,以使用针对并行计算优化的图形处理单元(GPU),通过深度神经网络(DNN)学习巨大量信息。
控制器1800可以使用存储在外部服务器或存储器中的训练数据,并且可以包括用于检测用于识别预定对象的特性的学习引擎。在此,用于识别对象的特性可以包括对象的尺寸、形状和阴影。
具体地,当控制器将通过设置在清洁器中的摄像头获取的图像的一部分输入到学习引擎时,学习引擎可以识别输入图像中包括的至少一个对象或生物。
以这种方式,当学习引擎应用于清洁器的移动时,控制器1800可以识别是否存在阻碍清洁器的移动的障碍物,例如椅子腿、风扇、特定类型的阳台间隙等,从而提高了清洁器移动的效率和可靠性。
同时,如上所述的学习引擎可以安装在控制器1800上,或者可以安装在外部服务器上。当学习引擎安装在外部服务器上时,控制器1800可以控制通信单元1100将要进行分析的至少一个图像发送到外部服务器。
外部服务器可以将从清洁器发送的图像输入到学习引擎中,从而识别图像中包括的至少一个对象或生物。另外,外部服务器可以将与识别结果有关的信息发送回清洁器。在这种情况下,与识别结果有关的信息可以包括与要分析的图像中包括的对象的数量以及每个对象的名称有关的信息。
另一方面,行进单元1300可以包括马达,并且运行马达以使左右主轮双向旋转,从而主体可以旋转或移动。此时,左右主轮可以独立地移动。行进单元1300可以允许移动机器人的主体向前、向后、向左和向右移动,或者执行曲线移动或就地旋转。
同时,输入单元1200从用户接收用于机器人清洁器的各种控制命令。输入单元1200可以包括一个或多个按钮,例如,输入单元1200可以包括确定按钮、设置按钮等。确定按钮是用于从用户接收用于确认感测信息、障碍物信息、位置信息和地图信息的命令的按钮,而设置按钮是用于从用户接收用于设置信息的命令的按钮。
另外,输入单元1200可以包括:输入重置按钮,其用于取消先前的用户输入并再次接收用户输入;删除按钮,其用于删除预设的用户输入;用于设置或改变操作模式的按钮;用于接收要恢复到充电基座的命令的按钮等。
此外,诸如硬键、软键、触摸板等输入单元1200可以安装在移动机器人的上部。另外,输入单元1200可以与输出单元1500一起具有触摸屏的形式。
另一方面,输出单元1500可以安装在移动机器人的上部。当然,安装位置和安装类型可以变化。例如,输出单元1500可以在屏幕上显示电池状态、移动模式等。
另外,输出单元1500可以输出由感测单元1400检测到的移动机器人内部的状态信息,例如,移动机器人中包括的每个配置的当前状态。此外,输出单元1500可以在屏幕上显示由感测单元1400检测到的外部状态信息、障碍物信息、位置信息、地图信息等。输出单元1500可以由发光二极管(LED)、液晶显示器(LCD)、等离子显示面板和有机发光二极管(OLED)中的任何一个形成。
输出单元1500还可包括声音输出装置,其用于可听地输出由控制器1800执行的移动机器人的操作过程或操作结果。例如,输出单元1500可根据控制器1800生成的警报信号向外部输出警告声音。
在这种情况下,音频输出模块(未示出)可以是诸如蜂鸣器、扬声器等用于输出声音的装置,并且输出单元1500可以使用存储在存储器1700中的具有预定模式的音频数据或消息数据通过音频输出模块向外部输出声音。
因此,根据本公开的实施例的移动机器人可以在屏幕上输出关于移动区域的环境信息或将其作为声音输出。根据另一实施例,移动机器人可以通过通信单元1100将地图信息或环境信息发送到终端装置,以通过输出单元1500输出要输出的屏幕或声音。
存储器1700存储用于控制或驱动机器人清洁器的控制程序及结果数据。存储器1700可以存储音频信息、图像信息、障碍物信息、位置信息、地图信息等。此外,存储器1700可以存储与移动模式有关的信息。
存储器1700主要使用非易失性存储器。在此,非易失性存储器(NVM,NVRAM)是即使不向其供电也能够连续存储信息的存储装置,例如,非易失性存储器可以是ROM、闪存、磁计算机存储装置(例如,硬盘、软盘驱动器、磁带)、光盘驱动器、磁性RAM、PRAM等。
同时,感测单元1400可以包括外部信号检测传感器、前检测传感器、防跌落检测传感器、二维摄像头传感器和三维摄像头传感器中的至少一个。
外部信号检测传感器可以感测移动机器人的外部信号。外部信号检测传感器可以是例如红外线传感器、超声传感器、射频(RF)传感器等。
移动机器人可以通过使用外部信号传感器接收由充电基座生成的引导信号来检测充电基座的位置和方向。此时,充电基座可以发送指示方向和距离的引导信号,以使移动机器人可以返回到其。即,移动机器人可以通过接收从充电基座发送的信号来确定当前位置并设置移动方向,从而返回到充电基座。
另一方面,前传感器或前检测传感器可以以规则的间隔设置在移动机器人的前侧上,具体地沿着移动机器人的侧面外周表面而设置。前传感器位于移动机器人的至少一个侧表面上,以检测移动机器人前方的障碍物。前传感器可以检测在移动机器人的移动方向上存在的对象,特别是障碍物,并将检测信息发送到控制器1800。换句话说,前检测传感器可以感测在移动机器人的移动路径上的突起、家用电器、家具、墙壁、墙角等,并将该信息发送到控制器1800。
例如,前传感器可以是红外线(IR)传感器、超声波传感器、RF传感器、地磁传感器等,并且移动机器人可以使用一种类型的传感器作为前传感器或如有必要可以使用两种或更多种类型的传感器。
例如,超声波传感器通常主要用于感测远处的障碍物。超声波传感器可以包括发送器和接收器,并且控制器1800可以基于通过发送器辐射的超声波是否被障碍物等反射并在接收器处被接收来确定是否存在障碍物,并且使用超声波发射时间和超声波接收时间计算到障碍物的距离。
此外,控制器1800可以比较从发送器发出的超声波和在接收器处接收的超声波,以检测与障碍物的尺寸有关的信息。例如,控制器1800可以确定障碍物越大,则在接收器处接收到的超声波越多。
在一个实施例中,多个(例如,五个)超声传感器可以沿着外周表面在前侧安装在移动机器人的侧表面上。此时,超声传感器可以优选地以交替布置发送器和接收器的方式安装在移动机器人的前表面上。
换句话说,发送器可以向左侧和右侧与主体的前中心间隔开,并且一个或两个(或更多个)发送器可以设置在接收器之间以形成从障碍物等反射的*?*超声波信号的接收区域。通过这种布置,可以在减少传感器数量的同时扩大接收面积。超声波的发送角度可以保持不影响不同信号的角度范围,以防止串扰现象。此外,接收器的接收灵敏度可以被设置为彼此不同。
另外,超声传感器可以以预定角度向上安装以在向上的方向上输出从超声传感器传输的超声波,并且在此,超声传感器还可以包括预定的阻挡构件以防止超声波向下辐射。
另一方面,如上所述,前检测传感器可以一起使用两种或更多种类型的传感器,因此,前检测传感器可以使用红外传感器、超声传感器、RF传感器等中的任何一种。
例如,前检测传感器可以包括红外传感器,作为不同于超声传感器的不同类型的传感器。
红外传感器可以与超声传感器一起安装在移动机器人的外周表面上。红外传感器也可以感测在前方或侧面存在的障碍物,以将障碍物信息发送到控制器1800。换句话说,红外传感器可以感测在移动机器人的移动路径上的突起、家用电器、家具、墙壁、墙角等,并将信息发送到控制器1800。因此,移动机器人可以在特定区域内移动而不会与障碍物碰撞。
另一方面,防跌落检测传感器(或防跌落传感器)可以主要使用各种类型的光学传感器来感测支撑移动机器人的主体的地板上的障碍物。
换句话说,防跌落检测传感器可以安装在移动机器人底部的后表面上,但是当然可以根据移动机器人的类型而安装在不同的位置。防跌落检测传感器是位于移动机器人的背表面以感测地板上的障碍物的传感器,并且防跌落检测传感器可以是红外传感器、超声波传感器、RF传感器、PSD(位置敏感检测器)传感器等,其设置有诸如障碍物检测传感器等发送器和接收器。
例如,任何一个防跌落检测传感器可以安装在移动机器人的前面,而其他两个防跌落检测传感器可以相对地安装在后面。
例如,防跌落检测传感器可以是PSD传感器,但是也可以被配置有多种不同种类的传感器。
PSD传感器使用半导体表面电阻,通过一个p-n结检测入射光的短距离和长距离位置。PSD传感器包括仅检测一个轴方向上的光的一维PSD传感器和检测平面上的光位置的二维PSD传感器。这两种PSD传感器都可以具有pin光电二极管结构。作为红外传感器的类型,PSD传感器使用红外线。PSD传感器发出红外线,并通过计算从障碍物反射和返回的红外线的角度来测量距离。即,PSD传感器通过使用三角测量法来计算距障碍物的距离。
PSD传感器包括向障碍物发出红外线的光发射器和接收从障碍物反射并返回的红外线的光接收器,并且典型地被配置为模块类型。当通过使用PSD传感器检测障碍物时,无论障碍物的反射率和色差如何,都可以获得稳定的测量值。
清洁单元1900根据从控制器1800发送的控制命令来清洁指定的清洁区域。清洁单元1900通过刷子(未示出)将附近的灰尘散布在指定的清洁区域中,然后驱动吸风机和吸气马达吸取散落的灰尘。另外,清洁单元1900可以根据配置的替换在指定的清洁区域中执行擦拭。
此外,控制器1800可以测量由防跌落检测传感器朝向地面发出的红外线的光信号与从障碍物反射和接收的反射信号之间的红外线角度,以便检测跌落处并分析跌落处的深度。
同时,控制器1800可以通过使用防跌落检测传感器根据检测到的跌落处的地面状态来确定是否通过跌落处,并根据确定的结果来决定是否通过跌落处。例如,控制器1800通过防跌落检测传感器确定是否存在跌落处以及跌落处的深度,然后仅当通过防跌落检测传感器感测到反射信号时才通过跌落处。
对于另一个示例,控制器1800可以使用防跌落检测传感器来确定移动机器人的提升现象。
另一方面,二维摄像头传感器设置在移动机器人的一侧上,以在移动期间获取与主体的周围环境有关的图像信息。
光流传感器转换从设置在传感器中的图像传感器输入的向下的图像以生成预定格式的图像数据。生成的图像数据可以被存储在存储器1700中。
此外,一个或多个光源可以安装在光流传感器附近。一个或多个光源将光照射到由图像传感器捕获的底表面的预定区域。换句话说,当移动机器人沿底部表面在特定区域中移动时,在底部表面平坦时在图像传感器和底部表面之间保持预定距离。另一方面,当移动机器人在具有不均匀表面的底部表面上移动时,由于底部表面的不规则性和障碍物,机器人远离底部表面移动超过预定距离。此时,一个或多个光源可以由控制器1800控制以调整要照射的光量。光源可以是能够控制光量的发光器件,例如,发光二极管(LED)等。
使用光流传感器,控制器1800可以与移动机器人的滑动无关地检测移动机器人的位置。控制器1800可以比较并分析随时间由光流传感器捕获的图像数据,以计算移动距离和移动方向,并且基于移动距离和移动方向来计算移动机器人的位置。使用光流传感器,使用关于移动机器人的底侧的图像信息,控制器1800可以对由另一装置计算出的移动机器人的位置进行防滑校正。
三维摄像头传感器可以附接到移动机器人的主体的一侧或一部分,以生成与主体的周围环境有关的三维坐标信息。
换句话说,三维摄像头传感器可以是3D深度摄像头,其计算移动机器人和要捕获的对象的近距离和远距离。
具体地,三维摄像头传感器可以捕获与主体的周围环境有关的二维图像,并且生成与捕获的二维图像相对应的多个三维坐标信息。
在一个实施例中,三维摄像头传感器可以包括获取常规二维图像的两个或更多个摄像头,并且可以以立体视觉的方式形成以组合从两个或更多个摄像头获得的两个或更多个图像,从而生成三维坐标信息。
具体地,根据实施例的三维摄像头传感器可以包括:第一图案照射单元,其用于朝向主体的前方在向下的方向上照射具有第一图案的光;以及第二图案照射单元,其用于朝向主体的前方在向上的方向上照射具有第二图案的光;以及图像获取单元,其用于获取在主体前方的图像。因此,图像获取单元可以获取第一图案的光和第二图案的光入射的区域的图像。
在另一个实施例中,三维摄像头传感器可以包括用于与单个摄像头一起照射红外线图案的红外线图案发射单元,并且捕获从红外线图案发射单元照射到待捕获的对象上的红外线图案的形状,从而测量传感器和待捕获的对象之间的距离。这样的三维摄像头传感器可以是IR(红外)型三维摄像头传感器。
在又一个实施例中,三维摄像头传感器可以包括发光单元,该发光单元与单个摄像头一起发出光,接收从发光单元发出的从待捕获的对象反射的激光的一部分,并分析接收到的激光,从而测量三维摄像头传感器和待捕获的对象之间的距离。三维摄像头传感器可以是飞行时间(TOF)型的三维摄像头传感器。
具体地,上述三维摄像头传感器的激光器被配置为以沿至少一个方向延伸的形式照射激光束。在一个示例中,三维摄像头传感器可以包括第一激光器和第二激光器,其中,第一激光器照射彼此相交的线性激光,而第二激光器照射单个线性激光。据此,最下面的激光用于感测底部的障碍物,最上面的激光用于感测上部的障碍物,最下面的激光和最上面的激光之间的中间激光用于感测中间部分的障碍物。
另一方面,通信单元1100通过有线、无线和卫星通信方法之一连接到终端装置和/或另一装置(在本文中也称为“家用电器”),以便发送和接收信号和数据。
通信单元1100可以与位于特定区域中的另一装置发送和接收数据。在此,另一装置可以是能够连接到网络以发送和接收数据的任何装置,例如,该装置可以是空调、加热装置、空气净化装置、灯、电视、汽车等。另一装置也可以是用于控制门、窗、供水阀、气阀等的装置。另一装置也可以是用于检测温度、湿度、气压、气体等的传感器。
此外,通信单元1100可以与位于特定区域中或预定范围内的另一机器人清洁器100通信。
参照图5A和图5B,执行自主移动的第一清洁器100a和第二清洁器100b可以通过网络通信50彼此交换数据。另外,执行自主移动的第一清洁器100a和/或第二清洁器100b可以通过经由网络通信50或其他通信从终端300接收到的控制命令执行与清洁有关的操作或对应的操作。
换句话说,尽管未示出,但是执行自主移动的多个清洁器100a、100b还可以通过第一网络通信执行与终端300的通信,并且通过第二网络通信执行彼此的通信。
这里,网络通信50可以指的是使用无线通信技术中的至少一种的短距离通信,诸如无线LAN(WLAN)、无线个人局域网(WPAN)、无线保真(Wi-Fi)Wi-Fi直连、数字生活网络联盟(DLNA)、无线宽带(WiBro)、全球微波接入互操作性(WiMAX)、Zigbee、Z波、蓝牙、射频识别(RFID),红外数据协会(IrDA)、超宽带(UWB)、无线通用串行总线(USB)等。
网络通信50可以根据期望彼此通信的机器人清洁器的通信模式而变化。
在图5A中,执行自主移动的第一清洁器100a和/或第二清洁器100b可以通过网络通信50将由其相应的感测单元感测到的信息提供给终端300。终端300还可以经由网络通信50将基于接收到的信息生成的控制命令发送给第一清洁器100a和/或第二清洁器100b。
在图5A中,第一清洁器100a的通信单元和第二清洁器100b的通信单元还可以彼此直接通信或经由另一路由器(未示出)间接彼此通信,以识别与对等方的移动状态和位置有关的信息。
在一个示例中,第二清洁器100b可以根据从第一清洁器100a接收到的控制命令来执行移动操作和清洁操作。在这种情况下,可以说第一清洁器100a作为主机运行,第二清洁器100b作为从机运行。可替代地,可以说第二清洁器100b跟随第一清洁器100a。在某些情况下,也可以说第一清洁器100a和第二清洁器100b彼此协作。
在下文中,将参照图5B描述根据本公开的实施例的包括执行自主移动的多个清洁器100a、100b的系统。
如图5B所示,根据本公开的实施例的清洁系统可以包括执行自主移动的多个清洁器100a、100b、网络50、服务器500以及多个终端300a和300b。
多个清洁器100a、100b、网络50和至少一个终端300a可以设置在建筑物10中,而另一终端300b和服务器500可以位于建筑物10的外部。
多个清洁器100a、100b是在自身移动的同时执行清洁的清洁器,并且可以执行自主移动和自主清洁。多个清洁器100a、100b中的每一个除移动功能和清洁功能之外还可以包括通信单元1100。
多个清洁器100a、100b、服务器500以及多个终端300a和300b可以通过网络50连接在一起以交换数据。为此,尽管未示出,但是还可以设置诸如接入点(AP)装置等无线路由器。在这种情况下,位于建筑物(内部网络)10中的终端300a可以通过AP装置访问多个清洁器100a、100b中的至少一个,以对清洁器进行监测、远程控制等。而且,位于外部网络中的终端300b可以通过AP装置访问多个清洁器100a、100b中的至少一个,以对清洁器执行监测、远程控制等。
服务器500可以直接通过终端300b无线连接。可替代地,服务器500可以连接到多个清洁器100a,100b中的至少一个,而不通过移动终端300b。
服务器500可以包括可编程处理器,并且可以包括各种算法。举例来说,服务器500可以设置有与执行机器学习和/或数据挖掘有关的算法。作为示例,服务器500可以包括语音识别算法。在这种情况下,当接收语音数据时,接收到的语音数据可以通过被转换为文本格式的数据来输出。
服务器500可以存储固件信息、与多个清洁器100a、100b有关的操作信息(路线信息等),并且可以注册关于多个清洁器100a、100b的产品信息。例如,服务器500可以是由清洁器制造商操作的服务器或由开放应用商店操作员操作的服务器。
在另一个示例中,服务器500可以是家庭服务器,其设置在内部网络10中并且存储关于家用电器的状态信息或存储由家用电器共享的内容。如果服务器500是家庭服务器,则可以存储与异物有关的信息,例如,异物图像等。
同时,多个清洁器100a、100b可以经由Zigbee、Z波、蓝牙、超宽带等直接无线地彼此连接。在这种情况下,多个清洁器100a、100b可以彼此交换位置信息和移动信息。
此时,多个清洁器100a、100b中的任何一个可以是主清洁器100a,而另一个可以是从清洁器100b。例如,第一清洁器100a可以是在清洁地板上吸灰尘的干式清洁器,第二清洁器100b可以是擦拭第一清洁器100a清洁过的地板的湿式清洁器。此外,第一清洁器100a和第二清洁器100b的结构和规格可以彼此不同。
在这种情况下,第一清洁器100a可以控制第二清洁器100b的移动和清洁。另外,第二清洁器100b可以在跟随第一清洁器100a的同时执行移动和清洁。这里,第二清洁器100b跟随第一清洁器100a的操作是指第二清洁器100b在与第一清洁器100a保持适当距离的同时通过跟随第一清洁器100a进行移动和清洁的操作。
参照图5C,第一清洁器100a可以控制第二清洁器100b,使得第二清洁器100b跟随第一清洁器100a。
为此,第一清洁器100a和第二清洁器100b应存在于它们可以彼此通信的特定区域中,并且第二清洁器100b应至少识别第一清洁器100a的相对位置。
例如,第一清洁器100a的通信单元和第二清洁器100b的通信单元交换IR信号、超声信号、载波频率、脉冲信号等,并通过三角测量对其进行分析,从而计算出第一清洁器100a和第二清洁器100b的移动位移,从而识别第一清洁器100a和第二清洁器100b的相对位置。然而,本公开不限于该方法,并且上述各种无线通信技术中的一种可以用于通过三角测量等来识别第一清洁器100a和第二清洁器100b的相对位置。这将在下面更详细地描述。
当第一清洁器100a识别出与第二清洁器100b的相对位置时,可以基于存储在第一清洁器100a中的地图信息或存储在服务器、终端等中的地图信息来控制第二清洁器100b。另外,第二清洁器100b可以共享由第一清洁器100a感测到的障碍物信息。第二清洁器100b可以基于从第一清洁器100a接收到的控制命令(例如,与移动方向、移动速度、停止等有关的控制命令)来执行操作。
具体地,第二清洁器100b在沿着第一清洁器100a的移动路径移动的同时执行清洁。然而,第一清洁器100a和第二清洁器100b的移动方向并不总是彼此一致。例如,当第一清洁器100a向上/向下/向右/向左移动或旋转时,第二清洁器100b可在预定时间后向上/向下/向右/向左移动或旋转,因此第一移动机器人100a和第二移动机器人100b的当前前进方向可以彼此不同。
另外,第一清洁器100a的移动速度(Va)和第二清洁器100b的移动速度(Vb)可以彼此不同。
第一移动机器人100a可以考虑第一移动机器人100a和第二移动机器人100b可以彼此通信的距离而控制第二移动机器人100b的移动速度(Vb)变化。例如,如果第一清洁器100a和第二清洁器100b移动而彼此远离预定距离或更远,则第一清洁器100a可以控制第二清洁器100b的移动速度(Vb)比之前更快。另一方面,当第一清洁器100a和第二清洁器100b移动而彼此靠近达预定距离或更短时,第一清洁器100a可以控制第二清洁器100b的移动速度(Vb)比之前更慢或控制第二清洁器100b停止预定时间。因此,第二清洁器100b可以在连续跟随第一清洁器100a的同时执行清洁。
图6、7、8A、8B和8C是用于具体说明在根据本公开的实施例的多个移动机器人100a,100b彼此保持预定距离的同时更灵活地执行跟随的方法的视图。
首先,参照图6,将描述应用于本公开以允许第二清洁器100b跟随第一清洁器100a同时多个清洁器100a、100b避免障碍物而不会突然加速/停止的虚拟阻抗控制的概念。
在图6中,可以假设移动机器人在从第一位置602朝向第二位置601移动的同时执行清洁。此时,也可以说存在于第一位置602处的移动机器人跟随存在于第二位置601处的另一移动机器人。
当存在于第一位置602处的移动机器人跟随存在于第二位置601处的另一移动机器人时,在移动机器人的移动路径之内或附近可能存在多个障碍物(D1、D2)。在此,多个障碍物(D1、D2)中的任一个(D1)可能是固定的障碍物,而另一个障碍物(D2)可能是移动的障碍物。
移动机器人可以设置有用于感测多个障碍物(D1、D2)的障碍物传感器。例如,障碍物传感器可以沿着移动机器人的侧外周表面以规则的间隔布置。障碍物传感器可以朝向多个障碍物(D1、D2)发送诸如IR、超声波和无线电波等信号,并接收从多个障碍物(D1、D2)反射的信号,以确定障碍物的位置和距障碍物的距离。
虚拟阻抗控制是使用弹簧阻尼器(spring-damper)对移动机器人与障碍物(D1、D2)之间的相对距离和相对速度进行建模然后使用这些力的关系来执行移动和跟随同时灵活地避免障碍物的概念。
具体地,假设在移动机器人与多个障碍物(D1、D2)之间生成排斥力(F0),吸引力(Fm)作用于移动机器人与第二位置601之间或者第一位置602处的移动机器人与第二位置601处的另一移动机器人之间,并且移动机器人的实际移动方向在排斥力(F0)和吸引力(Fm)的合成矢量(Fs)的方向上确定。
例如,在图6中,在多个障碍物(D1、D2)和障碍物传感器之间存在弹簧和阻尼器的假设下,距多个障碍物(D1、D2)的相应的距离可以被放入弹簧中,并且相应的速度可以被放入阻尼器以计算多个障碍物(D1、D2)与清洁器之间的排斥力。
为此,1)使用与在第二位置601处的移动机器人前面的第一位置602处的移动机器人的间隔距离和速度差计算吸引力(Fm)。接下来,2)使用第一障碍物610与移动机器人602之间的间隔距离和速度差获得第一排斥力(Fo,s),使用第二障碍物620与移动机器人602之间的间隔距离和速度差获得第二排斥力(Fo,d),从而获得第一排斥力(Fo,s)和第二排斥力(Fo,d)的合成值(Fo)。然后,3)获得通过组合吸引力(Fm)和先前的合成值(Fo)而获得的排斥力(Fo)。最后,4)移动机器人沿Fs方向移动,该方向是以上1)中计算出的吸引力(Fm)与以上2)中计算出的排斥力合成值(Fo)的合成矢量。
另一方面,在上述虚拟阻抗控制的概念中,位于前方点601处的移动机器人(即,第一清洁器100a)实际上继续执行移动和清洁,并继续向后方点602处的另一移动机器人(即,第二清洁器100b)发送关于移动方向和移动速度的信息。另外,第一清洁器100a的移动方向和移动速度可以根据清洁区域的地板结构、灰尘状况等而变化。
当第一清洁器100a和第二清洁器100b独立地执行清洁时,另一清洁器可被视为障碍物,并且在移动的同时可仅考虑排斥力。然而,在本公开中,由于第二清洁器100b在跟随第一清洁器100a的同时执行清洁,所以吸引力(Fm)和排斥力(Fo)被交替地施加到同一对象。
具体地,虽然第二清洁器100b跟随第一清洁器100a,但是吸引力(Fm)和排斥力(Fo)可以基于确定的跟随距离而交替。
在一个示例中,吸引力(Fm)和排斥力(Fo)的交替程度可以根据清洁区域的地板状态(例如,倾斜度、平坦度、地毯的存在等)、障碍物的存在、清洁空间的灰尘状态(需要密集清洁的区域/位置)等而变化。
此外,这里的跟随距离是指在跟随期间必须在多个清洁器之间保持的间隔距离。当多个清洁器之间的间隔距离与跟随距离相差太远时,可能不再能确定彼此之间的相对位置而中断跟随。相反,当多个清洁器之间的间隔距离与跟随距离相比太小时,清洁器彼此碰撞或突然停止而干扰移动。
因此,第一清洁器100a的控制器可以在多个清洁器之间的间隔距离在跟随距离之内或远于跟随距离时施加并控制吸引力(Fm),而当多个清洁器之间的间隔距离在跟随距离之内时施加并控制排斥力(Fo)。
吸引力(Fm)的施加对应于第一清洁器100a的移动速度的减速度。此外,排斥力(Fo)的施加对应于第一清洁器100a的移动速度的加速度。
为此,多个清洁器100a,100b中的每一个可基于使用超声波传感器、BWM传感器、IR传感器等发送和接收的信号值,使用三角测量技术连续测量相对位置(例如,距离、方向等)。另外,使用在两个不同时间点交换的信号值连续地计算多个清洁器100a、100b、特别是前方的第一清洁器100a的移动方向和移动速度。
第一清洁器100a的移动速度可以通过以下等式来计算。
V1=V0+k(Dmin-Dab)
这里,V0是第一清洁器100a的基本移动速度,k是比例常数,Dmin是跟随距离,Dab是多个清洁器100a、100b之间的当前的间隔距离。因此,当多个清洁器之间的间隔距离大于跟随距离时,第一清洁器100a减速,而当多个清洁器之间的间隔距离接近跟随距离时,第一清洁器100a加速。因此,跟随第一清洁器100a的第二清洁器100b可以不突然加速或突然停止。
如上所述,根据本公开,根据间隔距离,排斥力可以施加到障碍物,并且吸引力和排斥力可以交替地施加在多个清洁器100a、100b之间,从而允许避开障碍物,以及灵活地进行跟随而没有任何中断。
在下文中,将参照图7的流程图详细描述用于多个清洁器之间的灵活跟随的控制方法。
首先,第一清洁器100a的通信单元和第二清洁器100b的通信单元彼此可通信地连接,并且开始识别彼此之间的相对位置的处理(S10)。
具体地,第一清洁器100a和第二清洁器100b通过IR传感器、超声传感器、UWB传感器等向和从彼此发送和接收信号,该IR传感器、超声传感器、UWB传感器等设置在每个清洁器的侧面外周表面上或嵌入主体中以确定彼此之间的方向和距离。由于前述传感器是用于允许多个清洁器100a、100b确定彼此之间的相对位置的组件,因此该传感器可以以与通信单元相同的概念来使用。
第一清洁器100a和第二清洁器100b分别发送和接收信号,并且识别彼此之间的相对位置。在此,除了例如超宽带(UWB)信号、红外信号、激光信号和超声信号之外,信号也可以是使用诸如Zigbee、Z-wave和蓝牙等无线通信技术的无线通信信号中的任何一种。
第一清洁器100a可以通过前述传感器发送第一信号并且从第二清洁器100b接收第二信号,从而基于第一清洁器100a识别第二清洁器100b的相对位置。此外,第二清洁器100b可以通过前述传感器发送第二信号并接收从第一清洁器100a接收的第一信号,从而基于第二清洁器100b识别第一清洁器100a的相对位置。
具体地,例如,一个UWB传感器可以设置在多个清洁器100a,100b的每一个中,或者单个UWB传感器可以设置在第一清洁器100a中,并且至少两个UWB传感器设置在第二清洁器100b中。
UWB模块(或UWB传感器)可以被包括在第一清洁器100a和第二清洁器100b的通信单元1100中。考虑到UWB模块用于感测第一清洁器100a和第二清洁器100b的相对位置的事实,UWB模块可以被包括在第一清洁器100a和第二清洁器100b的感测单元1400中。
例如,第一清洁器100a可以包括用于发送超宽带信号的UWB模块。发送UWB模块可以被称为第二类型发送传感器或“UWB标签”。
此外,第二清洁器100b可以包括接收UWB模块,其用于接收从设置在第一清洁器100a中的发送UWB模块输出的超宽带信号。接收UWB模块可以称为第二类型接收传感器或“UWB锚点”。
在UWB模块之间发送/接收的UWB信号可以在特定空间内被平滑地发送和接收。因此,即使在第一清洁器100a和第二清洁器100b之间存在障碍物,如果第一清洁器100a和第二清洁器100b存在于特定空间内,则它们也可以发送和接收UWB信号。
第一清洁器和第二清洁器可以测量在UWB标签和UWB锚点之间发送和接收的信号的时间,以确定第一清洁器100a和第二清洁器100b之间的间隔距离。
具体地,例如,多个清洁器100a、100b中的每一个可以设置有一个UWB传感器,或者第一清洁器100a可以设置有单个UWB传感器,并且跟随第一清洁器100a的第二清洁器100b可以设置有单个UWB传感器和至少一个天线,或者设置有至少两个UWB传感器,使得第一清洁器100a可以在两个不同的时间点(t1、t2)测量距第二清洁器100b的距离。
第一清洁器100a的UWB传感器和第二清洁器100b的UWB传感器向彼此辐射UWB信号,并使用到达时间(ToA)来测量距离和相对速度,该到达时间是信号被从机器人反射回来的时间。然而,本公开不限于此,并且可以使用到达时间差(TDoA)或到达角度(AoA)定位技术来识别多个清洁器100a、100b的相对位置。
具体地,将给出使用AoA定位技术确定第一清洁器100a和第二清洁器100b的相对位置的方法的描述。为了使用AoA(到达角)定位技术,第一清洁器100a和第二清洁器100b中的每一个均应设置有一个接收器天线或多个接收器天线。第一清洁器100a和第二清洁器100b可以使用分别设置在清洁器中的接收器天线接收信号的角度差来确定它们的相对位置。为此,第一清洁器100a和第二清洁器100b中的每一个必须能够感测来自接收器天线阵列的准确的信号方向。
由于分别在第一清洁器100a和第二清洁器100b中生成的信号(例如,UWB信号)仅在特定方向的天线中接收,所以可以确定(识别)信号的接收角度。在假定设置在第一清洁器100a和第二清洁器100b中的接收器天线的位置已知的情况下,第一清洁器100a和第二清洁器100b的相对位置可以基于接收器天线的信号接收方向来计算。
此时,如果安装了一个接收器天线,则可以在预定范围的空间中计算2D位置。另一方面,如果安装了至少两个接收器天线,则可以确定3D位置。在后一种情况下,接收器天线之间的距离d用于位置计算,以便准确地确定信号接收方向。
此外,本公开可以被实现为仅通过第一清洁器100a确定第二清洁器100b的相对位置,或者仅通过第二清洁器100b计算并确定第一清洁器100a的相对位置。在该实现示例中,第一清洁器100a可以将与相对位置有关的信息发送到第二清洁器100b,或者第二清洁器100b可以将与相对位置有关的信息发送到第一清洁器100a。
如上所述,根据本公开,由于多个清洁器100a、100b可以确定彼此的相对位置,因此跟随控制可以通过确定彼此的相对位置而在没有任何中断的情况下执行,而与服务器的通信状态无关。
另外,第一清洁器100a和第二清洁器100b可以通过相应的通信单元彼此共享移动状态信息和地图信息。移动状态信息、地图信息、障碍物信息等通常可以根据多个清洁器100a,100b之间的跟随关系从第一清洁器100a发送到第二清洁器100b,但是第二清洁器100b感测到的信息(例如,新的障碍物信息)也可以被发送到第一清洁器100a。
接下来,第二清洁器100b在遵循第一清洁器100a的移动路径的同时执行清洁(S20)。
具体地,第一清洁器100a最初清洁指定的清洁区域,并且第二清洁器100b在遵循第一清洁器100a已经通过的移动路径的同时执行清洁。此时,第二清洁器100b还可以在跟随第一清洁器100a的移动速度和相关路径上的清洁模式的同时执行清洁。
同时,在一个示例中,第二清洁器100b的实际移动路径可能与第一清洁器100a的移动路径不一致。
例如,当在第一清洁器100a已通过时未检测到的障碍物在第二清洁器100b通过时被新感测到时,第二清洁器100b的移动路径可能与第一清洁器的移动路径略有不同。此时,可以在避开新的障碍物时从最接近的位置跟随第一清洁器100a。
在第二清洁器100b跟随第一清洁器100a的同时,第一清洁器100a连续地监测与第二清洁器100b的间隔距离(S30)。
第一清洁器100a的控制器基于通过分别设置在其中的诸如UWB传感器、IR传感器、超声波传感器等的传感器获取的信号值,连续地监测第一清洁器100a和第二清洁器100b之间的相对位置,并确定与相对位置相对应的间隔距离是在远离移动还是越来越近。
根据监测,第一清洁器100a的控制器可以确定距第二清洁器100b的间隔距离是否偏离临界跟随距离(S40)。此时,第一清洁器100a的控制器可以确定第一清洁器100a的当前移动速度。
在此,临界跟随距离表示圆范围内的四向距离,该圆范围比其中多个清洁器能够确定彼此之间的相对位置的范围小预定值。
临界跟随距离可以包括多个清洁器100a、100b可以彼此最大程度地靠近的“最小跟随距离”和多个清洁器100a,100b可以彼此最大程度地远离的“最大跟随距离”。因此,是否偏离临界跟随距离可以表示多个清洁器100a、100b之间的间隔距离小于最小跟随距离或大于最大跟随距离。
当间隔距离接近最小跟随距离时,排斥力施加在第一清洁器100a和第二清洁器100b之间,以控制第一清洁器100a和第二清洁器100b彼此远离移动。此外,间隔距离接近最大跟随距离,吸引力施加在第一清洁器100a和第二清洁器100b之间,以控制第一清洁器100a和第二清洁器100b彼此更靠近地移动。
作为确定的结果,当距离没有偏离临界跟随距离时,处理返回到步骤S20。因此,第二清洁器100b在跟随第一清洁器100a的同时继续清洁。
作为确定的结果,当该距离偏离或预期偏离临界跟随距离时,第一清洁器100a的控制器改变第一清洁器100a的行进单元的移动速度或将停止命令发送到第二清洁器100b(S50)。
图8A至图8C示出了各种示例,其中,第一清洁器100a基于临界跟随距离来控制其自身或第二清洁器100b的移动速度。
首先,图8A的(a)示出了以下情况:第一清洁器100a与第二清洁器100b之间的间隔距离(D1)不偏离临界跟随距离(例如,最小临界跟随距离),而是基于第二清洁器100a和第二清洁器100b的当前移动速度(V1,V0),被确定为小于临界跟随距离。
此时,如图8A的(b)所示,第一清洁器100a将通过从临界跟随距离减去期望的间隔距离而得到的值(正值)与当前移动速度(V1)相加而改变第一车辆100a的移动速度。因此,第一清洁器100a以加速的移动速度(V2)移动,因此距第二清洁器100b的间隔距离(D2)增大。
接下来,图8B的(a)示出了以下情况:第一清洁器100a和第二清洁器100b之间的间隔距离(D3)不偏离临界跟随距离(例如,最大临界跟随距离),但是基于第二清洁器100a和第二清洁器100b的当前移动速度(V1,V0)被确定为大于临界跟随距离。
此时,如图8B的(b)所示,第一清洁器100a将通过从临界跟随距离减去期望的间隔距离而得到的值(负值)与当前移动速度(V1)相加来改变第一车辆100a的移动速度。因此,第一清洁器100a以减速的移动速度(V3)移动,因此距第二清洁器100b的间隔距离(D4)减小。
这里,减速的移动速度(V3)可以包括“0”。例如,当第二清洁器100b的移动速度进一步减小时,或者当第一清洁器100a与第二清洁器100b之间的间隔距离(D3)稍微偏离临界跟随距离时,可以控制第一清洁器100a停止。
接下来,图8C的(a)示出了与图8A相同的情况,其中,第一清洁器100a与第二清洁器100b之间的间隔距离(D5)被确定为小于临界跟随距离(例如,最大临界跟随距离),但是第一清洁器100a不能根据周围情况以加速的速度移动。
此时,如图8C的(b)所示,第一清洁器100a可以在保持其自身的移动速度的同时向第二清洁器100b发送停止命令。在预定的时间段过去之后,当第一清洁器100a与第二清洁器100b之间的间隔距离(D6)增大时,驱动命令可以被发送至第二清洁器100b,从而第二清洁器100b被控制为继续进行跟随
另一方面,当第二清洁器100b的移动路径根据周围情况从第一清洁器100a的移动路径改变时,在改变后的移动路径进一步远离距第一清洁器100a的间隔距离的情况下,第一清洁器100a可以接收这样的状态信息以减慢第一清洁器100a的移动速度或停止第一清洁器100a的移动达预定的时间段,以便不中断跟随。
在本公开中,第一清洁器100a在移动以清洁指定的清洁空间时根据清洁空间的形状、清洁移动模式、障碍物的感测、地板的地理特征多次改变移动方向。因此,第一清洁器100a可能留下复杂的轨迹或可形成复杂的移动路径。
在这种情况下,当第二清洁器100b原样跟随第一清洁器100a的移动路径时,由于不能进入或整个清洁时间的延迟,可能导致错误操作。
特别是当第一清洁器100a和第二清洁器100b的类型和规格不同时,这可能发生。
例如,当其是狭窄的或低的区域允许第一清洁器100a通过但不允许第二清洁器100b通过时,或者当其处于特定的地板状态时(例如,铺设地毯等),第二清洁器100b不能原样跟随第一清洁器100a的轨迹。
可替代地,例如,当第一清洁器100a由于进入区域的复杂性而花费较长时间通过时,第二清洁器100b可能需要相似的时间段而延迟整个清洁时间,从而降低清洁效率。
因此,实现了一种方法,该方法在第二清洁器100b跟随第一清洁器100a执行清洁的同时允许作为领先的清洁器的第一清洁器100a的移动轨迹感测“满足指定条件”,从而通过省略第一清洁器100a的移动轨迹的一部分来控制第二清洁器100b移动,或控制第二清洁器100b暂时移动到另一移动路径。
在此,“满足指定条件”表示第二清洁器100b被确定为在当前位置处不遵循第一清洁器100a的下一轨迹的状态。因此,可能包括第二清洁器100b实际上不能遵循下一轨迹的情况,以及尽管第二清洁器100b实际上能够跟随第一清洁器100a,但是考虑到时间延迟而确定第二清洁器100b不进行跟随的情况。此外,可以包括如下情况:无论第一清洁器100a的移动轨迹如何,第二清洁器100b都不能跟随第一清洁器100a,例如,第一清洁器100a是干式(或吸式)清洁器,第二清洁器100b是湿式(或擦拭)清洁器并且第一清洁器100a是正在地毯上进行清洁的情况。
另外,“满足指定条件”可以由以下中的至少一个来确定:关于第一清洁器100a的传感器(和/或第二清洁器100b的传感器)感测到的障碍物的信息、第二清洁器100b的标识信息、与第二清洁器100b的运行状态有关的信息以及在第二清洁器100b的相对位置处的地板状态信息。
在此,关于障碍物的信息可以包括关于障碍物的尺寸、障碍物的数量以及多个障碍物之间的间隔距离的信息。此外,障碍物可以包括固定的障碍物以及移动的障碍物,固定的障碍物(例如,墙壁、家具、固定装置等)从清洁区域的地板突出而阻碍清洁器移动。
另外,第二清洁器100b的标识信息可以包括第二清洁器100b的类型、产品的尺寸、产品的高度、产品信息等,并且该标识信息可以相对于第一清洁器100a的标识信息进行比较。此外,第二清洁器100b的标识信息可以在第二清洁器100b针对第一清洁器100a的跟随注册时从第二清洁器100b接收。
此外,与第二清洁器100b的运行状态有关的信息表示诸如第二清洁器100b的移动模式、移动方向、移动速度和移动停止等移动相关信息。这可以通过分析通过设置在第一清洁器100a中的传感器和设置在第二清洁器100b中的传感器发送和接收的信号来获取。
此外,第二清洁器100b的相对位置处的地板状态信息可以使用上述相对位置识别方法以及在第一清洁器100a经过该相对位置的同时通过第一清洁器100a的3D传感器/摄像头传感器获取的信息来获得。例如,当第一清洁器100a是干式(或吸式)清洁器并且进入地毯上以执行清洁时,如果跟随的第二清洁器100b是湿式(或擦拭)清洁器,则可以基于地板状态信息确定第二清洁器100b满足指定条件。
以下,将参照图9和图10详细描述当跟随第一清洁器的第二清洁器满足指定条件时允许第二清洁器大致遵循第一清洁器的轨迹的控制操作。
参照图9,开始允许第一清洁器100a和第二清洁器100b基于信号(例如,UWB信号)彼此通信以便获得彼此之间的相对位置的过程(S10)。
更具体地,第一清洁器100a和第二清洁器100b之间的直接通信无需服务器通信而通过使用设置在第一清洁器100a中的传感器和设置在第二清洁器100b中的传感器向/从彼此发送和接收信号(例如,UWB信号)进行。
第一清洁器100a可以基于通过设置在第一清洁器100a中的传感器(例如,UWB传感器)发送和接收的第一信号以及通过设置在第二清洁器100b中的传感器(例如,UWB传感器)发送和接收的第二信号来识别第二清洁器100b的相对位置。由于上面已经描述了传感器的类型和用于获得彼此之间的相对位置的信号,因此这里将省略其详细描述。
然后,第一清洁器100a将根据主体的移动的移动路径的轨迹信息存储在存储器中(S20)。
在此,轨迹表示其中第一清洁器100a在移动以进行清洁的同时依次经过的点的空间中的曲线。此外,轨迹信息不仅可以包括关于形成轨迹的曲线的信息,而且可以包括关于形成曲线的点的数量、顺序和间隔的信息。
因此,移动路径的轨迹信息可以既包括关于形成第一清洁器100a的移动路径的顺序点的信息又包括关于曲线的信息,例如包括第一清洁器100a的移动路径的诸如移动顺序、移动方向、移动速度、原地旋转等所有信息。
在另一示例中,第二清洁器100b可以基于第一清洁器100a的相对位置,存储根据第一清洁器100a的移动的移动路径的轨迹信息。
接下来,基于第二清洁器100b的相对位置,第二清洁器100b在遵循与第一清洁器100a的存储的轨迹信息相对应的移动路径的同时移动(S30)。
为此,第一清洁器100a可以控制第二清洁器100b,使得第二清洁器100b在遵循第一清洁器100a的轨迹信息的同时执行清洁。
例如,第一清洁器100a可以基于向第二清洁器100b发送和从第二清洁器100b接收的信号的飞行时间(TOF)来计算距第二清洁器100b的间隔距离。此时,随着TOF减小,第一清洁器100a确定距第二清洁器100b的间隔距离较小,而随着TOF增大,第一清洁器100a确定距第二清洁器100b的间隔距离较大。另外,第一清洁器100a可以被视为圆的中心,间隔距离的变化可以使用在两个不同时间点处在圆上存在的第二清洁器100b的距离来确定。
可替代地,在另一示例中,第一清洁器100a和第二清洁器100b可以使用在其中分别设置的接收器天线处接收的信号接收角的差来确定彼此之间的相对位置,以获得间隔距离的变化。
在一个示例中,第一清洁器100a的移动信息以及计算的间隔距离可以一起被发送到第二清洁器100b。此外,第二清洁器100b可以将其自身的状态信息发送到第一清洁器100a。
在此,移动信息可以包括关于障碍物信息、地图信息、移动模式、移动路径、地板状态信息和移动速度的所有信息。因此,第二清洁器100b可以基于从第一清洁器100a发送的状态信息来执行沿着第一清洁器100a的移动路径的移动。
另一方面,在第二清洁器100b跟随第一清洁器100a的同时,为了不偏离跟随,根据虚拟阻抗控制的概念的吸引力(Fm)和排斥力(Fo)可以基于确定的跟随距离而交替地施加。
具体地,第一清洁器100a可以将计算的间隔距离与指定的跟随距离进行比较,并且基于比较结果根据虚拟阻抗控制的概念来交替地施加吸引力和排斥力,从而可变地控制清洁器100a和第二清洁器100b的移动速度。因此,第二清洁器100b自然可以无缝地遵循第一清洁器100a的移动路径而没有任何中断。
例如,当计算出的间隔距离大于跟随距离时,第一清洁器100a的控制器可以施加吸引力以使第一清洁器100a的移动速度减速、或者以使第二清洁器100b的移动速度加速,或执行这两种操作,从而减小间隔距离。此外,当计算出的间隔距离与跟随距离相比太小时,第一清洁器100a的控制器可以施加排斥力以加速第一清洁器100a的移动速度或者减速第二清洁器100b的移动速度或执行这两种操作,从而增加间隔距离。
此外,在本公开中,接收传感器可以放置在第一清洁器100a的后侧和前侧上,以允许第一清洁器100a的控制器识别从第二清洁器100a接收的信号(例如,UWB信号)的接收方向。为此,UWB传感器可以设置在第一清洁器100a的后侧处,并且UWB传感器或多个光学传感器可以从第一清洁器100a的前侧间隔开。另外,第二清洁器100b可以设置有一个或多个UWB传感器和多个接收天线。
第一清洁器100a可以识别从第二清洁器100b接收到的信号的接收方向,以确定第二清洁器100b是否位于第一清洁器100a的后侧。因此,第一清洁器100a可以确定第一清洁器100a和第二清洁器100b的顺序是否相反。
另一方面,第二清洁器100b可以在遵循存储在其自己的存储器中的第一清洁器100a的轨迹信息的同时移动。接下来,在步骤S40中,感测轨迹信息中的与第二清洁器100b的相对位置和第一清洁器100a的存储的移动相对应的下一轨迹信息的移动路径满足指定条件(S40)。
“满足指定条件”可以由以下中的至少一个来确定:关于第一清洁器100a(和/或第二清洁器100b)的传感器感测到的障碍物的信息、第二清洁器100b的标识信息、与第二清洁器100b的运行状态有关的信息以及在第二清洁器100b的相对位置处的地板状态信息。
例如,当在接下来要遵循的轨迹附近存在多个障碍物时,如果接下来要遵循的轨迹在地毯上并且第二清洁器100b是湿式(或擦拭)清洁器,则可以感测到第二清洁器100b满足指定条件。
当检测到满足这种指定条件的状态时,第一清洁器100a或第二清洁器100b去除存储在存储器中的第一清洁器100a的轨迹信息的部分,并且第二清洁器100b被控制为遵循与剩余的轨迹信息对应的移动路径(S50)。
例如,假设在以第一点、第二点、第三点和第四点的顺序形成移动路径的轨迹中的点存储在存储器中时,在第一点处检测到满足指定条件的状态。
在这种情况下,作为跟随清洁器的第二清洁器100b可以被控制以去除包括第一点在内的第二点至第四点的一部分(例如,第二点),并遵循通过连接剩余的点、例如第三点和第四点而形成的移动路径。为此,第二清洁器100b可以从当前位置直接移动到第三点。
在一个实施例中,存储的轨迹信息中第二清洁器遵循的轨迹信息从存储器中被删除。例如,当第二清洁器已经通过所有的第一至第三点或第二清洁器已经直接从第一点移动至第三点时,第一点、第二点和第三点的轨迹信息从存储器中被删除。因此,存储器不足的问题不会发生。
由于第一清洁器的轨迹信息是根据先存储先删除规则来控制的,因此先进先出(FIFO)方案中的队列缓冲器也可以用作存储器。
此外,在一个实施例中,当感测到第二清洁器对于存储的轨迹信息中的第一轨迹信息满足指定条件时,第一清洁器可以发送控制命令,该控制命令用于将第二清洁器移动到与存储在第一轨迹信息之后的第二轨迹信息相对应的位置。此时,至少一个中间轨迹信息可以被包括在第一轨迹信息和第二轨迹信息之间。
因此,这里可以说,第二清洁器通过从第一清洁器的移动路径省略第一轨迹信息和中间轨迹信息而大致跟随第一清洁器。此外,也可以说第二清洁器从与第二轨迹信息相对应的点开始遵循第一清洁器的移动路径。
另外,当第二清洁器移动到与第二轨迹信息相对应的点时,第一清洁器或第二清洁器从存储器中删除第二清洁器未在其上移动的第一轨迹信息和中间轨迹信息。然后,当第二清洁器通过第二轨迹信息时,从存储器中删除第二轨迹信息。同时,与第一清洁器的移动相对应的新的轨迹信息被存储在存储器中。
同时,在本公开中,第二清洁器可以在指定的扇区单元中跟随第一清洁器的移动路径。
在此,扇区单元表示以要遵循的移动路径的预定长度或预定尺寸划分的虚拟区域,从而第二清洁器可以有效地遵循该移动路径。第一清洁器的整个移动路径可以被划分为多个扇区。此外,可以说在一个扇区中包括与多个轨迹信息相对应的部分移动路径。
例如,当第二清洁器遵循与第一清洁器的第一扇区内的多个轨迹信息相对应的移动路径时,可以控制第二清洁器进入作为下一扇区的第二扇区,并遵循对应于第二扇区内的多个轨迹信息的移动路径。此时,当确定第二扇区内的任意轨迹信息(包括初始轨迹信息)处于跟随禁用状态时,第二清洁器可以移动到第三扇区的初始轨迹信息的位置,该第三扇区是第二扇区的下一扇区。
对于另一个示例,第二清洁器可以正常地原样跟随第一清洁器的移动路径,然后当感测到关于任意轨迹信息满足前述指定条件时,执行“扇区移动模式”以在前述扇区单元中执行第一清洁器。
当在预定时间段内未满足指定条件时或在进入扇区移动模式后经过预定扇区的同时,可以控制第二清洁器终止“扇区移动模式”并再次原样跟随第一清洁器的移动路径。
对于另一示例,第二清洁器100b可以基于从第一清洁器100a接收到的障碍物信息或通过第二清洁器100b的感测单元1400的障碍物传感器感测到的障碍物信息而进入扇区移动模式。
在此,障碍物信息可以包括关于障碍物的位置、尺寸、宽度、高度、进入可能性以及在多个障碍物的情况下关于数量和间隔距离的信息。此外,障碍物可以包括固定的障碍物以及移动的障碍物,固定的障碍物(例如,墙壁、家具、固定装置等)从清洁区域的地板突出而阻碍清洁器移动。当基于从第一清洁器100a接收的障碍物信息确定在与第一清洁器100a的轨迹信息相对应的移动方向上存在预定数量或更多的障碍物时,第二清洁器100b可以进入扇区移动模式。
例如,当在与第一清洁器100a的轨迹信息相对应的移动方向上存在三个或更多个障碍物时,可以设置为进入扇区移动模式。另一方面,例如,诸如障碍物的尺寸和高度以及多个障碍物的数量和间隔距离等另一条件可以是扇区移动模式的进入条件。
在一个示例中,这种进入条件可以通过用户输入来改变。
另外,在一个示例中,当在执行扇区移动模式之后经过了预定时间段的同时未感测到障碍物时,可以取消扇区移动模式,以便根据典型的跟随关系遵循领先的清洁器的轨迹。
可替代地,在一个示例中,当没有从第一清洁器100a接收到障碍物信息时,或者当第一清洁器100a可容易地避开但是第二清洁器100b不可避开时,即使基于设置在第二清洁器100b中的传感器感测到的障碍物信息确定满足指定条件时,也可以进入扇区移动模式。
例如,由于本公开允许甚至在不同类型的清洁器之间应用跟随关系,那么即使在相同障碍物的情况下,也可能存在第一清洁器100a能够进入而第二清洁器100b不能进入或穿过障碍物的情况。
由于即使在扇区移动模式下也保持第一清洁器100a和第二清洁器100b之间的跟随关系,因此第二清洁器可以被控制为通过仅省略使移动路径复杂化的部分轨迹而不是大幅偏离第一清洁器的轨迹来进行移动。
为此,当进入扇区移动模式时,第一清洁器100a可以基于第二清洁器100b的当前位置来设置包括第一清洁器100a的多个轨迹信息的扇区。此时,可以设置扇区的尺寸,以使得一侧的长度不超过第一清洁器100a和第二清洁器100b之间的跟随距离。
另外,在一个示例中,扇区的尺寸可以根据与第一清洁器100a的轨迹信息相对应的移动速度来不同地确定。例如,当与第一清洁器100a的轨迹信息相对应的点之间的距离小时,即,在第一清洁器100a的移动速度低的部分中,扇区的尺寸可以被设置为小于参考尺寸。
另外,当与第一清洁器100a的轨迹信息相对应的点之间的距离较大时,即,在第一清洁器100a的移动速度高的部分中,扇区的尺寸可以被设置为大于参考尺寸。
另外,扇区可以根据第二清洁器100b的移动而被一起移动或设置到新的位置。
当基于第二清洁器100b的标识信息和上述障碍物信息确定第一清洁器100a满足指定条件时,可以省略要遵循的轨迹信息的部分。
具体地,当确定与设置的扇区中的轨迹信息相对应的移动路径正在朝向存在多个障碍物的方向前进时,第一清洁器100a可以省略相关扇区中的部分或全部轨迹信息。
然后,第二清洁器100b可以被控制为通过另一移动路径移出相关扇区,并跟随第一清洁器的下一扇区中的轨迹信息。
然而,即使在此时,也保持第二清洁器100b与第一清洁器100a之间的跟随关系,因此优选的是,控制第二清洁器100b的目标移动方向不明显偏离第一清洁器100a的最近的移动轨迹。
另一方面,即使在设置的扇区中存在多个障碍物,当确定相关扇区中的轨迹信息正朝向与存在多个障碍物的方向不同的方向前进时,针对第二清洁器100b控制第二清洁器100b的移动以顺序地遵循扇区内每个移动时刻的点。
另外,根据本公开,第二清洁器可基于第一清洁器的障碍物信息和轨迹信息以及第二清洁器自身的状态信息来检测跟随禁用状态,并因此确定是原样跟随扇区中的多个轨迹信息还是省略多个轨迹信息的一部分或全部,以便其自身的移动。
在下文中,图10示出了上述扇区移动模式的具体示例。
在图10中,当作为领先的清洁器的第一清洁器100a在存在多个障碍物(B1、B2、B3、B4)的清洁区域中移动时,作为跟随者清洁器的第二清洁器100b可以从第一清洁器100a接收这样的障碍物信息。
此外,第一清洁器100a(或第二清洁器100b)可以基于第二清洁器100b的相对位置和标识信息以及障碍物信息感测到满足指定条件,以允许第二清洁器100b在扇区移动模式中进行移动。因此,以设定的扇区10、101、102、10n为单位控制第二清洁器100b的跟随。
在第一扇区10中,第一清洁器100a的轨迹朝向存在三个障碍物(B1、B2、B3)的位置前进,并且与随后的轨迹相对应的点在多个障碍物(B2、B3)之间穿过。
在一个示例中,第二清洁器100b可以基于从第一清洁器100a接收的障碍物信息和移动信息(即,通过在多个障碍物(B2、B3)之间穿过而移动)来确定第二清洁器本身是否能够进入。
这可以根据第二清洁器100b的类型、运行状态、规格等而变化。此外,在示例中,第二清洁器100b本身可以考虑通过第二清洁器100b中设置的传感器感测到的信息、第二清洁器100b的类型、运行状态和规格、以及障碍物之间的间隔距离来直接计算是否允许实际进入。
然而,为了防止由于附加操作而引起的时间延迟,当在扇区内感测到预定数量或更多的障碍物,并且领先的清洁器的轨迹在执行上述扇区移动模式的同时正朝向障碍物前进时,无论是否允许实际进入,都将其确定为“满足指定条件”。
在图10中,当确定为“满足指定条件”时,第二清洁器100b不遵循扇区10内的移动轨迹,换句话说,去除扇区单元10内的多个轨迹信息以移出该扇区10。
此时,第二清洁器100b的移动在遵循第一清洁器100a在下一扇区(即第二扇区101)中的轨迹的同时继续。换句话说,第二清洁器100b在离开扇区10以遵循第一清洁器100a的下一轨迹信息的同时执行清洁。
此时,第二清洁器100b的包括第一清洁器100a的下一轨迹信息的设置可以在除了在先前扇区(即,第一扇区10)中确定为满足指定条件时的移动方向之外的剩余的方向中基于第二清洁器100b的当前移动方向和第一清洁器100a的下一轨迹信息的位置来确定。
扇区10、101、...、10n可以被设置为使得先前扇区的部分和下一扇区的部分彼此重叠,使得在跟随中不存在中断。
在一个示例中,第二清洁器100b可以确定从第二清洁器100b的当前位置到在第一扇区10之后检测到的第一清洁器100a的初始轨迹信息的位置通过最短距离连接的路径作为第二清洁器100b的下一移动路径。这也可以称为进入第二扇区101的移动路径。
当确定以这种方式在执行直到第n个扇区10n的扇区移动模式之后结束了复杂区域、复杂扇区等时,第二清洁器100b可以结束扇区移动模式,然后在再次跟随第一清洁器100a的每个移动时刻的点的同时执行清洁。
如上所述,根据本公开的实施例,第二清洁器可以被控制为在顺序地遵循第一清洁器的移动轨迹的同时正常地执行清洁,并且在存在复杂区域或复杂扇区的情况下在预定尺寸的扇区单元中粗略地跟随第一清洁器的同时执行清洁,从而解决了在复杂的情况下引起的时间延迟问题,同时保持了根据跟随的清洁效率。
另外,在一个实施例中,即使跟随的移动机器人不原样遵循领先的移动机器人的移动路径,但是当足以执行其功能时,例如,当第一移动机器人是机器人清洁器,并且第二移动机器人是移动空调时,第二移动机器人可以在从一开始就大致遵循第一移动机器人在扇区单元中的轨迹的同时移动,而无需确定第二移动机器人要遵循的下一轨迹是否满足上述指定条件。在下文中,将参考图11A、11B和11C详细描述在省略了第一清洁器在扇区内的轨迹信息的一部分或全部的情况下确定第二清洁器的移动路径的方法。
当感测到多个障碍物靠近在第二清洁器的当前位置处要遵循的下一轨迹信息的位置时,第一清洁器的控制器可以控制第二清洁器的移动以跟随第一清洁器在另一移动路径上而不是包括下一轨迹信息的移动路径上的位置。
为此,第一清洁器的控制器控制处于“扇区移动模式”的第二清洁器的移动,使得第二清洁器在指定的扇区单元中遵循与第一清洁器或第二清洁器中存储的轨迹信息相对应的移动路径。此时,与多个轨迹信息相对应的移动路径可以被包括在该扇区中。
例如,图11A示出了以下情况:在扇区移动模式下,写入扇区10中的第一清洁器100a的轨迹被确定为朝向多个障碍物(B1、B2、B3)前进并被完全去除从而不遵循它。换句话说,扇区10内的所有轨迹已被去除。
在这种情况下,如图11B所示,下一扇区10next基于第二清洁器100b在扇区10中的移动方向和第一清洁器100a的下一轨迹信息的位置来设置。此时,为了不错过跟随,先前扇区10和下一扇区10next的至少一部分可以彼此重叠。
接下来,第二清洁器100b必须离开当前扇区10以进入下一扇区10next。例如,在图11B中,用于离开扇区10的第二清洁器100b的移动路径可以是其中以第一清洁器100a的位置(即,下一扇区10next中包括的特定轨迹信息)为目标点的最短路径。
这里,特定轨迹信息可以是在下一扇区10next中显示(或检测到)的第一清洁器100a的第一轨迹、最后的轨迹或任何其他轨迹。
如图11B所示,当仅检测到一个点1101时,第二清洁器100b可以在遵循其作为目标点的同时移动。此时,从第二清洁器100b的移动路径中排除第一清洁器100a的在目标点之前但不包括在下一扇区10next中的轨迹。因此,从第一清洁器100a的存储器中删除对应的轨迹信息。
另一方面,当在下一扇区10next中存在与显示(或检测到)的轨迹相对应的多个点时,第二清洁器100b的跟随路径根据选择哪个点作为目标点而变化。
在一个示例中,通过最短距离连接扇区内的初始轨迹和最后轨迹的路径可以被确定为第二清洁器的移动路径以进行跟随。在这种情况下,由于第二清洁器通过省略初始轨迹和最后轨迹之间的所有轨迹而移动,因此可以说第二清洁器大致跟随第一清洁器。据此,由于跟随而引起的时间延迟被最小化。
可以说,第二清洁器已经在不同于与该扇区内的第一清洁器的轨迹信息相对应的移动路径的移动路径上移动。此时,由于另一移动路径的长度短于与第一清洁器的轨迹信息相对应的移动路径的长度,因此减少了由于跟随而引起的时间延迟。
例如,图11C的(a)示出了以下情况:第二清洁器100b进入下一扇区,然后在当前自身位置处选择下一扇区内的最后的点1102作为目标点以进行跟随移动。然后,如图11C的(b)所示,除去最后的点1102的剩余轨迹1103被去除,第二清洁器100b从当前位置直线移动到最后的点1102。因此,第二清洁器100b在短于第一清洁器100a的实际移动路径的移动路径上跟随第一清洁器。
另一方面,在一个示例中,目标点的选择可以根据与扇区内的轨迹相对应的第一清洁器的移动信息来改变。
例如,当没有障碍物但是与该扇区内的轨迹信息相对应的点的数量大于参考值或间隔窄时,第二清洁器100b可以选择目标点作为初始点或与其接近的点,从而允许第二清洁器100b以与第一清洁器100a的实际轨迹相同或相似的方式移动。
这是因为在即使没有障碍物第一清洁器100a也缓慢移动时,也可以认为由于相关区域内的灰尘或污染物,清洁器100a已经进行了彻底清洁,从而允许第二清洁器100b以与第一清洁器100a的实际轨迹相同或相似的方式移动。
相反,当与该扇区内的移动轨迹相对应的点的数量少或间隔非常宽时,则认为第二清洁器100b能够大致跟随第一清洁器100a,而最后的点或与其接近的点被选为目标点。
如上所述,即使在扇区内,第二清洁器的移动目标点也可以根据第一清洁器的移动信息(例如,移动速度)来不同地选择,从而以平衡的方式满足诸如跟随控制的效率和最小化时间延迟等相反的需求。
在下文中,将参考图12A、12B、12C和12D详细描述在要跟随的下一扇区内未检测到第一清洁器的轨迹信息的情况下的操作过程。
第一清洁器的控制器可以控制第二清洁器在包括多个轨迹信息的扇区单元中的移动,并且当感测到第二清洁器的跟随禁用状态时,当前扇区内的所有轨迹信息可以被去除以基于第二清洁器的相对位置和移动方向确定下一扇区。
另外,第一清洁器可以控制另一清洁器在包括第二清洁器的多个轨迹信息的扇区单元中的移动,使得第二清洁器遵循在确定的下一扇区内的轨迹信息之一。
此外,当第二清洁器远离第一清洁器移动以遵循下一扇区内的轨迹信息之一时,例如,移出预定的临界跟随距离之外时,第一清洁器的控制器可以改变第一清洁器的移动速度或停止第一清洁器的移动。
此外,当在第二清洁器100b执行扇区移动模式的同时在扇区内确定第二清洁器100b的移动路径时,要遵循的下一扇区基于第二清洁器100b的移动方向和第一清洁器100a的下一移动轨迹来确定。
此时,如图12A所示,可能存在以下情况[1]:第一清洁器100a的移动轨迹没有进入下一扇区(2),而是第一清洁器100a移出了下一扇区(2)。在这种情况下,第二清洁器100b的跟随可能被中断。
例如,当在下一扇区内未检测到第一清洁器100a的轨迹时,扇区单元的尺寸和位置中的至少一个可以可变地应用。
例如,如图12B所示,增加扇区(10')的尺寸,直到包括第一清洁器100a的下一轨迹或直到第一清洁器100a的当前位置(未示出)为止。然后,第一清洁器100a在从第二清洁器100b的当前位置到第一清洁器100a的位置或第一清洁器100a的下一轨迹的最后的点的路径上进行跟随。
另一方面,当第二清洁器100b的变化的移动路径内存在障碍物时,第二清洁器100b可以将其发送到第一清洁器100a,因此第二清洁器100b可以被控制为移动重新修改的移动路径。
对于另一示例,当在下一扇区内未检测到第一清洁器100a的轨迹时,可以基于未检测到第一清洁器100a的移动轨迹的下一扇区进一步增加扇区的数量,从而检测到第一清洁器100a的下一轨迹。与如上所述的改变扇区的尺寸的不同点在于第二清洁器100b的移动路径的选择过程。
具体地,参考图12C,当在下一扇区10b内未检测到第一清洁器100a的轨迹时,在与先前扇区10相反的方向(即,左上方向)上相对于下一扇区10b设置多个附加的扇区10c、10d、10a。如果仍然未检测到第一清洁器100a的轨迹,则可以顺序地设置附加的扇区10c、10d、10a。
第二清洁器100b仅针对每个附加的扇区10c、10d、10a确定是否已经检测到第一清洁器100a的轨迹。
在图12C中,当在两个附加的扇区10c、10d中检测到第一清洁器100a的移动轨迹时,基于从第一清洁器100a接收的移动信息识别出首先访问了附加的扇区10c,然后访问了附加的扇区10d。
第二清洁器100b通过当前扇区单元10中的最短距离进入第一附加扇区10c,然后通过最短距离进入第二附加扇区10d。换句话说,第二清洁器100b可以以独立于与第一清洁器100a的移动轨迹相对应的点而设置的附加扇区为单位移动。
对于另一示例,当在下一扇区内未检测到第一清洁器100a的轨迹时,如果第二清洁器100b停止驱动并且第一清洁器100a进入下一扇区,则可以恢复跟随。
例如,如图12D的(a)所示,在当前扇区10中,即使第二清洁器100b处于跟随禁用状态之后,并且下一扇区单元10next的尺寸也变化,如果在扇区10next中未检测到第一清洁器100a的轨迹,则第二清洁器100b暂时处于静止状态在当前扇区10中待机。
接下来,如图12的(b)所示,当感测到第一清洁器100a进入下一扇区10next(1)时,已经处于静止状态的第二清洁器100b朝向第一清洁器100a的位置移动。这类似于跟随操作被暂时释放并重新连接的状态。
另一方面,在此,可以基于下一扇区10next的范围和第一清洁器100a的相对位置来获取第一清洁器100a是否已经进入。
如上所述,当在扇区10next中未检测到第一清洁器100a的轨迹时,可以在等待找到第一清洁器100a之后进行跟随,而无需强行移动第二清洁器100b,从而防止浪费操作和断开跟随。
在下文中,将参考图13A、13B、13C和13D描述允许第二清洁器进入但由于第一清洁器的移动很复杂因此通过去除第一清洁器在扇区内的部分轨迹而执行跟随的示例。
在这些示例中,当确定进入的区域是第二清洁器的非进入区域时,第一清洁器的控制器可以发送与第二清洁器的移动停止命令相对应的信号。然后,当感测到第一清洁器离开相关的区域内时,第二清洁器的移动可以被控制为遵循与在离开相关区域之后存储的主体的轨迹信息相对应的移动路径。
例如,参照图13A,当作为领先的清洁器的第一清洁器100a在跟随障碍物(例如,墙壁50)的同时执行清洁时,可能存在根据墙壁50的形状频繁改变移动方向多次的情况。
在这种情况下,第一清洁器100a的控制器必须多次改变轮单元111的驱动以改变移动方向,但是每次改变移动方向时,第一清洁器100a的移动速度也改变。例如,由于需要在图13A所示的每个“x”点执行原地旋转和移动方向变化,所以清洁器以减速的移动速度(V2)移动,这导致清洁时间的延迟。
因此,在本公开中,跟随第一清洁器100a的第二清洁器100b可以基于从第一清洁器100a接收的移动信息来识别第一清洁器100a的移动方向变化。在这种情况下,在第一清洁器100a的移动方向变化超过参考次数的时间段内,第一清洁器100a的移动轨迹被去除。
如图13B中所示,包括在第一清洁器100a执行原地旋转并且多次改变移动方向的同时的移动轨迹的区域1310将被视为前述扇区以去除该区域的移动轨迹。然后,第二清洁器100b沿着路径1320移动,该路径1320通过最短直线连接第一清洁器100a的当前位置。
又例如,存在以下情况:第一清洁器100a进入狭窄区域,留下移动轨迹1330,如图13C所示。此时,狭窄区域的宽度(Ds)是第一清洁器100a和第二清洁器100b能够分别进入的距离,但是在没有任何向后移动的情况下避开有困难。
当第二清洁器100b在跟随第一清洁器100a的同时进入时,在没有任何向后移动的情况下不可避免的最大间隔可以被限定为“宽度的参考值”。
当第一清洁器100a已经进入的移动区域的宽度小于参考值时,第二清洁器100b的控制器可以控制去除第一清洁器100a的相关移动区域中的轨迹1330,并且沿着路径1340移动,该路径1340通过最短直线连接在第一清洁器离开相关移动区域的时间点时的第一清洁器的位置。
如上所述,当领先的清洁器在短时间段内多次改变其移动方向或当领先的清洁器进入狭窄区域时,预定的时间段内或狭窄区域内的所有移动轨迹可以被去除,从而最小化时间延迟。
接下来,将参照图14A、14B和14C详细描述当第二清洁器根本不能进入扇区单元时移动第一清洁器以保持跟随关系的方法。
换句话说,图14A、图14B和图14C示出了第一清洁器100a有进入和移动没有困难但第二清洁器100b完全不能进入的情况,当第一清洁器100a和第二清洁器100a的类型彼此不同时,可能发生这种情况。
此时,可能仅通过从第一清洁器100a接收到的障碍物信息不能确定第二清洁器100b进入的可能性。因此,这时,有必要将跟随的清洁器的状态信息发送给领先的清洁器。
首先,参考图14A,当在不同类型的清洁器之间进行跟随时,第一清洁器100a能够进入而第二清洁器100b不能进入的扇区单元1410可能出现在指定的清洁区域1401内。示例可以包括门槛、地毯、处于低矮家具下等。
在这种情况下,第二清洁器100b通过通信单元通知第一清洁器100a其不能进入相关的扇区单元1410。同时或按顺序地,第二清洁器100b停止行进单元1300的操作。
接下来,第二清洁器100b的控制器基于从第一清洁器100a接收到的移动信息进行控制以在感测到第一清洁器100a离开相关的扇区时的时间点时遵循第一清洁器100a的轨迹。
在这种情况下,可以在以下两种情况之一中控制第一清洁器100a。
例如,如图14B所示,存在以下方案:在移动不允许第二清洁器100b进入的扇区单元1410的同时单独执行清洁,然后在第一清洁器100a离开扇区1410的时间点通知第二清洁器100b以恢复跟随。
对于另一示例,如图14C所示,当从第二清洁器100b接收到指示第二清洁器100b不能进入扇区单元1410的信息时,第一清洁器100a不进入扇区单元1410或立即离开扇区单元1410。然后,在保持相对于第二清洁器100b的跟随距离的同时执行跟随控制。
此时,未被清洁的扇区单元1410可以被控制为允许在指定的清洁区域1401的清洁全部完成之后第一清洁器100a单独执行清洁。
图10A、10B和10C是根据本公开的前述实施例的在第一清洁器和第二清洁器之间的跟随控制的修改的示例,并且这里,将详细描述第一清洁器和移动装置之间的跟随控制。这里,本文公开的跟随控制仅意味着移动装置遵循第一清洁器的移动路径。
参照图10A,第一清洁器100a可以通过与移动装置200而不是第二清洁器进行通信来控制移动装置200的跟随。
在此,移动装置200可以不具有清洁功能,并且可以是任何设置有驱动功能的电子装置。例如,移动装置200可以包括各种类型的家用电器或其他电子装置,例如除湿机、加湿器、空气净化器、空调、智能电视、人工智能扬声器、数字摄影装置等,没有限制。
另外,移动装置200可以是配备有移动功能的任何装置,并且可能不具有用于自行检测障碍物或移动到预定目的地的导航功能。
第一清洁器100a是具有导航功能和障碍物检测功能的机器人清洁器,并且可以控制移动装置200的跟随。第一清洁器100a可以是干式清洁器或湿式清洁器。
第一清洁器100a和移动装置200可以通过网络(未示出)彼此通信,但是可以直接彼此通信。
在此,使用网络的通信可以是使用例如WLAN、WPAN、Wi-Fi、Wi-Fi直连、数字生活网络联盟(DLNA)、无线宽带(WiBro)、全球微波接入互通性(WiMAX)等的通信。相互直接通信可以使用例如UWB、Zigbee、Z波、蓝牙、RFID和红外数据协会(IrDA)等来执行。
如果第一清洁器100a和移动装置200彼此靠近,则可以通过第一清洁器100a中的操纵来将移动装置200设置为跟随第一清洁器100a。
如果第一清洁器100a和移动装置200彼此远离,尽管未示出,但是可以通过外部终端300(见图5A)中的操纵将移动装置200设置为跟随第一清洁器100a。
具体地,第一清洁器100a和移动装置200之间的跟随关系可以通过与外部终端300的网络通信来建立。这里,外部终端300是能够执行有线或无线通信的电子装置,可以是平板电脑、智能手机、笔记本电脑等。至少一个与第一清洁器100a的跟随控制有关的应用程序(以下称为“跟随相关应用程序”)可以安装在外部终端300中。用户可以执行安装在外部终端300中的跟随相关应用程序以选择和注册受到第一清洁器100a的跟随控制的移动装置200。当受到跟随控制的移动装置200被注册时,外部终端可以识别该移动装置的产品信息,并且这样的产品信息可以经由网络提供给第一清洁器100a。
外部终端300可以通过与第一清洁器100a和注册的移动装置200的通信来识别第一清洁器100a的位置和注册的移动装置200的位置。之后,根据从外部终端300发送的控制信号,第一清洁器100a可以朝向注册的移动装置200的位置移动,或注册的移动装置200可以朝向第一清洁器100a的位置移动。当检测到第一清洁器100a和注册的移动装置200的相对位置在预定的跟随距离之内时,则第一清洁器100a对移动装置200的跟随控制开始。之后,跟随控制通过第一清洁器100a与移动装置200之间的直接通信来执行,而无需外部终端300的干预。
跟随控制的设置可以通过外部终端300的操作来释放,或者可以随着第一清洁器100a和移动装置200移动远离预定跟随距离而自动终止。
用户可以通过操纵第一清洁器100a或外部终端300来改变、添加或移除要由第一清洁器100a控制的移动装置200。例如,参考图15B,第一清洁器100a可以对另一清洁器200a或100b、空气净化器200b、加湿器200c和除湿器200d中的至少一个移动装置200执行跟随控制。
通常,由于移动装置200在功能、产品尺寸和移动能力方面与第一清洁器100a不同,所以移动装置200难以原样遵循移动终端100a的移动路径。
例如,可能存在例外情况,其中根据移动模式、空间的地理特征、障碍物的尺寸等,移动装置200难以遵循第一清洁器100a的移动路径。考虑到这种例外情况,移动装置200即使识别出第一清洁器100a的移动路径也可以通过省略部分移动路径来移动或等待。
为此,第一清洁器100a可以检测是否出现例外情况,并且控制移动装置200将与第一清洁器100a的移动路径相对应的数据存储在存储器等中。然后,根据情况,第一清洁器100a可以控制移动装置200在删除部分存储的数据的情况下移动或在停止状态下等待。
图15C示出了第一清洁器100a与移动装置200(例如,具有移动功能的空气净化器200b)之间的跟随控制的示例。第一清洁器100a和空气净化器200b可以分别包括用于确定其相对位置的通信模块A和B。通信模块A和B可以是用于发射和接收IR信号、超声信号、载波频率或脉冲信号的模块之一。上面已经详细描述了通过通信模块A和B对相对位置的识别,因此将省略其描述。
空气净化器200b可以从第一清洁器100a接收与移动命令(例如,包括移动方向和移动速度的移动变化、移动停止等)相对应的移动信息,根据接收到的移动信息进行移动,并执行空气净化。
因此,空气净化可以相对于第一清洁器100a在其中运行的清洁空间实时地执行。另外,由于第一清洁器100a已经识别出与移动装置200有关的生产信息,因此第一清洁器100a可以控制空气净化器200b记录第一清洁器100a的移动信息,并且在删除移动信息的部分的情况下移动或在停止状态下等待。
如上所述,根据本公开的实施例的多个机器人清洁器,第二清洁器可以被控制为在顺序地遵循第一清洁器的移动轨迹的同时正常地执行清洁,并且当在复杂区域或复杂扇区内检测到移动轨迹或移动轨迹形成复杂路径时,第二清洁器可以被控制为在预定尺寸的扇区单元内粗略地跟随第一清洁器,从而解决了在复杂的情况下引起的时间延迟问题,同时保持了根据跟随的清洁效率。此外,即使不是处理复杂的区域或扇区的情况,当作为领先的清洁器的第一清洁器在短时间段内多次改变其移动方向或当领先的清洁器进入狭窄区域时,预定的时间段内或狭窄区域内的所有移动轨迹可以被去除,从而最小化由于跟随引起的时间延迟。而且,即使当第二清洁器在扇区单元内跟随第一清洁器时,也可以根据第一清洁器的移动信息来不同地选择扇区内的目标点,从而以平衡的方式满足诸如跟随控制效率和时间延迟的最小化等相反需求。
上述本公开可以被实现为程序记录介质上的计算机可读代码。计算机可读介质包括其中存储有计算机系统可读的数据的所有类型的记录装置。计算机可读介质的示例包括硬盘驱动器(HDD)、固态磁盘(SSD)、硅磁盘驱动器(SDD)、ROM、RAM、CD-ROM、磁带、软盘、光学数据存储装置等,并且也可以以载波的形式实现(例如,通过互联网传输)。另外,计算机还可以包括控制单元1800。上面的详细描述在所有方面不应被限制地解释,应被认为是说明性的。本发明的范围应该由所附权利要求的合理解释来确定,并且在本发明的等同范围内的所有改变都包括在本公开的范围内。

Claims (19)

1.一种用于执行清洁的移动机器人,包括:
行进单元,其被配置为移动主体;
存储器,其被配置为存储与所述主体的移动相对应的移动路径的轨迹信息;
通信单元,其被配置为与发出信号的用于执行清洁的另一移动机器人通信;以及
控制器,其被配置为基于所述信号识别所述另一移动机器人的位置,并基于识别的位置,控制所述另一移动机器人遵循与存储的轨迹信息相对应的移动路径,
其中,当所述主体与另一移动机器人之间的距离比预定跟随距离更近时,所述控制器控制所述主体的移动速度增加,以及
其中,响应于要由所述另一移动机器人遵循的与下一轨迹信息相对应的移动路径是否满足指定条件,所述控制器控制所述另一移动机器人的移动以去除所述存储的轨迹信息的至少部分,并允许所述另一移动机器人遵循与剩余的轨迹信息相对应的移动路径,
其中,所述控制器响应于在预定时间段内所述主体的移动方向的改变大于参考次数而控制所述另一移动机器人的移动以在由从所述另一移动机器人的当前位置到所述主体的当前位置的最短直线连接的路径上移动,而不是在与预定时间段内检测到的所述主体的轨迹信息相对应的移动路径上移动。
2.根据权利要求1所述的移动机器人,其中,要由所述另一移动机器人遵循的与下一轨迹信息相对应的移动路径是否满足指定条件基于以下中的至少一个来确定:关于通过所述主体的传感器感测到的障碍物的信息、所述另一移动机器人的标识信息、与所述另一移动机器人的运行状态相关的信息、以及所述另一移动机器人所位于的地板状态信息。
3.根据权利要求1所述的移动机器人,其中,存储在所述存储器中的轨迹信息中的由所述另一移动机器人遵循的轨迹信息从所述存储器中删除。
4.根据权利要求1所述的移动机器人,其中,当要在所述另一移动机器人的当前位置处遵循的与第一轨迹信息相对应的移动路径满足指定条件时,所述控制器发送控制命令以将所述另一移动机器人移动至与存储在所述第一轨迹信息之后的第二轨迹信息相对应的位置。
5.根据权利要求4所述的移动机器人,其中,在所述第一轨迹信息和所述第二轨迹信息之间包括至少一个中间轨迹信息,以及
所述控制器响应于所述另一移动机器人到与所述第二轨迹信息相对应的位置的移动,而从所述存储器中删除所述第一轨迹信息和所述一个或多个中间轨迹信息。
6.根据权利要求1所述的移动机器人,其中,当感测到多个障碍物已经接近要在所述另一移动机器人的当前位置处遵循的下一轨迹信息的位置时,所述控制器控制所述另一移动机器人的移动以在另一移动路径上而不是包括所述下一轨迹信息的移动路径上跟随所述主体。
7.根据权利要求1所述的移动机器人,其中,所述控制器控制移动以允许所述另一移动机器人遵循扇区单元中的与存储的轨迹信息相对应的移动路径,以及
单个扇区包括与多个轨迹信息相对应的移动路径。
8.根据权利要求1所述的移动机器人,其中,所述控制器响应于满足指定条件而控制所述另一移动机器人在与对应于多个轨迹信息的主体的移动路径不同的移动路径上移动,以及
所述不同的移动路径的路径长度比所述主体的移动路径的路径长度短。
9.根据权利要求1所述的移动机器人,其中,所述控制器控制所述另一移动机器人在包括多个轨迹信息的扇区单元中的移动,响应于满足所述指定条件而去除当前扇区中的所有轨迹信息,基于所述另一移动机器人的当前位置和移动方向确定下一扇区,并控制所述另一移动机器人遵循确定的下一扇区中的轨迹信息之一移动。
10.根据权利要求9所述的移动机器人,其中,当所述另一移动机器人远离所述主体移动以遵循所述确定的下一扇区中的轨迹信息之一时,所述控制器输出控制命令以改变或停止所述主体的移动速度。
11.根据权利要求9所述的移动机器人,其中,所述控制器响应于未检测到主体在所述下一扇区中的下一轨迹信息而改变下一扇区的尺寸和位置中的至少一个以检测所述主体的下一轨迹信息。
12.根据权利要求9所述的移动机器人,其中,所述控制器响应于未检测到主体在所述下一扇区中的下一轨迹信息而增加扇区的数量以检测所述主体的下一轨迹信息。
13.根据权利要求9所述的移动机器人,其中,所述控制器响应于未检测到主体在所述下一扇区中的下一轨迹信息而停止所述另一移动机器人的移动,直到所述主体进入所述下一扇区为止。
14.根据权利要求1所述的移动机器人,其中,所述控制器响应于主体已经进入的移动区域的宽度是否被感测为小于参考范围而控制所述另一移动机器人的移动以去除在主体已经进入的移动区域中的主体的轨迹信息,并且在所述主体移出相关的移动区域之后遵循轨迹信息。
15.根据权利要求1所述的移动机器人,其中,当确定所述主体进入的区域为所述另一移动机器人的非进入区域时,所述控制器将与移动停止命令相对应的信号发送到所述另一移动机器人,并且当感测到所述主体移出相关区域时,控制所述另一移动机器人的移动以遵循与移出相关区域之后存储的所述主体的轨迹信息相对应的移动路径。
16.多个移动机器人,包括用于执行清洁的第一移动机器人和用于执行清洁的第二移动机器人,其中,所述第一移动机器人与发出信号的所述第二移动机器人进行通信以识别第二移动机器人的位置,存储与所述第一移动机器人的移动相对应的移动路径的轨迹信息,并基于识别的第二移动机器人的位置来控制第二移动机器人遵循与存储的轨迹信息相对应的移动路径,并且当所述第一移动机器人与所述第二移动机器人之间的距离比预定跟随距离更近时,控制器控制所述第一移动机器人的移动速度增加,以及
以及
响应于要在所述第二移动机器人的当前位置处遵循的与下一轨迹信息相对应的移动路径是否满足指定条件,所述第一移动机器人去除存储的轨迹信息的至少部分,并且控制所述第二移动机器人遵循与剩余的轨迹信息相对应的移动路径,
其中,响应于在预定时间段内所述第一移动机器人的移动方向的改变大于参考次数,所述第一移动机器人控制所述第二移动机器人的移动以在由从所述第二移动机器人的当前位置到所述第一移动机器人的当前位置的最短直线连接的路径上移动,而不是在与预定时间段内检测到的所述第一移动机器人的轨迹信息相对应的移动路径上移动。
17.一种控制用于执行清洁的移动机器人的方法,所述方法包括:
存储与移动机器人主体的移动相对应的移动路径的轨迹信息;
与发出信号的用于执行清洁的另一移动机器人进行通信,以识别所述另一移动机器人的位置;
基于识别的位置,控制所述另一移动机器人的移动,使得所述另一移动机器人遵循与存储的轨迹信息相对应的移动路径;
当所述移动机器人主体与另一移动机器人之间的距离比预定跟随距离更近时,控制所述移动机器人主体的移动速度增加;
感测要由所述另一移动机器人遵循的与下一轨迹信息相对应的移动路径满足指定条件;
根据感测控制所述另一移动机器人的移动,以去除存储的轨迹信息的部分,使得所述另一移动机器人遵循与剩余的轨迹信息相对应的移动路径以及
响应于在预定时间段内所述主体的移动方向的改变大于参考次数,控制所述另一移动机器人的移动以在由从所述另一移动机器人的当前位置到所述主体的当前位置的最短直线连接的路径上移动,而不是在与预定时间段内检测到的所述主体的轨迹信息相对应的移动路径上移动。
18.根据权利要求17所述的方法,其中,是否满足所述指定条件通过以下中的至少一个来确定:关于通过主体的传感器感测到的障碍物的信息、所述另一移动机器人的标识信息、与所述另一移动机器人的运行状态相关的信息、以及所述另一移动机器人的当前位置处的地板状态信息。
19.根据权利要求17所述的方法,还包括:
从存储的轨迹信息中删除由所述另一移动机器人遵循的轨迹信息。
CN201980045079.0A 2018-05-04 2019-04-30 多个机器人清洁器及其控制方法 Active CN112367887B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20180051964 2018-05-04
KR10-2018-0051964 2018-05-04
KR1020190014051A KR102100476B1 (ko) 2018-05-04 2019-02-01 복수의 이동 로봇 및 그 제어방법
KR10-2019-0014051 2019-02-01
PCT/KR2019/005230 WO2019212240A1 (en) 2018-05-04 2019-04-30 A plurality of robot cleaner and a controlling method for the same

Publications (2)

Publication Number Publication Date
CN112367887A CN112367887A (zh) 2021-02-12
CN112367887B true CN112367887B (zh) 2022-11-25

Family

ID=69002386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980045079.0A Active CN112367887B (zh) 2018-05-04 2019-04-30 多个机器人清洁器及其控制方法

Country Status (6)

Country Link
US (1) US11934200B2 (zh)
EP (1) EP3787458B1 (zh)
KR (1) KR102100476B1 (zh)
CN (1) CN112367887B (zh)
AU (1) AU2019262468B2 (zh)
TW (1) TWI733105B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262726B1 (ko) * 2019-11-29 2021-06-09 엘지전자 주식회사 로봇 청소기
KR20210080022A (ko) * 2019-12-20 2021-06-30 엘지전자 주식회사 이동 로봇 및 그 제어방법
CA3105484A1 (en) * 2020-01-10 2021-07-10 Bissell Inc. Autonomous floor cleaner and method for autonomous floor cleaning
KR102369661B1 (ko) * 2020-02-26 2022-03-02 엘지전자 주식회사 이동 로봇 및 복수의 이동 로봇의 제어방법
TWI780468B (zh) 2020-08-13 2022-10-11 國立陽明交通大學 機器人對人員跟隨之控制方法與系統
KR102410530B1 (ko) * 2020-10-08 2022-06-20 엘지전자 주식회사 이동 로봇 시스템
KR102490754B1 (ko) * 2020-10-08 2023-01-20 엘지전자 주식회사 이동 로봇 시스템
KR102490755B1 (ko) * 2020-10-08 2023-01-25 엘지전자 주식회사 이동 로봇 시스템
KR102410529B1 (ko) * 2020-10-08 2022-06-20 엘지전자 주식회사 이동 로봇 시스템
KR20210030297A (ko) * 2020-10-23 2021-03-17 (주)쓰리엠탑 살균수모듈을 갖는 3 몹 로봇 걸레청소기
CN113959038B (zh) * 2021-10-08 2023-02-03 中科智控(南京)环境科技有限公司 一种自清洁杀菌过滤系统
EP4345568A1 (en) * 2022-09-30 2024-04-03 HDHyundai Robotics Co., Ltd. Disinfection robot and method of controlling the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1834839A (zh) * 2005-03-16 2006-09-20 日产自动车株式会社 前行车追踪控制装置
CN101554302A (zh) * 2008-04-11 2009-10-14 乐金电子(天津)电器有限公司 自动驱动吸尘器
CN101971116A (zh) * 2008-02-07 2011-02-09 丰田自动车株式会社 自动移动体及其控制方法、以及控制系统
KR20110092158A (ko) * 2010-02-08 2011-08-17 엘지전자 주식회사 로봇 청소기 및 이의 제어 방법
KR101215395B1 (ko) * 2010-07-30 2012-12-26 경희대학교 산학협력단 동적 환경에서 분산 로봇의 경로 탐색 방법
CN102915465A (zh) * 2012-10-24 2013-02-06 河海大学常州校区 一种基于移动生物刺激神经网络的多机器人联合编队方法
CN103076803A (zh) * 2012-12-13 2013-05-01 鼎力联合(北京)科技有限公司 一种车辆自动跟随系统、装置及方法
CN104615132A (zh) * 2013-11-04 2015-05-13 原相科技股份有限公司 自主式移动载体以及自动跟随系统
CN106132187A (zh) * 2014-03-26 2016-11-16 洋马株式会社 作业车辆的控制装置
CN106853641A (zh) * 2017-03-22 2017-06-16 北京京东尚科信息技术有限公司 机器人控制方法和装置、机器人及控制系统
CN106997205A (zh) * 2017-04-27 2017-08-01 西南科技大学 一种用于移动机器人对目标定位和跟踪的系统及方法
CN107087435A (zh) * 2016-09-27 2017-08-22 深圳市大疆创新科技有限公司 控制方法、控制装置、电子装置及飞行器控制系统
WO2017212987A1 (ja) * 2016-06-06 2017-12-14 学校法人東京電機大学 群ロボットおよび群ロボットの集団移動制御方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539557B2 (en) * 2005-12-30 2009-05-26 Irobot Corporation Autonomous mobile robot
JP2007199965A (ja) * 2006-01-25 2007-08-09 Matsushita Electric Works Ltd 自律移動装置
KR100749806B1 (ko) * 2006-09-29 2007-08-17 한국전자통신연구원 무선 네트워크 기반의 해양 및 하천 작업용 로봇선단과작업로봇 제어방법
JP4351261B2 (ja) * 2007-02-02 2009-10-28 株式会社日立製作所 先導者追従車両
TWI333178B (en) 2007-07-13 2010-11-11 Ind Tech Res Inst Method for coordinating cooperative robots
US20090062974A1 (en) * 2007-09-03 2009-03-05 Junichi Tamamoto Autonomous Mobile Robot System
WO2009040777A2 (en) 2007-09-27 2009-04-02 Koninklijke Philips Electronics, N.V. Leader robot election in collaborative robot groups
KR101758736B1 (ko) * 2011-02-07 2017-07-14 한화테크윈 주식회사 감시 경계 로봇 시스템 및 경계 로봇 시스템에서 이동 로봇의 주행 방법
US8510029B2 (en) * 2011-10-07 2013-08-13 Southwest Research Institute Waypoint splining for autonomous vehicle following
KR102009482B1 (ko) * 2012-10-30 2019-08-14 한화디펜스 주식회사 로봇의 경로계획 장치와 방법 및 상기 방법을 구현하는 프로그램이 기록된 기록 매체
FR2999305B1 (fr) 2012-12-11 2021-11-12 Thales Sa Procede de pilotage d'un ensemble de robots et ensemble de robots
US8761989B1 (en) 2012-12-18 2014-06-24 Jervis B. Webb Company Method of material handling with automatic guided vehicles
KR20150140272A (ko) 2013-03-29 2015-12-15 인텔렉추얼디스커버리 주식회사 유리창 청소 장치 및 그의 제어 방법
KR101555589B1 (ko) * 2014-05-15 2015-09-24 엘지전자 주식회사 청소기의 제어방법
KR102527645B1 (ko) 2014-08-20 2023-05-03 삼성전자주식회사 청소 로봇 및 그 제어 방법
US9993129B2 (en) 2015-02-13 2018-06-12 Irobot Corporation Mobile floor-cleaning robot with floor-type detection
WO2017036532A1 (en) 2015-09-03 2017-03-09 Aktiebolaget Electrolux System of robotic cleaning devices
KR102521493B1 (ko) 2015-10-27 2023-04-14 삼성전자주식회사 청소 로봇 및 그 제어방법
CN105686766A (zh) 2016-04-14 2016-06-22 京东方科技集团股份有限公司 清洁机器人和清洁机器人工作方法
US9637310B1 (en) 2016-08-02 2017-05-02 Amazon Technologies, Inc. Mobile robot group for moving an item
US10037029B1 (en) 2016-08-08 2018-07-31 X Development Llc Roadmap segmentation for robotic device coordination
ES2897978T3 (es) 2016-09-13 2022-03-03 Maytronics Ltd Robots de limpieza de piscinas maestros y esclavos
CH713152A2 (de) 2016-11-23 2018-05-31 Cleanfix Reinigungssysteme Ag Bodenbehandlungsmaschine und Verfahren zum Behandeln von Bodenflächen.
WO2018158248A2 (de) 2017-03-02 2018-09-07 RobArt GmbH Verfahren zur steuerung eines autonomen,mobilen roboters
US20180257231A1 (en) 2017-03-08 2018-09-13 Panasonic Corporation Mobile robot and method of tracking mobile robot
US10293485B2 (en) 2017-03-30 2019-05-21 Brain Corporation Systems and methods for robotic path planning
EP4129581A1 (en) 2017-05-18 2023-02-08 KUKA Hungária Kft. Robot motion planning for avoiding collision with moving obstacles
US10156850B1 (en) 2017-12-08 2018-12-18 Uber Technologies, Inc. Object motion prediction and vehicle control systems and methods for autonomous vehicles
CN108008728B (zh) 2017-12-12 2020-01-17 深圳市银星智能科技股份有限公司 清洁机器人以及基于清洁机器人的最短路径规划方法
US10994418B2 (en) 2017-12-13 2021-05-04 X Development Llc Dynamically adjusting roadmaps for robots based on sensed environmental data
US11614746B2 (en) * 2018-01-05 2023-03-28 Irobot Corporation Mobile cleaning robot teaming and persistent mapping
CN108247647B (zh) 2018-01-24 2021-06-22 速感科技(北京)有限公司 一种清洁机器人
US10495474B2 (en) 2018-03-12 2019-12-03 Micron Technology, Inc. Re-routing autonomous vehicles using dynamic routing and memory management
WO2019212240A1 (en) * 2018-05-04 2019-11-07 Lg Electronics Inc. A plurality of robot cleaner and a controlling method for the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1834839A (zh) * 2005-03-16 2006-09-20 日产自动车株式会社 前行车追踪控制装置
CN101971116A (zh) * 2008-02-07 2011-02-09 丰田自动车株式会社 自动移动体及其控制方法、以及控制系统
CN101554302A (zh) * 2008-04-11 2009-10-14 乐金电子(天津)电器有限公司 自动驱动吸尘器
KR20110092158A (ko) * 2010-02-08 2011-08-17 엘지전자 주식회사 로봇 청소기 및 이의 제어 방법
KR101215395B1 (ko) * 2010-07-30 2012-12-26 경희대학교 산학협력단 동적 환경에서 분산 로봇의 경로 탐색 방법
CN102915465A (zh) * 2012-10-24 2013-02-06 河海大学常州校区 一种基于移动生物刺激神经网络的多机器人联合编队方法
CN103076803A (zh) * 2012-12-13 2013-05-01 鼎力联合(北京)科技有限公司 一种车辆自动跟随系统、装置及方法
CN104615132A (zh) * 2013-11-04 2015-05-13 原相科技股份有限公司 自主式移动载体以及自动跟随系统
CN106132187A (zh) * 2014-03-26 2016-11-16 洋马株式会社 作业车辆的控制装置
WO2017212987A1 (ja) * 2016-06-06 2017-12-14 学校法人東京電機大学 群ロボットおよび群ロボットの集団移動制御方法
CN107087435A (zh) * 2016-09-27 2017-08-22 深圳市大疆创新科技有限公司 控制方法、控制装置、电子装置及飞行器控制系统
CN106853641A (zh) * 2017-03-22 2017-06-16 北京京东尚科信息技术有限公司 机器人控制方法和装置、机器人及控制系统
CN106997205A (zh) * 2017-04-27 2017-08-01 西南科技大学 一种用于移动机器人对目标定位和跟踪的系统及方法

Also Published As

Publication number Publication date
AU2019262468B2 (en) 2022-10-13
KR102100476B1 (ko) 2020-05-26
EP3787458B1 (en) 2024-01-31
AU2019262468A1 (en) 2021-01-07
CN112367887A (zh) 2021-02-12
EP3787458A1 (en) 2021-03-10
EP3787458A4 (en) 2022-03-09
TW201947338A (zh) 2019-12-16
TWI733105B (zh) 2021-07-11
US20210405652A1 (en) 2021-12-30
KR20190134969A (ko) 2019-12-05
US11934200B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
CN112367887B (zh) 多个机器人清洁器及其控制方法
CN112367888B (zh) 多个机器人清洁器及其控制方法
KR102252033B1 (ko) 이동 로봇 및 그 제어방법
US11150668B2 (en) Plurality of robot cleaner and a controlling method for the same
US11148290B2 (en) Plurality of robot cleaner and a controlling method for the same
US11409308B2 (en) Robot cleaner and a controlling method for the same
US11432697B2 (en) Robot cleaner and a controlling method for the same
CN112384119B (zh) 多个自主移动机器人及其控制方法
KR20200103203A (ko) 복수의 자율주행 이동 로봇
US20210259498A1 (en) Plurality of autonomous cleaner and controlling method for the same
KR102127931B1 (ko) 로봇 청소기 및 그것의 제어방법
KR102309303B1 (ko) 로봇 청소기 및 그 제어 방법
KR102179057B1 (ko) 복수의 자율주행 청소기

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant