CN112362968A - 一种基于预调制cdsc与sdft的单相谐波实时提取方法 - Google Patents

一种基于预调制cdsc与sdft的单相谐波实时提取方法 Download PDF

Info

Publication number
CN112362968A
CN112362968A CN202011299697.9A CN202011299697A CN112362968A CN 112362968 A CN112362968 A CN 112362968A CN 202011299697 A CN202011299697 A CN 202011299697A CN 112362968 A CN112362968 A CN 112362968A
Authority
CN
China
Prior art keywords
harmonic
phase
signal
amplitude
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011299697.9A
Other languages
English (en)
Other versions
CN112362968B (zh
Inventor
韩小涛
张竞文
王正磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202011299697.9A priority Critical patent/CN112362968B/zh
Publication of CN112362968A publication Critical patent/CN112362968A/zh
Application granted granted Critical
Publication of CN112362968B publication Critical patent/CN112362968B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于预调制CDSC与SDFT的单相谐波实时提取方法,包括下述步骤:(1)通过调制波对待处理的单相畸变信号进行调制并获得高频信号;(2)将高频信号以延迟半谐波周期的方式对高频谐波分量依次消除,并获得(k e +k m )次谐波信号;(3)对(k e +k m )次谐波信号进行滑动傅里叶变换并获得(k e +k m )次谐波所携带的幅值与相位信息;(4)对(k e +k m )次谐波所携带的幅值与相位信息进行校正,消除幅值衰减与相移偏移后获得待提取的k e 次谐波的幅值与相位信息,其中,k e 为待提取的谐波次数,k m 为调制波相对基波的倍数。本发明具有极短瞬态时间的优势,可用于快速谐波补偿、谐波检测领域。

Description

一种基于预调制CDSC与SDFT的单相谐波实时提取方法
技术领域
本发明属于单相并网逆变器控制与谐波选择性补偿领域,具体涉及基于预调制CDSC与SDFT的单相谐波实时提取方法。
背景技术
单相并网逆变器广泛应用于光伏、有源电力滤波器中,交流信号的相位检测是其中重要的课题之一;在电能质量评估与谐波补偿领域,选择性谐波提取起着重要作用;在平顶磁场电源的纹波抑制中,特定次谐波信号的迅速补偿也是其控制的难点。由于瞬态过程谐波提取算法无法准确的提供幅值和相位信息,因此如何缩短瞬态时间是谐波提取算法的热点研究问题。
谐波提取算法主要分为两大类,一类是频域法,另一类是时域法。频域法基于DFT(离散傅里叶变换,Discrete Fourier Transform),DFT将信号从时域变换到频域,可以选择性的对特定次谐波进行提取;SDFT(滑动傅里叶变换,Sliding Discrete FourierTransform)在已知前一时刻频谱的情况下通过简单的递推运算,得到后一时刻的频谱,降低了DFT的运算复杂度,因此SDFT实现了有选择性的谐波实时提取;mSDFT(调制的滑动傅里叶变换,modulated Discrete Fourier Transform)解决了SDFT数字实现时存在舍入误差累积和不稳定性;GDFT(广义傅里叶变换,Generalized Discrete Fourier Transform)通过重构DFT的梳状滤波器结构,改进了基于傅里叶谐波检测瞬态响应必须建立一个基础分析周期的缺点。经典的时域方法有SOGI(二阶广义积分器,second-order generalizedintegrators)方法、ANF(自适应陷波滤波器,Adaptive Notch Filter)、瞬时功率pq理论方法(p表示有功;q表示无功)、CDSC(级联延迟信号消除,Cascaded Delayed SignalCancellation)方法。ANF方法和瞬时功率pq理论方法无法进行选择性谐波提取;SOGI对电网频率存在严重的依赖性。
发明内容
本发明的目的在于提供一种基于预调制CDSC与SDFT的单相谐波实时提取方法,旨在解决现有技术中由于瞬态过程谐波提取方法无法准确的提供幅值和相位信息导致实时提取单相谐波时瞬态响应慢的技术问题。
本发明提供了一种基于预调制CDSC与SDFT的单相谐波实时提取方法,包括下述步骤:
(1)通过调制波对待处理的单相畸变信号进行调制并获得高频信号;
(2)将所述高频信号以延迟半谐波周期的方式对高频谐波分量依次消除,并获得(k e +k m )次谐波信号,其中,k e 为待提取的谐波次数,k m 为调制波相对基波的倍数;
(3)对所述(k e +k m )次谐波信号进行滑动傅里叶变换并获得(k e +k m )次谐波所携带的幅值与相位信息;
(4)对所述(k e +k m )次谐波所携带的幅值与相位信息进行校正,消除幅值衰减与相移偏移后获得待提取的k e 次谐波的幅值与相位信息。
本发明基于预调制CDSC与SDFT的基础上,进一步提高了谐波实时提取的瞬态速度,并且算法固定的配置流程使实施者方便应用。
本发明通过合理的配置可以实现对特定次谐波实时迅速的提取。具体地,在步骤(1)中,采用的调制波为
Figure DEST_PATH_IMAGE001
,获得的高频信号为
Figure DEST_PATH_IMAGE002
,其中,
Figure DEST_PATH_IMAGE003
为基波角频率,k m 为调制波相对基波的倍数,k为谐波次数,
Figure DEST_PATH_IMAGE004
k次谐波分量的幅值与相位信息,k通常定义为0、1、2…,而实际应用中,实际谐波次数k不一定是连续的,H为被考虑的谐波次数的上限,k e 为待提取谐波次数。
更进一步地,待处理的单相畸变信号经调制后获得
Figure DEST_PATH_IMAGE005
次谐波成分。
更进一步地,步骤(2)具体为:通过级联的延迟信号消除模块依次将(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m -k M-1)、(k m +k M-1)、(k m -k e )次谐波消除,仅剩下(k m +k e )次谐波;其中,M为谐波成分的个数,k e 为待提取谐波次数, k c1 、k c2 k cM-1M个被考虑谐波成分中除k e 以外的(M-1)个需消除的谐波次数, k e 、k c1 、k c2 k cM-1是均属于[0,H]的整数,调制后的频率成分有2M个,包括:(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m -k M-1)、(k m + k M-1)、(k m -k e )、(k m +k e )。
更进一步地,延迟信号消除模块
Figure DEST_PATH_IMAGE006
将待处理的单相畸变信号延迟时间t d ,并将延迟时间t d 后的信号与模块
Figure 443020DEST_PATH_IMAGE006
的输入信号相加除以2以实现(k m -k c1 )次谐波完全消除;其中,(k m -k c1 )次谐波被相移了角度
Figure DEST_PATH_IMAGE007
,延迟后的(k m -k c1 )次谐波与原始(k m -k c1 )次谐波的幅值相等且相位相反;
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
更进一步地,通过依次级联的延迟信号消除模块
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE013
……
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
实现(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m -k M-1)、(k m +k M-1)、(k m -k e )次谐波的完全消除,剩余(k m + k e )次谐波。
更进一步地,在步骤(3)中,对所述(k m +k e )次谐波进行
Figure DEST_PATH_IMAGE017
点滑动傅里叶变换
Figure DEST_PATH_IMAGE018
,其中,
Figure DEST_PATH_IMAGE019
为采样频率f s 、基波频率f 1 下SDFT的窗口大小,
Figure DEST_PATH_IMAGE020
,经SDFT运算获得实时的(k m +k e )次谐波的幅值和相位信息,它们由实部虚部经简单的数学运算获得:
Figure DEST_PATH_IMAGE021
Figure DEST_PATH_IMAGE022
更进一步地,步骤(4)中对,将所有DSC模块造成的幅值衰减相乘取倒数得
Figure DEST_PATH_IMAGE023
,对幅值校正得
Figure DEST_PATH_IMAGE024
,将所有DSC模块的相位偏移相加得到
Figure DEST_PATH_IMAGE025
,则经校正与修改后得到正确的k e 次谐波的相角信息为
Figure DEST_PATH_IMAGE026
Figure DEST_PATH_IMAGE027
,其中
Figure DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE029
为两个参考相位变量:
Figure DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE031
,上述相位信息在数字系统中表示为:
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE033
Figure DEST_PATH_IMAGE034
,整套算法执行完成输出k e 次谐波的实时数据:
Figure DEST_PATH_IMAGE035
其中,瞬态响应时间为CDSC模块的延迟时间与SDFT模块的延迟时间之和:
Figure DEST_PATH_IMAGE036
;在数字信号处理器资源、ADC采样精度与吞吐速率充足情况下,合理提高调制波次数k m ,与其他谐波提取方法相比,预调制CDSC与SDFT算法瞬态速度大幅度提高。
本发明采用调制的方式将信号变换至高频,以极短的时间消除谐波,并仅仅保留1个携带着待提取谐波幅值和相位信息的高频谐波信号,以极短的时间做SDFT运算,实现实时的单相谐波提取。改进了现有的基于傅里叶变换技术频域谐波检测存在一个基础分析周期瞬态时间的问题。在ADC的采样频率以及量化精度均较高的情况下,提高调制频率可以使本发明提供的提取方法的瞬态时间比单独使用CDSC算法或单独使用SDFT算法的瞬态时间都短。
附图说明
图1为本发明提供的预调制CDSC与SDFT的单相谐波实时提取方法的结构框图;
图2为本发明实施例提供的测试信号的时域波形图;
图3(a)为调制频率为20倍基频时对基波进行实时提取的幅值信息;
图3(b)为调制频率为20倍基频时对基波进行实时提取的相位信息;
图3(c)为调制频率为20倍基频时对三次谐波实时提取的幅值信息;
图4为调制频率为20倍、30倍、40倍基频时对基波进行实时提取的幅值与相位信息以及对基波的波形跟踪。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
SDFT基于DFT技术,因其出色的选择性滤波特性和简单的递归结构,在谐波检测与提取领域得到了广泛应用。SDFT实质上是用一个固定长度的窗口随时间滑动来选择N个样本进行DFT。然而由于采样窗口的存在,当出现非平稳信号时,它存在一个基础分析周期的瞬态时间,在瞬态时间内,SDFT是无法提取到正确的幅值和相位信息的。在对实时性要求较高的情况下,比如并网电力电子变换器控制,SDFT在瞬态速度方面并不能满足要求。因此针对DFT算法存在一个基础周期瞬态时间的缺陷,本发明的目的在于提供一种基于预调制CDSC与SDFT的单相谐波实时提取方法,通过预调制将待处理信号调制至高频,并经CDSC算法处理,使SDFT的基础分析周期大幅度缩短,从而提高谐波提取算法的瞬态速度。
本发明提出了一种基于预调制CDSC与SDFT的单相谐波实时提取方法,该算法的思想是:SDFT存在一个基础分析周期的瞬态响应时间,如果该基础分析周期缩短,谐波提取的瞬态过程会缩短。因此可以将信号调制到高频,高频信号依然携带着原始谐波的幅值和相位信息。SDFT是通过在所有分析频率上配置零点,实现各频率成分的隔离,再于待提取频率成分上配置极点,零极点相消实现选择性谐波提取。然而调制后的频率成分复杂,所有频率成分的最大公因数为1,此时进行SDFT运算,零点依然要配置在原基础分析频率上,因此瞬态时间依然是一个基础周期。如果仅仅留下一个调制后的高频成分再进行SDFT,SDFT的基础分析周期会大幅减小。因此采用CDSC方法以极短的延迟时间将调制至高频的谐波进行依次消除,仅保留携带着待提取次谐波幅值和相位信息的高频成分之一,将该频率作为基础频率,对该高频基础频率成分进行SDFT,从而实现瞬态时间很短的特定次谐波幅值和相位信息的提取。
本发明提供的谐波提取方法适用于电网谐波监测、更适用于单相并网逆变器控制以及对谐波补偿快速性有要求的情况。本发明从单相系统信号的频率成分形式的傅里叶级数展开式进行公式推导;一种基于预调制CDSC与SDFT的单相谐波实时提取方法,包括如下步骤:
步骤(1):用调制波
Figure DEST_PATH_IMAGE037
对畸变信号
Figure DEST_PATH_IMAGE038
进行调制,k次谐波成分经调制得到两种谐波成分:
Figure DEST_PATH_IMAGE039
……(1)
同理,待处理单相畸变信号经调制后得到
Figure DEST_PATH_IMAGE040
次谐波成分。其中,
Figure DEST_PATH_IMAGE041
为基波角频率,
Figure DEST_PATH_IMAGE042
为调制波相对基波的倍数,k为谐波次数,
Figure DEST_PATH_IMAGE043
k次谐波分量的幅值与相位信息,k通常定义为0、1、2…,H为被考虑的谐波次数的上限。而实际应用中,实际谐波次数k不一定是连续的,直流一般不考虑,并且被考虑的谐波次数是有限的,假设被考虑的谐波成分有M个,k e 为待提取谐波次数, k c1 、k c2 k cM-1M个被考虑谐波成分中除k e 以外的(M-1)个需消除的谐波次数,其中k e 、k c1 、k c2 k cM-1是属于[0,H]的整数,则调制后的频率成分有2M个,包括:(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m -k M-1)、(k m +k M-1)、(k m -k e )、(k m +k e )。
步骤(2):将步骤(1)得到的高频谐波成分接入CDSC模块,CDSC模块由(2M-1)个DSC模块级联形成,每一个DSC模块消除一个高频谐波分量。例如:用于消除(k m -k c1 )次谐波的DSC表示为
Figure DEST_PATH_IMAGE044
Figure DEST_PATH_IMAGE045
将待处理单相畸变信号延迟时间t d
Figure DEST_PATH_IMAGE046
……(2);
k m -k c1 )次谐波被相移了角度
Figure DEST_PATH_IMAGE047
Figure DEST_PATH_IMAGE048
……(3)
延迟后的(k m -k c1 )次谐波与原始(k m -k c1 )次谐波幅值相等、相位相反,
Figure DEST_PATH_IMAGE049
模块将延迟时间t d 后的信号与原始信号相加除以2,(k m -k c1 )次谐波实现完全消除,同理依次级联
Figure DEST_PATH_IMAGE050
Figure DEST_PATH_IMAGE051
Figure DEST_PATH_IMAGE052
Figure DEST_PATH_IMAGE053
Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE055
Figure DEST_PATH_IMAGE056
构成CDSC模块,实现(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m -k M-1)、(k m +k M-1)、(k m -k e )次谐波的完全消除,剩余(k m +k e )次谐波。
步骤(3):对步骤(2)获得的(k m +k e )次谐波进行
Figure DEST_PATH_IMAGE057
点 SDFT(滑动傅里叶变换)获得(k m +k e )次谐波的实时幅值和相位信息:
Figure DEST_PATH_IMAGE058
……(4)
其中
Figure DEST_PATH_IMAGE059
为采样频率f s 、基波频率f 1 下SDFT的窗口大小:
Figure DEST_PATH_IMAGE060
……(5)
经过SDFT运算获得了实时的(k m +k e )次谐波的幅值和相位信息,它们是由实部虚部经简单的数学运算获得的:
Figure DEST_PATH_IMAGE061
……(6)
Figure DEST_PATH_IMAGE062
……(7)
步骤(4):对步骤(2)中CDSC模块导致的(k m +k e )次谐波造成的幅值衰减和相位偏移进行校正。例如
Figure DEST_PATH_IMAGE063
模块将待处理畸变信号延迟t,待提取的(k m +k e )次谐波在t时间后变换为:
Figure DEST_PATH_IMAGE064
……(8)
相位滞后了
Figure DEST_PATH_IMAGE065
,其中
Figure DEST_PATH_IMAGE066
……(9);与原始(k m +k e )次谐波相加除以2:
Figure DEST_PATH_IMAGE067
……(10)
Figure DEST_PATH_IMAGE068
模块对待提取(k m +k e )次谐波造成
Figure DEST_PATH_IMAGE069
倍的幅值衰减以及
Figure DEST_PATH_IMAGE070
角度的相位滞后。同理
Figure DEST_PATH_IMAGE071
Figure DEST_PATH_IMAGE072
Figure DEST_PATH_IMAGE073
Figure DEST_PATH_IMAGE074
Figure DEST_PATH_IMAGE075
Figure DEST_PATH_IMAGE076
依次对将信号延迟
Figure DEST_PATH_IMAGE077
Figure DEST_PATH_IMAGE078
Figure DEST_PATH_IMAGE079
Figure DEST_PATH_IMAGE080
Figure DEST_PATH_IMAGE081
Figure DEST_PATH_IMAGE082
,因此对所有DSC模块造成的幅值衰减相乘取倒数,对所有DSC模块造成的相位滞后相加做补偿与修正。
校正环节对所有DSC模块造成的幅值衰减相乘取倒数得
Figure DEST_PATH_IMAGE083
,对幅值衰减进行校正:
Figure DEST_PATH_IMAGE084
……(11)
将所有DSC模块的相位偏移相加得到
Figure DEST_PATH_IMAGE085
,则经校正与修改后得到正确的k e 次谐波的相角信息为
Figure DEST_PATH_IMAGE086
Figure DEST_PATH_IMAGE087
……(12)其中
Figure DEST_PATH_IMAGE088
Figure DEST_PATH_IMAGE089
为两个参考相位变量:
Figure DEST_PATH_IMAGE090
……(13),
Figure DEST_PATH_IMAGE091
……(14),上述相位信息在数字系统中表示为:
Figure DEST_PATH_IMAGE092
……(15),
Figure DEST_PATH_IMAGE093
……(16)
Figure DEST_PATH_IMAGE094
……(17),此时可以输出k e 次谐波的实时数据:
Figure DEST_PATH_IMAGE095
……(18)
进一步地,本发明中步骤(1)、步骤(2)、步骤(3)、步骤(4)中的调制、CDSC、SDFT、校正模块均于数字信号处理器中实现。
进一步地,步骤(2),以
Figure DEST_PATH_IMAGE096
为例,DSC模块的实现表达式:
Figure DEST_PATH_IMAGE097
……(19)
其中,
Figure DEST_PATH_IMAGE098
……(20)
同理得到其他DSC模块的实现表达式。从公式(19)中可以发现,DSC存在对信号的延迟环节,而在数字实现过程中,大多数情况下延迟点数是非整数,如公式(20)所示,因此一定存在舍入误差,从而导致离散化系统的输出出现错误。本发明采用线性插值的方法来实现延迟环节。具体的方法是:假设N n 是准确的延迟点数,N nf =floorN n ,N nc =ceilN n ),分别为向上和向下取整。显然N nc -N nf =1。谐波本应该延迟的时间是N n T s ,其中T s 为采样周期,而实际上谐波只能延迟N nf T s 或者N nc T s ,由于一个T s 时间很小,认为x[n-N nf ]和x[n-N nc ]之间的数是线性的,因此可以通过两点线性插值来减小误差,其公式如(21)所示。将延迟了N nf 之后的信号与a 1 相乘,同时对延迟了N nf 之后的信号延迟1点并与a 2 相乘,将上述两者相加构成完整的延迟环节。
Figure DEST_PATH_IMAGE099
……(21)
采用拉格朗日线性线性插值法虽然能够减小误差,但无法做到完全消除,体现在所提取的幅值上是一系列高频纹波的叠加。基于拉格朗日线性插值余项给出纹波水平的分析:DSC h 模块对h次谐波抑制,h属于
Figure DEST_PATH_IMAGE100
,则h次谐波在数字系统中表示为:
Figure DEST_PATH_IMAGE101
……(22)
基于拉格朗日线性线性插值法延时半谐波周期后的信号为:
Figure DEST_PATH_IMAGE102
……(23)
由拉格朗日余项来估计误差,
Figure DEST_PATH_IMAGE103
……(24)
延时后的信号与原始信号相加除以2:
Figure DEST_PATH_IMAGE104
……(25)
CDSC模块对2M-1个调制后的谐波抑制,从而存在2M-1个残余的高频纹波。幅值信息稳态输出的纹波是CDSC的残余输出乘以幅值校正因子
Figure DEST_PATH_IMAGE106
的增益以及SDFT的衰减。因此,所处理的谐波次数越高纹波越大,所处理的谐波幅值越大纹波越大,调制频率谐波次数越大纹波越大,采样频率越小纹波越大。在实际应用本算法时,以可接受的纹波水平为指标,根据实际待处理谐波情况和采样频率为限制条件,按照上述纹波水平分析过程确定调制频率的设定范围。
进一步地,本发明中步骤(1)、步骤(2)、步骤(3)、步骤(4)实现一个数量的谐波提取,若提取其他次谐波,以相同的结构并行运算。
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
如图2所示,实施例给出单相系统中畸变电压的时域波形,于0s时出现幅值为1V,相位为0的基波(50Hz)电压;于0.05s时出现谐波3、5、7次谐波,幅值分别为0.167V、0.1V、0.071V,相角均为0°;于0.1s时基波幅值增长至1.1V;于0.15s基波相角突变20°。
本实施例采用预调制CDSC与SDFT的单相谐波实时提取方法,对基波以及3、5、7次谐波中的基波和3次谐波进行实时提取。包括以下步骤:
步骤(1):对单相畸变信号以16位ADC进行采样,于DSP中以20倍基波频率的余弦调制波对数字化的畸变信号进行调制,得到13、15、17、19、21、23、25、27次谐波。
步骤(2):为提取基波信号的幅值与相位信息,通过级联
Figure DEST_PATH_IMAGE107
Figure DEST_PATH_IMAGE108
Figure DEST_PATH_IMAGE109
Figure DEST_PATH_IMAGE110
Figure DEST_PATH_IMAGE111
Figure DEST_PATH_IMAGE112
Figure DEST_PATH_IMAGE113
分别将13、15、17、19、23、25、27次谐波依次消除,仅留下21次谐波。为提取三次谐波的幅值与相位信息,通过级联
Figure 680534DEST_PATH_IMAGE107
Figure DEST_PATH_IMAGE114
Figure DEST_PATH_IMAGE115
Figure DEST_PATH_IMAGE116
Figure DEST_PATH_IMAGE117
Figure 522588DEST_PATH_IMAGE112
Figure DEST_PATH_IMAGE118
分别将13、15、17、19、21、25、27次谐波依次消除,仅留下23次谐波。
步骤(3):对21次谐波以及23次谐波做并行SDFT运算。
步骤(4):对21次谐波的幅值进行校正,将21次谐波信号乘以
Figure DEST_PATH_IMAGE119
;对23次谐波的幅值进行校正,将23次谐波信号乘以
Figure DEST_PATH_IMAGE120
Figure DEST_PATH_IMAGE121
……(23)
Figure DEST_PATH_IMAGE122
……(24)
对21次谐波的相角进行补偿与修正得到基波的相角信息,其中:
Figure DEST_PATH_IMAGE123
……(25)
Figure DEST_PATH_IMAGE124
……(26)
对21次谐波的相角进行补偿与修正得到三次谐波的相角信息,其中:
Figure DEST_PATH_IMAGE125
……(27)
Figure DEST_PATH_IMAGE126
……(28)
本实施例对基于预调制CDSC与SDFT的单相谐波实时提取方法的效果进行评估。图3中(a)为基波的实时幅值信息,于0.05s时注入3、5、7次谐波,算法进入瞬态响应过程,仅度过了4.7ms(0.235个基础周期)完成瞬态过程,进入稳态并正确输出幅值1V;于0.1s将基波幅值突增至1.1V,算法完成瞬态后,无稳态误差的输出幅值1.1V;于0.15s将基波相位突增20°,算法完成瞬态后,无误差的输出幅值1.1V。为了能更清楚的展示本算法对相位变化跟踪的准确性,图3中(b)所示为
Figure DEST_PATH_IMAGE127
的实时信息,经瞬态时间4.7ms,
Figure DEST_PATH_IMAGE128
从0°过渡至20°。于0.05s,图3中(c)所示为三次谐波幅值从0V过渡至0.167V。显而易见,本算法的缺点是动态过程具有极大的超调,这是由于级联的DSC模块在消除其他谐波时把欲提取谐波也衰减的所剩无几造成的。但这并不会限制本算法应用于谐波补偿领域,具体的办法是:在设计有源电力滤波器时,对所处理谐波的幅度范围是有预判的,在数字信号处理器中设定输出限幅值,运算过程中如果幅值信息超出阈值范围,则幅值信息
Figure DEST_PATH_IMAGE129
输出极限值,
Figure DEST_PATH_IMAGE130
保持不变,并维持这一状态t s 秒。由于瞬态响应时间t s 对于确定的参数配置是一个确定的数,因此无论系统面临怎样的突变事件,其瞬态响应时间都是确定的,这也体现了实时系统的可预见性和确定性。按照上述思想,给出调制频率为20、30、40倍基波频率时,带有输出限幅的基波幅值、相位信息、波形跟踪仿真结果如图4所示,可以发现,基波频率越高瞬态时间越短。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于预调制CDSC与SDFT的单相谐波实时提取方法,其特征在于,包括下述步骤:
(1)通过调制波对待处理的单相畸变信号进行调制并获得高频信号;
(2)将所述高频信号以延迟半谐波周期的方式对高频谐波分量依次消除,并获得(k e +k m )次谐波信号,其中,k e 为待提取的谐波次数,k m 为调制波相对基波的倍数;
(3)对所述(k e +k m )次谐波信号进行滑动傅里叶变换并获得(k e +k m )次谐波所携带的幅值与相位信息;
(4)对所述(k e +k m )次谐波所携带的幅值与相位信息进行校正,消除幅值衰减与相移偏移后获得待提取的k e 次谐波的幅值与相位信息。
2.如权利要求1所述的单相谐波实时提取方法,其特征在于,在步骤(1)中,采用的调制波为
Figure 280179DEST_PATH_IMAGE001
,获得的高频信号为
Figure 126912DEST_PATH_IMAGE002
,其中,
Figure 930920DEST_PATH_IMAGE003
为基波角频率,t为时间,k为谐波次数,
Figure 128683DEST_PATH_IMAGE004
k次谐波分量的幅值与相位信息,H为被考虑的谐波次数的上限,k通常定义为0、1、2…,而实际应用中,实际谐波次数k不一定是连续的。
3.如权利要求2所述的单相谐波实时提取方法,其特征在于,待处理的单相畸变信号经调制后获得
Figure 174875DEST_PATH_IMAGE005
次谐波成分。
4.如权利要求1所述的单相谐波实时提取方法,其特征在于,步骤(2)具体为:
通过级联的延迟信号消除模块依次将(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m - k M-1)、(k m +k M-1)、(k m -k e )次谐波消除,仅剩下(k m +k e )次谐波;
其中,M为谐波成分的个数,k e 为待提取谐波次数, k c1 、k c2 k cM-1M个被考虑谐波成分中除k e 以外的(M-1)个需消除的谐波次数,k e 、k c1 、k c2 k cM-1是均属于[0,H]的整数,调制后的频率成分有2M个,包括:(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m -k M-1)、(k m + k M-1)、(k m -k e )、(k m +k e )。
5.如权利要求4所述的单相谐波实时提取方法,其特征在于,所述延迟信号消除模块
Figure 141694DEST_PATH_IMAGE006
将待处理的单相畸变信号延迟时间t d ,并将延迟时间t d 后的信号与模块
Figure 116603DEST_PATH_IMAGE007
的输入信号相加除以2以实现(k m -k c1 )次谐波完全消除;
其中,(k m -k c1 )次谐波被相移了角度
Figure 67241DEST_PATH_IMAGE008
,延迟后的(k m -k c1 )次谐波与原始(k m -k c1 )次谐波的幅值相等且相位相反;
Figure 418588DEST_PATH_IMAGE009
Figure 505493DEST_PATH_IMAGE010
6.如权利要求5所述的单相谐波实时提取方法,其特征在于,通过依次级联的延迟信号消除模块
Figure 916883DEST_PATH_IMAGE011
Figure 823659DEST_PATH_IMAGE012
Figure 978697DEST_PATH_IMAGE013
Figure 920108DEST_PATH_IMAGE014
……
Figure 735355DEST_PATH_IMAGE015
Figure 395006DEST_PATH_IMAGE016
Figure 88156DEST_PATH_IMAGE017
实现(k m -k c1 )、(k m +k c1 )、(k m -k c2 )、(k m +k c2 )、…(k m -k M-1)、(k m + k M-1)、(k m -k e )次谐波的完全消除,剩余(k m +k e )次谐波。
7.如权利要求6所述的单相谐波实时提取方法,其特征在于,由拉格朗日线性插值实现级联延迟信号消除模块的非整数点延时,基于拉格朗日余项,以稳态输出的幅值信息纹波水平为指标,根据所处理畸变信号情况和采样率限定k m
8.如权利要求1-7任一项所述的单相谐波实时提取方法,其特征在于,在步骤(3)中,对所述(k m +k e )次谐波进行
Figure 884073DEST_PATH_IMAGE018
点滑动傅里叶变换
Figure 637266DEST_PATH_IMAGE019
,其中,
Figure 784213DEST_PATH_IMAGE020
为采样频率f s 、基波频率f 1 下SDFT的窗口大小,
Figure 15475DEST_PATH_IMAGE021
9.如权利要求1-7任一项所述的单相谐波实时提取方法,其特征在于,步骤(4)中通过对所有延迟信号消除模块造成的幅值衰减相乘并取倒数来实现对所有延迟信号消除模块造成的相位滞后相加做补偿。
CN202011299697.9A 2020-11-18 2020-11-18 一种基于预调制cdsc与sdft的单相谐波实时提取方法 Active CN112362968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011299697.9A CN112362968B (zh) 2020-11-18 2020-11-18 一种基于预调制cdsc与sdft的单相谐波实时提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011299697.9A CN112362968B (zh) 2020-11-18 2020-11-18 一种基于预调制cdsc与sdft的单相谐波实时提取方法

Publications (2)

Publication Number Publication Date
CN112362968A true CN112362968A (zh) 2021-02-12
CN112362968B CN112362968B (zh) 2021-07-02

Family

ID=74533116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011299697.9A Active CN112362968B (zh) 2020-11-18 2020-11-18 一种基于预调制cdsc与sdft的单相谐波实时提取方法

Country Status (1)

Country Link
CN (1) CN112362968B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864800A (zh) * 2022-12-29 2023-03-28 浙江大学 一种多采样信号的无延时谐波混叠抑制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098937A1 (en) * 2000-06-20 2001-12-27 Scientific Systems Research Limited A method of signal sampling
US20030104783A1 (en) * 2001-12-04 2003-06-05 Esion-Tech, Llc Adaptive electromagnetic interference rejection system and method
CN103529347A (zh) * 2013-10-14 2014-01-22 东南大学 一种基于谐波分析的级联逆变器h桥单元故障检测方法
CN105137179A (zh) * 2015-08-24 2015-12-09 国网甘肃省电力公司 一种基于级联延迟信号消除法的指定次谐波检测方法
CN105425011A (zh) * 2015-11-05 2016-03-23 山东大学 一种适用于单相畸变电网的非线性幅相检测方法
CN105911350A (zh) * 2016-04-05 2016-08-31 苏州大学 频率自适应递归svft谐波序分量实时检测方法及系统
CN106027038A (zh) * 2016-05-13 2016-10-12 电子科技大学 一种基于延时信号消除法的改进型三相锁相环技术
CN108037361A (zh) * 2017-12-05 2018-05-15 南京福致通电气自动化有限公司 一种基于滑动窗dft的高精度谐波参数估计方法
CN109039034A (zh) * 2018-07-16 2018-12-18 南京邮电大学 基于任意步长滑动傅立叶变换的多功能并网逆变器谐波补偿方法
CN110061615A (zh) * 2019-06-03 2019-07-26 上海理工大学 逆变器非线性特性的定子电流谐波补偿方法
CN111786390A (zh) * 2020-06-08 2020-10-16 华中科技大学 一种基于谐波序列提取的矢量重复控制方法及系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098937A1 (en) * 2000-06-20 2001-12-27 Scientific Systems Research Limited A method of signal sampling
US20030104783A1 (en) * 2001-12-04 2003-06-05 Esion-Tech, Llc Adaptive electromagnetic interference rejection system and method
CN103529347A (zh) * 2013-10-14 2014-01-22 东南大学 一种基于谐波分析的级联逆变器h桥单元故障检测方法
CN105137179A (zh) * 2015-08-24 2015-12-09 国网甘肃省电力公司 一种基于级联延迟信号消除法的指定次谐波检测方法
CN105425011A (zh) * 2015-11-05 2016-03-23 山东大学 一种适用于单相畸变电网的非线性幅相检测方法
CN105911350A (zh) * 2016-04-05 2016-08-31 苏州大学 频率自适应递归svft谐波序分量实时检测方法及系统
CN106027038A (zh) * 2016-05-13 2016-10-12 电子科技大学 一种基于延时信号消除法的改进型三相锁相环技术
CN108037361A (zh) * 2017-12-05 2018-05-15 南京福致通电气自动化有限公司 一种基于滑动窗dft的高精度谐波参数估计方法
CN109039034A (zh) * 2018-07-16 2018-12-18 南京邮电大学 基于任意步长滑动傅立叶变换的多功能并网逆变器谐波补偿方法
CN110061615A (zh) * 2019-06-03 2019-07-26 上海理工大学 逆变器非线性特性的定子电流谐波补偿方法
CN111786390A (zh) * 2020-06-08 2020-10-16 华中科技大学 一种基于谐波序列提取的矢量重复控制方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWU LIU ET.AL: "Fast and Flexible Selective Harmonic Extraction Methods Based on the Generalized Discrete Fourier Transform", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
MD. SHAMIM REZA ET.AL: "A Robust Technique for Single-Phase Grid Voltage Fundamental and Harmonic Parameter Estimation", 《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》 *
朱萍: "基于级联信号延迟消除算法的快速指定次谐波提取", 《电气自动化》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864800A (zh) * 2022-12-29 2023-03-28 浙江大学 一种多采样信号的无延时谐波混叠抑制方法

Also Published As

Publication number Publication date
CN112362968B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
Bertocco et al. Compressive sensing of a Taylor-Fourier multifrequency model for synchrophasor estimation
Platas-Garza et al. Dynamic phasor and frequency estimates through maximally flat differentiators
Dash et al. Harmonic estimation in a power system using adaptive perceptrons
Duda et al. Harmonic phasor estimation with flat-top FIR filter
CN109831184B (zh) 一种带通滤波方法、系统、存储介质及终端设备
Kušljević et al. Multiple-resonator-based power system Taylor-Fourier harmonic analysis
Tyagi et al. Comprehensive performance evaluation of computationally efficient discrete Fourier transforms for frequency estimation
Kusljevic Simultaneous frequency and harmonic magnitude estimation using decoupled modules and multirate sampling
Chierchie et al. Simple real-time digital PWM implementation for class-D amplifiers with distortion-free baseband
CN112362968B (zh) 一种基于预调制cdsc与sdft的单相谐波实时提取方法
CN109828154B (zh) 一种分频段复合正交脉冲注入的三相电网阻抗测量方法
Suhanova et al. Application of simulink for simulation of the RMS measurement method based on low-pass filtration
Reza et al. Fast and accurate frequency estimation in distorted grids using a three‐sample based algorithm
Orallo et al. Study on Single-bin Sliding DFT algorithms: Comparison, stability issues and frequency adaptivity
Borisov et al. A computationally efficient RDFT-based reference signal generator for active compensators
Pan et al. LCL APF based on fractional-order fast repetitive control strategy
Zhang et al. Fast transient harmonic selective extraction based on modulation-CDSC-SDFT
Sridharan et al. An improved grid synchronization method of grid-interactive power converter system during distorted grid conditions
Petrović et al. New procedure for harmonics estimation based on Hilbert transformation
de Carvalho et al. A PID SRF‐PLL based algorithm for positive‐sequence synchrophasor measurements
Kušljević Adaptive resonator-based method for power system harmonic analysis
Burstinghaus et al. Advanced resampling techniques for PWM amplifiers in real-time applications
CN112557751A (zh) 一种基于dft迭代法的谐波参数估计方法
CN109709397B (zh) 一种加连续Hanning窗的电网谐波非同步压缩感知检测方法
Bertocco et al. Numerical algorithms for power measurements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant