CN112362149B - 基于竖向位移影响面加载动态识别车辆轴重方法和系统 - Google Patents

基于竖向位移影响面加载动态识别车辆轴重方法和系统 Download PDF

Info

Publication number
CN112362149B
CN112362149B CN202010994176.9A CN202010994176A CN112362149B CN 112362149 B CN112362149 B CN 112362149B CN 202010994176 A CN202010994176 A CN 202010994176A CN 112362149 B CN112362149 B CN 112362149B
Authority
CN
China
Prior art keywords
bridge
vertical displacement
vehicle
load
axle load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010994176.9A
Other languages
English (en)
Other versions
CN112362149A (zh
Inventor
严定国
殷鹏程
李桂林
瞿国钊
文望青
严爱国
张晓江
姜洪劲
张�杰
赵丹阳
胡方杰
许三平
张玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Siyuan Survey and Design Group Co Ltd
Original Assignee
China Railway Siyuan Survey and Design Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Siyuan Survey and Design Group Co Ltd filed Critical China Railway Siyuan Survey and Design Group Co Ltd
Priority to CN202010994176.9A priority Critical patent/CN112362149B/zh
Publication of CN112362149A publication Critical patent/CN112362149A/zh
Application granted granted Critical
Publication of CN112362149B publication Critical patent/CN112362149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/03Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种竖向位移影响面加载动态识别车辆轴重方法,包括:提取梁型类型及结构参数控制信息;提取竖向位移测量点理论位移影响面控制信息;根据加载试验桥梁位移影响面结果修正位移影响面;设置触发识别车辆轴重识别对应竖向位移阈值;车辆轴重识别系统识别通过桥梁车辆轴重;竖向位移触发桥梁安全风险预警系统。本发明集合大数据、机器学习、深度学习、安全监控、自动化控制、计算机技术、精密传感技术等综合应用,实现在提取结构自身特性参数及实时结构响应的基础上,基于结构动态荷载引起的竖向位移为识别参数,反向识别桥梁车辆荷载,实现新一代智能监控产品以智能计算为核心,以自感应、自适应、自学习和自决策为显著特征的识别系统及方法。

Description

基于竖向位移影响面加载动态识别车辆轴重方法和系统
技术领域
本发明涉及的是车辆轴重识技术领域,特别涉及基于一种竖向位移影响面加载动态识别车辆轴重方法和系统。
背景技术
现有大桥识别车辆荷载,一般分为动态称重方法和静态称重方法,其中,静态称重方法使用最广泛,用静态称重方法检测超重车一般需要专门的磅秤,成本较高,且需要将车辆停下称重,对于交通流量较大的桥梁容易造成交通拥堵。采用该称重系统,往往成为交通通道卡点。而且静态称重仅能监测出总重,无法获得车辆各车轴重量分布情况。
另一种基于铺面的动态称重方法,使用铺设在桥面的设备来对桥面上的车辆进行称重,该方法对路面造成一定程度损伤,且车流易对设备造成损伤,限制了设备的可使用期限。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的基于竖向位移影响面加载动态识别车辆轴重方法和系统。
基于竖向位移影响面加载动态识别车辆轴重方法,包括:
S100.提取梁型类型及结构参数控制信息,具体为:获取需要的桥梁类型、桥梁跨度、桥面宽度、截面类型分布、截面惯性矩结构特性参数;
S200.提取竖向位移测量点位移影响面控制信息,具体为:采用有限元计算分析,提取竖向位移测量点位移影响面设计参数,包含沿横纵向预设间距的竖向位移影响线数值,绘制出竖向位移影响面;
S300.根据加载试验桥梁位移影响线结果修正竖向位移影响面,具体为:根据正则化解计算、最小二乘法解校核,提取试验桥梁控制点位移影响线,引入试验修正系数,建立试验桥梁控制点位移影响线与对应竖向位移影响线数值解对应关系,引入相似比系数,形成试验修正竖向位移影响面;
S400.设置触发识别车辆轴重识别对应竖向位移阈值,具体为:在提取的桥梁动挠度曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形,提取最大动挠度与竖位移阈值比对值,触发识别车辆轴重系统;
S500.车辆轴重识别系统识别通过桥梁车辆轴重,具体为:提取时间间隔△t内竖向位移,求解方程,反向识别车辆轴重。
进一步地,还包括:S600.竖向位移触发桥梁安全风险预警系统,具体为:根据反向识别车辆轴重,识别超重车辆,按照超重车辆荷载等级,确定触发桥梁安全风险等级,相应对应预警系统。
进一步地,还包括:S700.将桥梁动态荷载动态识别输出。
进一步地,S700具体为:三维视图输出时程关联识别车型、位置及荷载,三维视图输出超重车辆荷载等级、语音输出超重车辆荷载等级,表格输出时程关联识别车型、位置及荷载、超重车辆荷载等级。
进一步地,S100具体为:
S101、获取桥梁类型参数信息;
S102、获取桥梁跨度布置信息,划分纵桥向位移影响线网格,提取间隔及个数;
S103、获取桥面宽度布置信息,划分横桥向位移影响线网格,提取间隔及个数;
S104、获取截面类型分布信息,确定截面类型个数、提取桥梁高度、截面面积、截面惯性矩结构参数。
进一步地,S200具体为:
S201、根据提取梁型类型及结构参数控制信息,建立有限元模型;
S202、计算控制点沿桥梁跨度及桥梁宽度范围内影响面,其中计算控制点包含1/4或3/4跨度、1/2跨度,所述计算控制点包含1/4或3/4跨度、1/2跨度,其中1/2跨度控制点用于车辆轴重系统反向识别,1/4或3/4跨度控制点用于车辆轴重系统识别校核;
S203、提取竖向位移控制点位移影响面设计参数,包含沿纵向0.3m×横向0.3m间距的竖向位移影响线数值,采用(x,z)、(y,z)数组表示;
S204、沿x方向(纵桥向)、y方向(横桥向)绘制竖向位移影响线值,合成竖向位移影响面。
进一步地,S400具体为:
S401、安装于梁底的动挠度仪,包含微波雷达动挠度仪、激光位移计,识别桥梁竖向位移时程曲线;
S402、提取的桥梁竖向位移时程曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形;
S403、提取最大竖向位移植与竖向位移阈值比对,触发识别车辆轴重系统。
进一步地,S500具体为:
S501、提取桥梁结构特性参数识别结果;
S502、接收自适应算法滤波所得时程曲线;
S503、通过设置时间参数t带宽宽度来控制桥梁动态荷载识别时间区域范围△t;
S504、判别识别时间区域△t范围内荷载数量,确定参数计算数量;
S505、求解竖向位移影响面与车辆轴重识别关联方程,反向识别车辆轴重。
本发明还公开了一种基于竖向位移影响面加载动态识别车辆轴重系统,包括:梁型类型及结构参数获取单元、竖向位移测量点位移影响面获取单元、修正竖向位移影响面单元、触发识别车辆轴重系统单元、车辆轴重识别单元;其中:
梁型类型及结构参数获取单元,用于提取梁型类型及结构参数控制信息,具体为:获取需要的桥梁类型、桥梁跨度、桥面宽度、截面类型分布、截面惯性矩结构特性参数;
竖向位移测量点位移影响面获取单元,用于提取竖向位移测量点位移影响面控制信息,具体为:采用有限元计算分析,提取竖向位移测量点位移影响面设计参数,包含沿横纵向预设间距的竖向位移影响线数值,绘制出竖向位移影响面;
修正竖向位移影响面单元,用于根据加载试验桥梁位移影响线结果修正竖向位移影响面,具体为:根据正则化解计算、最小二乘法解校核,提取试验桥梁控制点位移影响线,引入试验修正系数,建立试验桥梁控制点位移影响线与对应竖向位移影响线数值解对应关系,引入相似比系数,形成试验修正竖向位移影响面;
触发识别车辆轴重系统单元,用于设置触发识别车辆轴重识别对应竖向位移阈值,具体为:在提取的桥梁动挠度曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形,提取最大动挠度与竖位移阈值比对值,触发识别车辆轴重系统;
车辆轴重识别单元,用于车辆轴重识别系统识别通过桥梁车辆轴重,具体为:提取时间间隔△t内竖向位移,求解方程,反向识别车辆轴重。
进一步地,基于竖向位移影响面加载动态识别车辆轴重系统,还包括:桥梁动态荷载动态识别输出单元,用于将桥梁动态荷载动态识别输出,具体为三维视图输出时程关联识别车型、位置及荷载,三维视图输出超重车辆荷载等级、语音输出超重车辆荷载等级,表格输出时程关联识别车型、位置及荷载、超重车辆荷载等级。
本发明实施例提供的上述技术方案的有益效果至少包括:
本发明提出的基于竖向位移影响面加载动态识别车辆轴重方法和系统,该方法和系统是集合大数据、机器学习、深度学习、安全监控、自动化控制、计算机技术、精密传感技术等综合应用,实现在提取结构自身特性参数及实时结构响应的基础上,基于结构动态荷载引起的竖向位移为识别参数,反向识别桥梁车辆荷载,实现新一代智能监控产品以智能计算为核心,以自感应、自适应、自学习和自决策为显著特征的识别方法和系统。该方法和系统适用于桥梁健康监测领域和城市桥梁车辆识别及车辆荷载识别,具有安全、经济、快速、便捷、地域适应性强、环境条件适应性好等突出优点,具有广泛的应用前景。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例1中,基于竖向位移影响面加载动态识别车辆轴重方法的流程图;
图2为本发明实施例1中,S100步骤具体流程图;
图3为本发明实施例1中,S200步骤具体流程图;
图4为本发明实施例1中,S400步骤具体流程图;
图5为本发明实施例1中,S500步骤具体流程图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1
一种基于竖向位移影响面加载动态识别车辆轴重方法,包括:
S100.提取梁型类型及结构参数控制信息,具体为:获取需要的桥梁类型、桥梁跨度、桥面宽度、截面类型分布、截面惯性矩结构特性参数。
在一些优选实施例中,S100具体为:
S101、获取桥梁类型参数信息;
S102、获取桥梁跨度布置信息,划分纵桥向位移影响线网格,提取间隔及个数;
S103、获取桥面宽度布置信息,划分横桥向位移影响线网格,提取间隔及个数;
S104、获取截面类型分布信息,确定截面类型个数、提取桥梁高度、截面面积、截面惯性矩结构参数。
S200.提取竖向位移测量点位移影响面控制信息,具体为:采用有限元计算分析,提取竖向位移测量点位移影响面设计参数,包含沿横纵向预设间距的竖向位移影响线数值,绘制出竖向位移影响面。
在一些优选实施例中,S200具体为:
S201、根据提取梁型类型及结构参数控制信息,建立有限元模型;
S202、计算控制点沿桥梁跨度及桥梁宽度范围内影响面,其中计算控制点包含1/4或3/4跨度、1/2跨度,所述计算控制点包含1/4或3/4跨度、1/2跨度,其中1/2跨度控制点用于车辆轴重系统反向识别,1/4或3/4跨度控制点用于车辆轴重系统识别校核;
S203、提取竖向位移控制点位移影响面设计参数,包含沿纵向0.3m×横向0.3m间距的竖向位移影响线数值,采用(x,z)、(y,z)数组表示;
S204、沿x方向(纵桥向)、y方向(横桥向)绘制竖向位移影响线值,合成竖向位移影响面。
S300.根据加载试验桥梁位移影响线结果修正竖向位移影响面,具体为:根据正则化解计算、最小二乘法解校核,提取试验桥梁控制点位移影响线,引入试验修正系数,建立试验桥梁控制点位移影响线与对应竖向位移影响线数值解对应关系,引入相似比系数,形成试验修正竖向位移影响面。
S400.设置触发识别车辆轴重识别对应竖向位移阈值,具体为:在提取的桥梁动挠度曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形,提取最大动挠度与竖位移阈值比对值,触发识别车辆轴重系统。
在一些优选实施例中,S400具体为:
S401、安装于梁底的动挠度仪,包含微波雷达动挠度仪、激光位移计,识别桥梁竖向位移时程曲线;
S402、提取的桥梁竖向位移时程曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形;
S403、提取最大竖向位移植与竖向位移阈值比对,触发识别车辆轴重系统。
S500.车辆轴重识别系统识别通过桥梁车辆轴重,具体为:提取时间间隔△t内竖向位移,求解方程,反向识别车辆轴重。
在一些优选实施例中,S500具体为:
S501、提取桥梁结构特性参数识别结果;
S502、接收自适应算法滤波所得时程曲线;
S503、通过设置时间参数t带宽宽度来控制桥梁动态荷载识别时间区域范围△t;
S504、判别识别时间区域△t范围内荷载数量,确定参数计算数量;
S505、求解竖向位移影响面与车辆轴重识别关联方程,反向识别车辆轴重。
在一些优选实施例中,基于竖向位移影响面加载动态识别车辆轴重方法,还包括:S600.竖向位移触发桥梁安全风险预警系统,具体为:根据反向识别车辆轴重,识别超重车辆,按照超重车辆荷载等级,确定触发桥梁安全风险等级,相应对应预警系统。
在一些优选实施例中,基于竖向位移影响面加载动态识别车辆轴重方法,还包括:S700.将桥梁动态荷载动态识别输出。,S700具体为:三维视图输出时程关联识别车型、位置及荷载,三维视图输出超重车辆荷载等级、语音输出超重车辆荷载等级,表格输出时程关联识别车型、位置及荷载、超重车辆荷载等级。
本发明提出的基于竖向位移影响面加载动态识别车辆轴重方法,该方法是集合大数据、机器学习、深度学习、安全监控、自动化控制、计算机技术、精密传感技术等综合应用,实现在提取结构自身特性参数及实时结构响应的基础上,基于结构动态荷载引起的竖向位移为识别参数,反向识别桥梁车辆荷载,实现新一代智能监控产品以智能计算为核心,以自感应、自适应、自学习和自决策为显著特征的识别方法。该方法适用于桥梁健康监测领域和城市桥梁车辆识别及车辆荷载识别,具有安全、经济、快速、便捷、地域适应性强、环境条件适应性好等突出优点,具有广泛的应用前景。
实施例2
本实施例公开了基于竖向位移影响面加载动态识别车辆轴重系统,包括:梁型类型及结构参数获取单元、竖向位移测量点位移影响面获取单元、修正竖向位移影响面单元、触发识别车辆轴重系统单元、车辆轴重识别单元;其中:
梁型类型及结构参数获取单元,用于提取梁型类型及结构参数控制信息,具体为:获取需要的桥梁类型、桥梁跨度、桥面宽度、截面类型分布、截面惯性矩结构特性参数。梁型类型及结构参数获取单元具体的工作方法已在实施例1中进行详细描述,在此不再进行赘述。
竖向位移测量点位移影响面获取单元,用于提取竖向位移测量点位移影响面控制信息,具体为:采用有限元计算分析,提取竖向位移测量点位移影响面设计参数,包含沿横纵向预设间距的竖向位移影响线数值,绘制出竖向位移影响面;竖向位移测量点位移影响面获取单元具体的工作方法已在实施例1中进行详细描述,在此不再进行赘述。
修正竖向位移影响面单元,用于根据加载试验桥梁位移影响线结果修正竖向位移影响面,具体为:根据正则化解计算、最小二乘法解校核,提取试验桥梁控制点位移影响线,引入试验修正系数,建立试验桥梁控制点位移影响线与对应竖向位移影响线数值解对应关系,引入相似比系数,形成试验修正竖向位移影响面;修正竖向位移影响面单元具体的工作方法已在实施例1中进行详细描述,在此不再进行赘述。
触发识别车辆轴重系统单元,用于设置触发识别车辆轴重识别对应竖向位移阈值,具体为:在提取的桥梁动挠度曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形,提取最大动挠度与竖位移阈值比对值,触发识别车辆轴重系统;触发识别车辆轴重系统单元具体的工作方法已在实施例1中进行详细描述,在此不再进行赘述。
车辆轴重识别单元,用于车辆轴重识别系统识别通过桥梁车辆轴重,具体为:提取时间间隔△t内竖向位移,求解方程,反向识别车辆轴重。车辆轴重识别单元具体的工作方法已在实施例1中进行详细描述,在此不再进行赘述。
本发明提出的基于竖向位移影响面加载动态识别车辆轴重系统,该系统是集合大数据、机器学习、深度学习、安全监控、自动化控制、计算机技术、精密传感技术等综合应用,实现在提取结构自身特性参数及实时结构响应的基础上,基于结构动态荷载引起的竖向位移为识别参数,反向识别桥梁车辆荷载,实现新一代智能监控产品以智能计算为核心,以自感应、自适应、自学习和自决策为显著特征的识别系统。该系统适用于桥梁健康监测领域和城市桥梁车辆识别及车辆荷载识别,具有安全、经济、快速、便捷、地域适应性强、环境条件适应性好等突出优点,具有广泛的应用前景。
应该明白,公开的过程中的步骤的特定顺序或层次是示例性方法的实例。基于设计偏好,应该理解,过程中的步骤的特定顺序或层次可以在不脱离本公开的保护范围的情况下得到重新安排。所附的方法权利要求以示例性的顺序给出了各种步骤的要素,并且不是要限于所述的特定顺序或层次。
在上述的详细描述中,各种特征一起组合在单个的实施方案中,以简化本公开。不应该将这种公开方法解释为反映了这样的意图,即,所要求保护的主题的实施方案需要清楚地在每个权利要求中所陈述的特征更多的特征。相反,如所附的权利要求书所反映的那样,本发明处于比所公开的单个实施方案的全部特征少的状态。因此,所附的权利要求书特此清楚地被并入详细描述中,其中每项权利要求独自作为本发明单独的优选实施方案。
本领域技术人员还应当理解,结合本文的实施例描述的各种说明性的逻辑框、模块、电路和算法步骤均可以实现成电子硬件、计算机软件或其组合。为了清楚地说明硬件和软件之间的可交换性,上面对各种说明性的部件、框、模块、电路和步骤均围绕其功能进行了一般地描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个系统所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为背离本公开的保护范围。
结合本文的实施例所描述的方法或者算法的步骤可直接体现为硬件、由处理器执行的软件模块或其组合。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质连接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该ASIC可以位于用户终端中。当然,处理器和存储介质也可以作为分立组件存在于用户终端中。
对于软件实现,本申请中描述的技术可用执行本申请所述功能的模块(例如,过程、函数等)来实现。这些软件代码可以存储在存储器单元并由处理器执行。存储器单元可以实现在处理器内,也可以实现在处理器外,在后一种情况下,它经由各种手段以通信方式耦合到处理器,这些都是本领域中所公知的。
上文的描述包括一个或多个实施例的举例。当然,为了描述上述实施例而描述部件或方法的所有可能的结合是不可能的,但是本领域普通技术人员应该认识到,各个实施例可以做进一步的组合和排列。因此,本文中描述的实施例旨在涵盖落入所附权利要求书的保护范围内的所有这样的改变、修改和变型。此外,就说明书或权利要求书中使用的术语“包含”,该词的涵盖方式类似于术语“包括”,就如同“包括,”在权利要求中用作衔接词所解释的那样。此外,使用在权利要求书的说明书中的任何一个术语“或者”是要表示“非排它性的或者”。

Claims (9)

1.基于竖向位移影响面加载动态识别车辆轴重方法,其特征在于,包括:
S100.提取梁型类型及结构参数控制信息,具体为:获取需要的桥梁类型、桥梁跨度、桥面宽度、截面类型分布、截面惯性矩结构特性参数;
S200.提取竖向位移测量点位移影响面控制信息,具体为:采用有限元计算分析,提取竖向位移测量点位移影响面设计参数,包含沿横纵向预设间距的竖向位移影响线数值,绘制出竖向位移影响面;
S300.根据加载试验桥梁位移影响线结果修正竖向位移影响面,具体为:根据正则化解计算、最小二乘法解校核,提取试验桥梁控制点位移影响线,引入试验修正系数,建立试验桥梁控制点位移影响线与对应竖向位移影响线数值解对应关系,引入相似比系数,形成试验修正竖向位移影响面;
S400.设置触发识别车辆轴重识别对应竖向位移阈值,具体为:在提取的桥梁动挠度曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形,提取最大动挠度与竖位移阈值比对值,触发识别车辆轴重系统;
S500.车辆轴重识别系统识别通过桥梁车辆轴重,具体为:提取时间间隔△t内竖向位移,求解方程,反向识别车辆轴重;其中,S500具体为:
S501、提取桥梁结构特性参数识别结果;
S502、接收自适应算法滤波所得时程曲线;
S503、通过设置时间参数t带宽宽度来控制桥梁动态荷载识别时间区域范围△t;
S504、判别识别时间区域△t范围内荷载数量,确定参数计算数量;
S505、求解竖向位移影响面与车辆轴重识别关联方程,反向识别车辆轴重。
2.如权利要求1的基于竖向位移影响面加载动态识别车辆轴重方法,其特征在于,还包括:S600.竖向位移触发桥梁安全风险预警系统,具体为:根据反向识别车辆轴重,识别超重车辆,按照超重车辆荷载等级,确定触发桥梁安全风险等级,相应对应预警系统。
3.如权利要求1的基于竖向位移影响面加载动态识别车辆轴重方法,其特征在于,还包括:S700.将桥梁动态荷载动态识别输出。
4.如权利要求3的基于竖向位移影响面加载动态识别车辆轴重方法,其特征在于,S700具体为:三维视图输出时程关联识别车型、位置及荷载,三维视图输出超重车辆荷载等级、语音输出超重车辆荷载等级,表格输出时程关联识别车型、位置及荷载、超重车辆荷载等级。
5.如权利要求1的基于竖向位移影响面加载动态识别车辆轴重方法,其特征在于,S100具体为:
S101、获取桥梁类型参数信息;
S102、获取桥梁跨度布置信息,划分纵桥向位移影响线网格,提取间隔及个数;
S103、获取桥面宽度布置信息,划分横桥向位移影响线网格,提取间隔及个数;
S104、获取截面类型分布信息,确定截面类型个数、提取桥梁高度、截面面积、截面惯性矩结构参数。
6.如权利要求1的基于竖向位移影响面加载动态识别车辆轴重方法,其特征在于,S200具体为:
S201、根据提取梁型类型及结构参数控制信息,建立有限元模型;
S202、计算控制点沿桥梁跨度及桥梁宽度范围内影响面,其中计算控制点包含1/4或3/4跨度、1/2跨度,所述计算控制点包含1/4或3/4跨度、1/2跨度,其中1/2跨度控制点用于车辆轴重系统反向识别,1/4或3/4跨度控制点用于车辆轴重系统识别校核;
S203、提取竖向位移控制点位移影响面设计参数,包含沿纵向0.3m×横向0.3m间距的竖向位移影响线数值,采用(x,z)、(y,z)数组表示;
S204、沿纵桥向x方向、横桥向y方向绘制竖向位移影响线值,合成竖向位移影响面。
7.如权利要求1的基于竖向位移影响面加载动态识别车辆轴重方法,其特征在于,S400具体为:
S401、安装于梁底的动挠度仪,包含微波雷达动挠度仪、激光位移计,识别桥梁竖向位移时程曲线;
S402、提取的桥梁竖向位移时程曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形;
S403、提取最大竖向位移植与竖向位移阈值比对,触发识别车辆轴重系统。
8.基于竖向位移影响面加载动态识别车辆轴重系统,其特征在于,包括:梁型类型及结构参数获取单元、竖向位移测量点位移影响面获取单元、修正竖向位移影响面单元、触发识别车辆轴重系统单元、车辆轴重识别单元;其中:
梁型类型及结构参数获取单元,用于提取梁型类型及结构参数控制信息,具体为:获取需要的桥梁类型、桥梁跨度、桥面宽度、截面类型分布、截面惯性矩结构特性参数;
竖向位移测量点位移影响面获取单元,用于提取竖向位移测量点位移影响面控制信息,具体为:采用有限元计算分析,提取竖向位移测量点位移影响面设计参数,包含沿横纵向预设间距的竖向位移影响线数值,绘制出竖向位移影响面;
修正竖向位移影响面单元,用于根据加载试验桥梁位移影响线结果修正竖向位移影响面,具体为:根据正则化解计算、最小二乘法解校核,提取试验桥梁控制点位移影响线,引入试验修正系数,建立试验桥梁控制点位移影响线与对应竖向位移影响线数值解对应关系,引入相似比系数,形成试验修正竖向位移影响面;
触发识别车辆轴重系统单元,用于设置触发识别车辆轴重识别对应竖向位移阈值,具体为:在提取的桥梁动挠度曲线值,通过自适应算法,过滤桥梁动态荷载冲击效应及强迫振动,剔除相关干扰波形,提取最大动挠度与竖位移阈值比对值,触发识别车辆轴重系统;
车辆轴重识别单元,用于车辆轴重识别系统识别通过桥梁车辆轴重,具体为:提取时间间隔△t内竖向位移,求解方程,反向识别车辆轴重;具体为:提取时间间隔△t内竖向位移,求解方程,反向识别车辆轴重;其中,车辆轴重识别单元工作方法为:
S501、提取桥梁结构特性参数识别结果;
S502、接收自适应算法滤波所得时程曲线;
S503、通过设置时间参数t带宽宽度来控制桥梁动态荷载识别时间区域范围△t;
S504、判别识别时间区域△t范围内荷载数量,确定参数计算数量;
S505、求解竖向位移影响面与车辆轴重识别关联方程,反向识别车辆轴重。
9.如权利要求8的基于竖向位移影响面加载动态识别车辆轴重系统,其特征在于,还包括:桥梁动态荷载动态识别输出单元,用于将桥梁动态荷载动态识别输出,具体为三维视图输出时程关联识别车型、位置及荷载,三维视图输出超重车辆荷载等级、语音输出超重车辆荷载等级,表格输出时程关联识别车型、位置及荷载、超重车辆荷载等级。
CN202010994176.9A 2020-09-21 2020-09-21 基于竖向位移影响面加载动态识别车辆轴重方法和系统 Active CN112362149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010994176.9A CN112362149B (zh) 2020-09-21 2020-09-21 基于竖向位移影响面加载动态识别车辆轴重方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010994176.9A CN112362149B (zh) 2020-09-21 2020-09-21 基于竖向位移影响面加载动态识别车辆轴重方法和系统

Publications (2)

Publication Number Publication Date
CN112362149A CN112362149A (zh) 2021-02-12
CN112362149B true CN112362149B (zh) 2022-01-18

Family

ID=74516560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010994176.9A Active CN112362149B (zh) 2020-09-21 2020-09-21 基于竖向位移影响面加载动态识别车辆轴重方法和系统

Country Status (1)

Country Link
CN (1) CN112362149B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593800B (zh) * 2022-02-28 2023-06-02 中铁第四勘察设计院集团有限公司 桥梁动态荷载识别方法、装置、电子设备及存储介质
CN114577385B (zh) * 2022-02-28 2023-08-04 中铁第四勘察设计院集团有限公司 桥梁动态荷载识别方法及装置
CN116343495B (zh) * 2023-03-21 2024-01-30 长安大学 基于压电储能的道路、桥梁超载预警方法
CN116576951B (zh) * 2023-05-12 2024-01-02 中储恒科物联网系统有限公司 一种跳跃式称重带称重计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103915A2 (en) * 2006-03-06 2007-09-13 The Timken Company A load sensing wheel end
CN104573274A (zh) * 2015-01-27 2015-04-29 南京工业大学 车辆荷载下基于位移时程面积的结构有限元模型修正方法
CN207395997U (zh) * 2017-10-18 2018-05-22 厦门大学 一种桥梁影响线识别系统
JP2018142948A (ja) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 撮像装置、軸重計測システム、および撮像方法
CN108563887A (zh) * 2018-04-23 2018-09-21 北京智交慧桥科技有限公司 一种桥梁荷载试验的智能分析系统
CN111354035A (zh) * 2020-03-17 2020-06-30 陕西高速机械化工程有限公司 一种桥梁动态荷载自动检测与反演系统及方法
CN111581723A (zh) * 2020-04-30 2020-08-25 哈尔滨工业大学 一种车辆缓慢通过简支梁桥跨中位移影响线快速提取方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103915A2 (en) * 2006-03-06 2007-09-13 The Timken Company A load sensing wheel end
CN104573274A (zh) * 2015-01-27 2015-04-29 南京工业大学 车辆荷载下基于位移时程面积的结构有限元模型修正方法
JP2018142948A (ja) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 撮像装置、軸重計測システム、および撮像方法
CN207395997U (zh) * 2017-10-18 2018-05-22 厦门大学 一种桥梁影响线识别系统
CN108563887A (zh) * 2018-04-23 2018-09-21 北京智交慧桥科技有限公司 一种桥梁荷载试验的智能分析系统
CN111354035A (zh) * 2020-03-17 2020-06-30 陕西高速机械化工程有限公司 一种桥梁动态荷载自动检测与反演系统及方法
CN111581723A (zh) * 2020-04-30 2020-08-25 哈尔滨工业大学 一种车辆缓慢通过简支梁桥跨中位移影响线快速提取方法

Also Published As

Publication number Publication date
CN112362149A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN112362149B (zh) 基于竖向位移影响面加载动态识别车辆轴重方法和系统
CN112347535B (zh) 基于拱桥吊杆力影响面加载动态识别车辆轴重方法和系统
JP6883768B2 (ja) モニタリングシステム
CN107076607B (zh) 称量秤诊断方法
KR101105854B1 (ko) 교량 응답특성을 이용한 차량중량 계측 시스템 및 그 방법
KR101231791B1 (ko) 강교량 수직보강재의 응답특성을 이용한 차량중량 계측 시스템
CN101504333B (zh) 基于应变监测的索结构中索系统的递进式健康监测方法
CN112362148B (zh) 基于斜拉索索力影响面加载动态识别车辆轴重方法和系统
CN106644326A (zh) 基于动挠度的桥梁限载快速监测系统
CN110926735A (zh) 基于多维动态参数的桥梁结构快速诊断方法
CN115540987A (zh) 基于载荷传感器的动态车辆超载检测方法及控制装置
CN112507588A (zh) 一种超载车辆对桥梁影响的评估方法、系统及计算机设备
CN112307888B (zh) 一种基于机器视觉定位识别桥梁动态荷载方法和系统
CN112697249B (zh) 一种动态车辆超限判定方法及判定系统
CN114414023A (zh) 传感器异常诊断方法及装置、存储介质
CN116311150B (zh) 一种基于特定车辆挠度监测的桥梁损伤评定及预警方法
KR100794591B1 (ko) 차량정보 자동계측시스템
CN110569483A (zh) 一种基于高频北斗数据的长大桥梁病害通行事件识别方法
KR102332188B1 (ko) 정밀한 변형률-변위 예측을 위한 유전자 알고리즘과 ai 기술을 적용한 구조물의 계측 위치 및 개소 결정 방법
CN201811773U (zh) 轴重和总重量均精确测量的新型公路自动衡器
CN115468639A (zh) 一种桥梁监测与管理方法、装置、存储介质及设备
CN114593800A (zh) 桥梁动态荷载识别方法、装置、电子设备及存储介质
Ferris et al. Establishing chassis reliability testing targets based on road roughness
CN112179422A (zh) 一种利用桥梁挠度识别车轴和车速的方法和系统
Nowak et al. Monitoring of Truck Loads

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant