CN112358038A - 一种在mbr系统中包埋微生物强化降解dehp的方法 - Google Patents

一种在mbr系统中包埋微生物强化降解dehp的方法 Download PDF

Info

Publication number
CN112358038A
CN112358038A CN202011253655.1A CN202011253655A CN112358038A CN 112358038 A CN112358038 A CN 112358038A CN 202011253655 A CN202011253655 A CN 202011253655A CN 112358038 A CN112358038 A CN 112358038A
Authority
CN
China
Prior art keywords
dehp
bacillus subtilis
mbr
degradation
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011253655.1A
Other languages
English (en)
Inventor
张可
赵洲
陈佳
罗鸿兵
吴香伶
杨斯乔
王婷婷
曹慧玲
郭静悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Agricultural University
Original Assignee
Sichuan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Agricultural University filed Critical Sichuan Agricultural University
Priority to CN202011253655.1A priority Critical patent/CN112358038A/zh
Publication of CN112358038A publication Critical patent/CN112358038A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种在MBR系统中包埋微生物强化降解DEHP的方法,包括如下步骤:(1)制作固定化菌株;(2)接种固定化菌株;(3)降解DEHP,其有效解决了DEHP降解效率低的问题。

Description

一种在MBR系统中包埋微生物强化降解DEHP的方法
技术领域
本发明属于废水处理技术领域,具体涉及一种在MBR系统中包埋微生物强化降解DEHP的方法。
背景技术
邻苯二甲酸酯(PAEs)是一种重要的内分泌干扰化学物质,在工业上被广泛地用作增塑剂,每年的生产和消费量超过250万吨,占增塑剂总产量的80%。PAEs与塑料分子的结合主要通过氢键和范德华力,没有化学键的直接连接,很容易在工业产品生产、储存、使用和加工的过程中进入环境。研究表明,目前我国的工农业地区正遭受着不同程度的PAEs污染。PAEs有机污染物在自然状况下的水解和光解速度非常缓慢,其在中性条件下的水解速率几乎可以忽略不计,其半衰期范围从约3年的邻苯二甲酸二甲酯(DMP)到约为2000年的邻苯二甲酸二辛酯(DEHP),属于难降解有机污染物。人工降解PAEs的方法主要分别生物降解和非生物降解两类,其中非生物降解法包括物理吸附法和化学法;生物降解即指环境中微生物、植物对PAEs进行降解,该方法被认为是PAEs矿化降解的主要途径,微生物降解因为其高效、清洁、成本低等特点,被认为是降解PAEs最有效的方法。
邻苯二甲酸二辛酯简称DEHP是应用范围最广的PAEs,近年来在全球各地被广泛检出,对环境和人类的安全造成了巨大威胁。Wang等在南京中心市区及郊区大气中检测到DEHP含量为20.3ng/m3,略高于巴黎大气中DEHP的含量(18.9ng/m3)。随着DEHP不断被重视,关于其对生物学危害的研究也在近年内不断深入,已有多项研究证明DEHP具有强烈的毒性作用,其中主要包括致癌性、致畸性、生殖毒性、肝毒性、诱变性和内分泌干扰毒性等。DEHP作为PAEs的重要组成部分,具有污染范围广,对环境及人类健康存在巨大威胁的特点,寻找能高效降解DEHP的方法是降低PAEs环境风险的关键措施之一。
DEHP可通过非生物降解和生物降解这两种途径去除。其中非生物降解主要包括水解、光解、吸附和氧化等。报告显示,DEHP在自然条件下的光解和水解速率非常缓慢,在酸碱条件为中性的情况下,DEHP的水解速率几乎可忽略,半衰期长达2000年左右,且由于非生物降解法操作困难、成本较高、容易造成二次污染,目前得到应用较多的还是生物降解法。而在生物降解法中,微生物降解由于其生长周期快、去除率高且成本低等,得到较多的应用。目前,已从不同环境中分离筛选出多种DEHP高效降解菌,如分枝杆菌、诺卡氏菌、假单胞菌、芽孢杆菌等,但是,DEHP生物降解效率还有待进一步提高。
微生物菌体包埋固定化技术是指通过化学或物理方法将游离细胞限制在特定的空间区域,以保持细胞活性,近年来主要出现在污水脱氮、脱氨等的研究中。常用的包埋方式有截留、吸附、包裹、合成聚合物等。目前关于固定化技术对DEHP降解效果的研究还鲜有报道,其作用效果尚不清楚。
膜-生物反应器(Membrane Bio-Reactor,MBR)是一种由膜分离单元与生物处理单元相结合的新型水处理技术,以膜组件取代二沉池在生物反应器中保持高活性污泥浓度减少污水处理设施占地,并通过保持低污泥负荷减少污泥量,但MBR在使用中通常会吸附菌株和有害物质,大量的吸附会导致通水量降低,容易造成二次污染,减少使用寿命;另外,MBR技术用于降解DEHP的研究也鲜有报道。
综上所述,DEHP研究大多集中在厌氧条件下,而好氧条件下的研究相对较少,鲜有用MBR和固定化菌株技术共同降解DEHP的报道,对其降解途径也尚不十分清楚,且DEHP作为难降解有机物质,一般采用生物降解法,但DEHP生物降解效率还有待进一步提高。
发明内容
针对现有技术中存在的上述问题,本发明提供一种在MBR系统中包埋微生物强化降解DEHP的方法,其有效解决了DEHP降解效率低的问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
提供一种在MBR系统中包埋微生物强化降解DEHP的方法,包括如下步骤:
(1)制作固定化菌株:将含有枯草芽孢杆菌(Bacillus subtilis)菌株的MSM(Minimal Salt Medium,基础无机盐培养基)培养基与质量分数为4%-6%的海藻酸钠溶液按体积比1-2:1-2混合,再将混合液滴入质量分数为3%-5%的CaCl2溶液中交联反应5-7h,得到固定化菌株;
(2)接种固定化菌株:向MBR反应器中接种活性污泥和步骤(1)得到的固定化菌株,其中活性污泥和固定化菌株的体积比为98-100:6-7;
(3)降解DEHP:将含DEHP的污水pH调至6.5-7.0,将含DEHP的污水通入MBR反应器,在24℃-25℃的条件下进行降解,降解时间为40-50d。
根据上述技术方案,本发明具有以下优点:
1、使用MBR工艺和固定化菌株技术增强枯草芽孢杆菌对DEHP的降解效果,通过MBR反应器截留枯草芽孢杆菌,通过固定化菌株技术进一步防止枯草芽孢杆菌流失,保证降解DEHP的枯草芽孢杆菌数量,增加枯草芽孢杆菌降解DEHP的效率;
2、使用海藻酸钠作为包埋载体,与菌株混合形成悬浊液,保证固定化菌株一定的通透性,使枯草芽孢杆菌可以与DEHP充分接触,增强对DEHP的降解效果,采用CaCl2作为固定剂,与海藻酸钠反应生成海藻酸钙,将菌株固定在海藻酸钙中,既保证枯草芽孢杆菌的活性,又防止枯草芽孢杆菌流失,保证枯草芽孢杆菌对DEHP的降解效果;
3、活性污泥和固定化菌株的体积比为98-100:6-7,保证活性污泥和固定化菌株比例适中,防止活性污泥中的微环境被破坏,保证活性污泥和枯草芽孢杆菌对污水的处理作用;
4、DEHP的污水pH调至6.5-7.0,将含DEHP的污水通入MBR反应器,在24℃-25℃的条件下进行降解,调节pH和温度为枯草芽孢杆菌的最适pH和最适温度,增强枯草芽孢杆菌对DEHP的降解能力。
优选地,步骤(1)中含有枯草芽孢杆菌菌株的MSM培养基由OD600为0.9-1.0的枯草芽孢杆菌菌悬液和MSM培养基培养基按体积比4-5:18-20组成。
根据上述技术方案,本发明具有以下优点:
步骤(1)中含有枯草芽孢杆菌菌株的MSM培养基由OD600为0.9-1.0的枯草芽孢杆菌菌悬液和MSM培养基培养基按体积比4-5:18-20组成,防止枯草芽孢杆菌浓度过低、菌种数不足,导致降解能力不足;防止枯草芽孢杆菌浓度过高、菌种活性降低,导致降解能力不足。
优选地,上述MSM培养基由以下成分组成:
Figure BDA0002772422670000041
Figure BDA0002772422670000051
优选地,步骤(1)中海藻酸钠溶液的质量分数为4%。
优选地,步骤(1)中CaCl2溶液的质量分数为5%。
优选地,步骤(1)中含有枯草芽孢杆菌的MSM培养基与海藻酸钠溶液的体积比为1:1。
优选地,步骤(1)中交联时间为6h。
根据上述优选技术方案,本发明具有以下优点:
通过正交实验得出最优固化条件,海藻酸钠质量分数4%、CaCl2质量分数5%、细菌与海藻酸钠的比例1:1、交联时间6小时。在第46天时,固化细菌对MBR系统中DEHP去除率为91.9%,高于游离细菌7.2%。
优选地,步骤(2)中所述活性污泥和固定化菌株的体积比为100:7。
优选地,步骤(3)所述pH为7.0,温度为24℃,所述降解时间为50d。
根据上述技术方案,本发明具有以下优点:
步骤(3)所述pH为7.0,温度为24℃,提供最适pH和最适温度,保证枯草芽孢杆菌的降解效率,所述降解时间为50d,保证DEHP的去除率。
优选地,步骤(1)中枯草芽孢杆菌菌悬液OD600为1.0,所述枯草芽孢杆菌菌悬液和MSM培养基的体积比为5:20。
附图说明
图1为MBR反应器中游离菌(T1)、固定化菌(T2)和空白对照(CK)对COD及DEHP的去除效果;
图2为通过q-PCR提取引入空白小球(CK)、游离菌(T1)和固定化菌(T2)后污泥样品中细菌的16S rDNA基因拷贝数量;
图3为DEHP的降解途径及代谢产物。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。实施例中所述原料如无特殊说明,均为普通市售产品。
实施例1优化含枯草芽孢杆菌的MSM培养基制备参数
优化含枯草芽孢杆菌的MSM培养基制备参数,包括以下步骤:
(1)含枯草芽孢杆菌的MSM培养基制备:将枯草芽孢杆菌接种至LB培养基,24℃培养至OD600为0.9或1.0,再将4mL或5mL枯草芽孢杆菌菌悬液与18mL或20mL MSM培养基混合,得到含枯草芽孢杆菌的MSM培养基;
(2)筛选最优含枯草芽孢杆菌的MSM培养基制备参数:将步骤(1)所得的含枯草芽孢杆菌的MSM培养基42mL加入人工模拟废水中,调整pH值为7.0,温度为24℃,25天后检测DEHP的去除率。
其中,人工模拟废水中氮源为NH4SO4,磷源为KH2PO4,加入KCl5000 mg/L,微量元素FeSO4·7H2O 5000mg/L,ZnCl2 1000mg/L,MnCl2 1000mg/L,CoCl2·6H2O 200mg/L,CuSO4·5H2O 100mg/L,DEHP 5mg/L。
结果如表1所示,枯草芽孢杆菌菌悬液OD600为1.0、枯草芽孢杆菌菌悬液和MSM培养基体积比为5:20时,DEHP去除率最高。
表1枯草芽孢杆菌包埋参数的优化筛选实验结果
Figure BDA0002772422670000061
Figure BDA0002772422670000071
实施例2优化枯草芽孢杆菌包埋参数
使用海藻酸钠和氯化钙作为包埋及交联材料,优化枯草芽孢杆菌包埋参数包括以下步骤:
(1)制备固定化菌株:将5mL枯草芽孢杆菌菌悬液(OD600=1.0)与20mL MSM培养基在200mL锥形瓶内混合,然后对锥形瓶进行消毒灭菌工作。随后将含有枯草芽孢杆菌的MSM培养基与海藻酸钠结合,在4℃注射器的帮助下将混合物滴入CaCl2溶液,得到直径为4mm-5mm的球形固定化菌株;采用相同的方法制备了不含枯草芽孢杆菌的空白对照珠;
(2)正交参数选择:为了获得最佳固定化条件,将海藻酸钠质量分数、CaCl2质量分数、菌剂与海藻酸钠的体积比、交联时间作为因素,如表2所示,设计四因素三水平正交实验L9(3)4。其中海藻酸钠质量分数三个水平为4%、5%和6%,CaCl2质量分数的三个水平为3%、4%、5%,菌剂与海藻酸钠体积比的三个水平分别是1:1、1:2、2:1,交联时间的三个水平分别为5h、6h和7h。用无菌蒸馏水冲洗固定珠三次,随后将其储存于4℃,以备后续使用。
表2枯草芽孢杆菌包埋参数正交试验设计的影响因素和水平
Figure BDA0002772422670000072
(3)筛选优化包埋参数:为优化菌剂的固定条件,设计L9(34)正交实验,如表2所示,以海藻酸钠质量分数(A)、CaCl2质量分数(B)、细菌与海藻酸钠的比例(C)、交联时间(D)为因素,将42mL固定化菌株加入人工模拟废水中,调整pH值为7.0,温度为24℃,25天后检测DEHP的去除率。
其中,人工模拟废水中氮源为NH4SO4,磷源为KH2PO4,加入KCl5000 mg/L,微量元素FeSO4·7H2O 5000mg/L,ZnCl2 1000mg/L,MnCl2 1000mg/L,CoCl2·6H2O 200mg/L,CuSO4·5H2O 100mg/L,DEHP 5mg/L。
结果如表3所示,根据R值可得出,各因素对DEHP去除率的影响程度为:B>D>A>C,不同的CaCl2质量分数对DEHP的去除率影响最大,其次是交联时间,细菌与海藻酸钠的比例对去除率影响最小。由k值可知,最佳固定化条件为A1B3C1D2,即:海藻酸钠质量分数为4%、CaCl2质量分数为5%、细菌与海藻酸钠的比例为1:1、交联时间为6小时。
表3枯草芽孢杆菌包埋参数的正交实验结果
Figure BDA0002772422670000081
Figure BDA0002772422670000091
其中,Rb表示不同因素下DOP降解范围;K1、K2、K3代表在不同因素下DEHP载1、2、3级的平均降解速率。
实施例3 MBR反应器性能评价
MBR反应器性能评价,包括如下步骤:
(1)接种和降解参数优化筛选:向MBR中接种600mL活性污泥和36mL或42mL实施例2所得的固定化菌株,使用人工模拟废水作为MBR进水,调整pH值为6.5或7.0,温度为24℃或25℃,25天后检测DEHP的去除率;
(2)检测COD及DEHP去除率:设置实验组T1,向MBR中接种游离菌体42mL和活性污泥600mL;设置实验组T2,向MBR中接种实施例2所得的固定化菌剂42mL和活性污泥600mL;设置对照组CK,向MBR中接种空白小球42mL和活性污泥600mL;使用人工模拟废水作为MBR进水,每天检测污水中COD及DEHP的剩余量,以考察游离菌体与固定化菌剂对污水中DEHP的去除效果;
(3)检测降解基因数量的变化:通过利用q-PCR检测MBR系统中DEHP降解基因数量的变化;
(4)检测细菌群落结构变化:检测细菌的丰度。
其中,人工模拟废水中氮源为NH4SO4,磷源为KH2PO4,加入KCl5000 mg/L,微量元素FeSO4·7H2O 5000mg/L,ZnCl2 1000mg/L,MnCl2 1000mg/L,CoCl2·6H2O 200mg/L,CuSO4·5H2O 100mg/L,DEHP 5mg/L;
步骤(1)的实验结果如表4所示,固定化菌株体积为活性污泥7%,污水pH值为7,降解温度为25℃时DEHP去除率最高。
表4接种和参数优化筛选实验结果
固定化菌株体积(mL) 污水pH值 降解温度(℃) 去除率(%)
36 6.5 24 52.8
36 6.5 25 51.2
36 7 24 53.1
36 7 25 52.1
42 6.5 24 56.5
42 6.5 25 51.6
42 7 24 56.8
42 7 25 57.8
步骤(2)的实验结果如图1所示,前10天内有机污染物在不同情况下的去除率差异不大,在第12天时,CK、T1和T2对DEHP去除率分别为15%、33%、40%,对COD去除率在55%~56%之间。但在第45天时,T2的DEHP和COD的去除率分别为91.9%和90.7%,而T1的DEHP和COD去除率分别为84.7%和86.7%。
步骤(3)的实验结果如图2所示,在开始的前10天中,CK、T1和T2分别增加了0.6×107copies·mg-1、1.8×107copies·mg-1和2.4×107copies·mg-1。随后,固定化系统和非固定化系统中DEHP降解基因的数量差异持续增大,在第40天时,T1系统中DEHP降解基因的数量比T2少了2.1×107copies·mg-1,较第30天时差距缩小了,第50天时,CK、T1、T2系统中DEHP降解基因拷贝数量分别为4.3、6.8和9.9×107copies·mg-1,T1与T2相差3.1×107copies·mg-1
步骤(4)的实验结果如下所述,固定细菌后的系统与未固定系统菌落结构变化趋势大致相同,但在固定系统中,固定化改变了δ-变形杆菌门的变化趋势,γ-变形杆菌(γ-proteobacteria)的相对丰度在第50d时增加了27%,是反应器运行期间,DEHP降解系统中的优势菌门。小单孢子菌属(Micromonospora)和拟杆菌属(Bacteroides)在50d内相对丰度值分别增加了8%和11%,红球菌属(Rhodococcus)从2%增加到15%,假单胞菌(Pseudomonas)增加了20%。
由结果可知,固定化菌剂对污水中DEHP和COD的去除效果较游离菌体更好,这是由于污水中存在一些与DEHP降解菌存在竞争或毒害的微生物菌群或物质,而使用固定化技术能对菌体产生一定的隔离保护作用,为降解菌创造更好的生存环境;假单胞菌、红球菌属、小单孢子菌属、拟杆菌属和γ-变形杆菌在DEHP去除过程中起着关键作用。
实施例4降解产物与途径分析
降解产物与途径分析包括如下步骤:
(1)DEHP的浓度分析:实施例1、实施例2和实施例3中,DEHP的浓度分析采用高效液相色谱法(Aglient 1200),使用紫外线探测器和Water Sunfire C18色谱柱(20mm×4.6mm×5μm)。色谱条件为:流动乙醇与水的体积比(90:10),流速(1mL/min)。样本的提取与纯化方法如下:将乙酸乙酯添加到每个样本,摇动混合5min,水和有机相在8000rpm的转速下分离,转动5min,水相在同等体积下的乙酸乙酯下萃取2次,乙酸乙酯在无水硫酸钠上干燥蒸发,然后溶于10mL甲醇中,随后取1mL混和了DEHP的甲醇通过孔径为0.22μm的滤膜,最后将20μL的滤液注入到高效液相色谱系统;
(2)DEHP降解中间体检测:取实施例3步骤(2)实验组T2每日的人工模拟废水为样本,用气相色谱-质谱联用仪(GC-MS)对DEHP降解中间体进行检测,将所得数据与MS系统中的质谱库进行对比,最终确定代谢产物的类型,检测工作由四川科源工程技术公司完成;
(3)DEHP降解代谢产物检测:为确保降解菌在生物修复过程中不会对环境造成二次污染,本研究通过GC-MS检测对比出峰时间获悉了步骤(2)中DEHP在枯草芽孢杆菌降解作用下的代谢产物,其中包括邻苯二甲酸(2-乙基已基)酯(DEHP),邻苯二甲酸二丁酯(DBP),邻苯二甲酸二乙酯(DEP),邻苯二甲酸(PA),原儿茶酚等对DEHP矿化具有重要意义的中间产物。
结果如图3所示,基于GC-MS的检测结果,对枯草芽孢杆菌降解DEHP的途径进行了分析,得到DEHP在枯草芽孢杆菌作用下的降解途径。邻苯二甲酸(2-乙基已基)酯(DEHP)在菌株枯草芽孢杆菌的作用下,先分解为邻苯二甲酸二丁酯(DBP),随后水解生成邻苯二甲酸二乙酯(DEP),经过连续脱酯转化为邻苯二甲酸(PA);邻苯二甲酸(PA)经过氧化、脱氢及脱羧过程最终产生了原儿茶酚;原儿茶酚通过正位开环,进入TCA循环,最终完成DEHP的完全矿化。
对比例1
一种在MBR系统中包埋微生物强化降解DEHP的方法,包括如下步骤:
(1)制作固定化菌株:将含有枯草芽孢杆菌菌株的MSM培养基与质量分数为5%的琼脂溶液按体积比1:1混合,再加入占混合液重量比例5%400目SiO2颗粒,交联反应6h,得到固定化菌株;
(2)接种固定化菌株:向MBR反应器中接种600mL活性污泥和42mL步骤(1)得到的固定化菌株;
(3)降解DEHP:将含DEHP的人工模拟污水pH调至7.0,然后通入MBR反应器,在25℃的条件下进行降解50d;
(4)检测COD及DEHP去除率:50d后检测污水中COD及DEHP的剩余量,以考察不同固定剂对污水中DEHP的去除效果;
实验结果如下所述,50d时,使用海藻酸钠和氯化钙作为包埋材料,DEHP的去除率为92.7%,COD去除率为92.3%,而使用琼脂作为包埋材料时,DEHP的去除率为85.2%,COD去除率为85.7%。使用海藻酸钠和氯化钙作为包埋材料对DEHP的去除效果远优于使用琼脂作为包埋材料。
对比例2
一种在MBR系统中包埋微生物强化降解DEHP的方法,包括如下步骤:
(1)制作固定化菌株:将含有枯草芽孢杆菌菌株的MSM培养基与质量分数为5%的卡拉胶溶液按体积比1:1混合,再加入占混合液重量比例5%400目SiO2颗粒,再交联反应6h,得到固定化菌株;
(2)接种固定化菌株:向MBR反应器中接种600mL活性污泥和42mL步骤(1)得到的固定化菌株;
(3)降解DEHP:将含DEHP的人工模拟污水pH调至7.0,然后通入MBR反应器,在25℃的条件下进行降解50d;
(4)检测COD及DEHP去除率:50d后检测污水中COD及DEHP的剩余量,以考察不同固定剂对污水中DEHP的去除效果;
实验结果如下所述,50d时,使用海藻酸钠和氯化钙作为包埋材料,DEHP的去除率为92.7%,COD去除率为92.3%,而使用卡拉胶作为包埋材料时,DEHP的去除率为87.5%,COD去除率为86.2%。使用海藻酸钠和氯化钙作为包埋材料对DEHP的去除效果远优于使用卡拉胶作为包埋材料。
对比例3
一种在MBR系统中包埋微生物强化降解DEHP的方法,包括如下步骤:
(1)制作固定化菌株:将含有枯草芽孢杆菌菌株的MSM培养基与质量分数为5%的聚乙烯醇溶液按体积比1:1混合,再加入占混合液重量比例5%400目SiO2颗粒,再交联反应6h,得到固定化菌株;
(2)接种固定化菌株:向MBR反应器中接种600mL活性污泥和42mL步骤(1)得到的固定化菌株;
(3)降解DEHP:将含DEHP的人工模拟污水pH调至7.0,然后通入MBR反应器,在25℃的条件下进行降解50d;
(4)检测COD及DEHP去除率:50d后检测污水中COD及DEHP的剩余量,以考察不同固定剂对污水中DEHP的去除效果;
实验结果如下所述,50d时,使用海藻酸钠和氯化钙作为包埋材料,DEHP的去除率为92.7%,COD去除率为92.3%,而使用聚乙烯醇作为包埋材料时,DEHP的去除率为85.6%,COD去除率为84.3%。使用海藻酸钠和氯化钙作为包埋材料对DEHP的去除效果远优于使用聚乙烯醇作为包埋材料。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,包括如下步骤:
(1)制作固定化菌株:将含有枯草芽孢杆菌菌株的MSM培养基与质量分数为4%-6%的海藻酸钠溶液按体积比1-2:1-2混合,再将混合液滴入质量分数为3%-5%的CaCl2溶液中交联反应5-7h,得到固定化菌株;
(2)接种固定化菌株:向MBR反应器中接种活性污泥和步骤(1)得到的固定化菌株,其中活性污泥和固定化菌株的体积比为98-100:6-7;
(3)降解DEHP:将含DEHP的污水pH调至6.5-7.0,然后通入MBR反应器,在24℃-25℃的条件下进行降解40d-50d。
2.根据权利要求1所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(1)中所述含有枯草芽孢杆菌菌株的MSM培养基由OD600为0.9-1.0的枯草芽孢杆菌菌悬液和MSM培养基按体积比4-5:18-20组成。
3.根据权利要求2所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(1)所述枯草芽孢杆菌菌悬液OD600为1.0,所述枯草芽孢杆菌菌悬液和MSM培养基的体积比为5:20。
4.根据权利要求1所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(1)中所述含有枯草芽孢杆菌菌株的MSM培养基与质量分数为4%-6%的海藻酸钠溶液按体积比1:1混合。
5.根据权利要求1或4所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(1)中所述海藻酸钠溶液的质量分数为4%。
6.根据权利要求1所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(1)中所述CaCl2溶液的质量分数为5%。
7.根据权利要求1所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(1)中所述交联时间为6h。
8.根据权利要求1所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(2)所述活性污泥和固定化菌株的体积比为100:7。
9.根据权利要求1所述的在MBR系统中包埋微生物强化降解DEHP的方法,其特征在于,步骤(3)所述pH为7.0,所述温度为24℃,所述降解时间为50d。
CN202011253655.1A 2020-11-11 2020-11-11 一种在mbr系统中包埋微生物强化降解dehp的方法 Pending CN112358038A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011253655.1A CN112358038A (zh) 2020-11-11 2020-11-11 一种在mbr系统中包埋微生物强化降解dehp的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011253655.1A CN112358038A (zh) 2020-11-11 2020-11-11 一种在mbr系统中包埋微生物强化降解dehp的方法

Publications (1)

Publication Number Publication Date
CN112358038A true CN112358038A (zh) 2021-02-12

Family

ID=74514326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011253655.1A Pending CN112358038A (zh) 2020-11-11 2020-11-11 一种在mbr系统中包埋微生物强化降解dehp的方法

Country Status (1)

Country Link
CN (1) CN112358038A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558774A (en) * 1991-10-09 1996-09-24 Zenon Environmental Inc. Aerated hot membrane bioreactor process for treating recalcitrant compounds
CN101575160A (zh) * 2009-06-11 2009-11-11 德威华泰(北京)科技有限公司 用活性膜生物反应器处理有机废水的装置
CN103571771A (zh) * 2013-09-12 2014-02-12 四川农业大学 一株邻苯二甲酸酯高效降解芽孢杆菌的筛选鉴定及其应用
KR101458974B1 (ko) * 2014-08-29 2014-11-07 (주)씨앤씨엔텍 미생물 활성화 방법, 및 이를 이용한 mbr 공법
CN104928205A (zh) * 2015-04-29 2015-09-23 齐齐哈尔大学 一株能够高效降解DMP的芽孢杆菌属菌株、培养方法及其在修复土壤PAEs污染中的应用
CN105754984A (zh) * 2016-04-13 2016-07-13 四川农业大学 海藻酸钠复合固定化菌剂及其制备方法以及用途
CN107177529A (zh) * 2017-06-02 2017-09-19 华南农业大学 一株高效降解邻苯二甲酸酯的植物内生菌及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558774A (en) * 1991-10-09 1996-09-24 Zenon Environmental Inc. Aerated hot membrane bioreactor process for treating recalcitrant compounds
CN101575160A (zh) * 2009-06-11 2009-11-11 德威华泰(北京)科技有限公司 用活性膜生物反应器处理有机废水的装置
CN103571771A (zh) * 2013-09-12 2014-02-12 四川农业大学 一株邻苯二甲酸酯高效降解芽孢杆菌的筛选鉴定及其应用
KR101458974B1 (ko) * 2014-08-29 2014-11-07 (주)씨앤씨엔텍 미생물 활성화 방법, 및 이를 이용한 mbr 공법
CN104928205A (zh) * 2015-04-29 2015-09-23 齐齐哈尔大学 一株能够高效降解DMP的芽孢杆菌属菌株、培养方法及其在修复土壤PAEs污染中的应用
CN105754984A (zh) * 2016-04-13 2016-07-13 四川农业大学 海藻酸钠复合固定化菌剂及其制备方法以及用途
CN107177529A (zh) * 2017-06-02 2017-09-19 华南农业大学 一株高效降解邻苯二甲酸酯的植物内生菌及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张可等: "生物强化膜生物反应器( MBR) 处理邻苯二甲酸二乙", 《环境科学》 *

Similar Documents

Publication Publication Date Title
Yin et al. Ammonia‐oxidizing archaea (AOA) play with ammonia‐oxidizing bacteria (AOB) in nitrogen removal from wastewater
Maszenan et al. Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules
Xiangchun et al. Biodegradation of 2, 4-dichlorophenol in an air-lift honeycomb-like ceramic reactor
Jun et al. Isolation and identification of a di-(2-ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil
Liu et al. Role of porous polymer carriers and iron-carbon bioreactor combined micro-electrolysis and biological denitrification in efficient removal of nitrate from wastewater under low carbon to nitrogen ratio
Jiang et al. Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession
Myers et al. Abiotic and bioaugmented granular activated carbon for the treatment of 1, 4-dioxane-contaminated water
Wu et al. Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole
TW201238915A (en) Method of removing recalcitrant organic pollutants
Luo et al. A state-of-the-art review of quinoline degradation and technical bottlenecks
Li et al. Enhanced carbamazepine removal by immobilized Phanerochaete chrysosporium in a novel rotating suspension cartridge reactor under non-sterile condition
Sonwani et al. Construction of biotreatment platforms for aromatic hydrocarbons and their future perspectives
Deng et al. Phenanthrene degradation in soil using biochar hybrid modified bio-microcapsules: Determining the mechanism of action via comparative metagenomic analysis
Chen et al. Effects of polyurethane foam carrier addition on anoxic/aerobic membrane bioreactor (A/O-MBR) for coal gasification wastewater (CGW) treatment: Performance and microbial community structure
Li et al. Use of calcium alginate/biochar microsphere immobilized bacteria Bacillus sp. for removal of phenol in water
US20150344327A1 (en) Hybrid water treatment agent of biogenic manganese oxide nanoparticles and activated carbon, preparation method thereof, and water treatment system and on-site underground water treatment system using the same
Wang et al. Halophilic Martelella sp. AD-3 enhanced phenanthrene degradation in a bioaugmented activated sludge system through syntrophic interaction
Wang et al. Biodegradation of penicillin G from industrial bacteria residue by immobilized cells of Paracoccus sp. KDSPL-02 through continuous expanded bed adsorption bioreactor
Ye et al. Bioremediation of aniline aerofloat wastewater at extreme conditions using a novel isolate Burkholderia sp. WX-6 immobilized on biochar
CN106430630A (zh) 一种抗生素废水处理剂
Priyadarshini et al. Biodegradation of phenol using the indigenous Rhodococcus pyridinivorans Strain PDB9T NS-1 immobilized in calcium alginate beads
Wang et al. Cometabolic biodegradation system employed subculturing photosynthetic bacteria: a new degradation pathway of 4-chlorophenol in hypersaline wastewater
Niu et al. Efficient pyridine biodegradation by Stenotrophomonas maltophilia J2: Degradation performance, mechanism, and immobilized application for wastewater
Juneson et al. Biodegradation of dimethyl phthalate with high removal rates in a packed-bed reactor
CN112358038A (zh) 一种在mbr系统中包埋微生物强化降解dehp的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210212

RJ01 Rejection of invention patent application after publication