CN112330983B - 不正常航班一体化智能恢复方法 - Google Patents

不正常航班一体化智能恢复方法 Download PDF

Info

Publication number
CN112330983B
CN112330983B CN202011144973.4A CN202011144973A CN112330983B CN 112330983 B CN112330983 B CN 112330983B CN 202011144973 A CN202011144973 A CN 202011144973A CN 112330983 B CN112330983 B CN 112330983B
Authority
CN
China
Prior art keywords
flight
recovery
path
model
journey
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011144973.4A
Other languages
English (en)
Other versions
CN112330983A (zh
Inventor
梁哲
肖璠
苏艺
王文殊
谢可欣
郭斯琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Youmaikesi Information Technology Co ltd
Original Assignee
Hangzhou Youmaikesi Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Youmaikesi Information Technology Co ltd filed Critical Hangzhou Youmaikesi Information Technology Co ltd
Priority to CN202011144973.4A priority Critical patent/CN112330983B/zh
Publication of CN112330983A publication Critical patent/CN112330983A/zh
Application granted granted Critical
Publication of CN112330983B publication Critical patent/CN112330983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种不正常航班一体化智能恢复方法,包括以下步骤:进行航班相关数据采集输入,模型/算法参数配置,和恢复场景配置;在输入数据和设定的参数基础上建立飞机路径恢复、机组排班恢复、旅客行程恢复的混合整数模型并使用以列生成为核心的算法进行求解;根据计算结果输出航班、飞机、机组的调整计划以及旅客的恢复计划,并根据执行情况统计各类恢复情况评估指标。本发明通过建立优化模型和设计优化算法等技术手段,能在短时间内提供大规模不正常航班的一体化恢复方案。

Description

不正常航班一体化智能恢复方法
技术领域
本发明属于空中飞行线路技术领域,具体涉及一种不正常航班一体化智能恢复方法。
背景技术
随着交通工具的换代升级,飞机出行已经成为了一种主流选择。然而由于较为苛刻的飞行条件,航班延误概率成了除价格外旅客选择该出行方式的主要考虑因素之一。2019年民航行业发展统计公报显示,全国客运航空公司共执行航班461.11万班次,其中正常航班376.52万班次,平均航班正常率仅有81.65%,平均延误时间为14分钟。大多数情况下,突发事件难以避免,其导致的不正常航班在损害旅客利益的同时也损害了航司的声誉和经济效益。因此在突发事件后对航空公司的所有相关资源(航班、飞机和机组)以及受影响的旅客进行科学、快速、有效的恢复具有很大的研究价值和社会意义。
目前,大多数国内航空公司仍旧通过业务人员对不正常航班及相关资源进行手动恢复。业务人员往往遵循公司惯常的恢复原则及不同恢复场景的目标凭借个人经验依次对航班、飞机、机组以及旅客计划进行调整。这种调整方式存在着一些弊端:(1)恢复方案质量不稳定。一方面,当问题规模较小时,业务人员能够根据个人经验给出相对不错的解决方案。当问题规模增加时,业务人员无法通过人脑统筹考虑上千条航班的恢复,容易出现局部最优,如部分航班得到较快恢复但有更多航班面临取消风险。另一方面,业务人员通常情况下是按序恢复各个资源,因此无法考虑到各个资源之间的恢复相关性,导致前阶段制定的航班恢复方案留给后续资源的恢复余地很小。另外,由于人员的专业知识和工作经验存在差异,不同人员对同一个突发事件的处置结果差异很大。(2)方案制定耗时久。人工制定方案耗时较长。针对大规模不正常航班,手动制定方案长达6-8小时,导致错过不正常航班恢复的最佳时间,增加了航班的总延误时长和取消率。(4)个性化程度低下。对于不同的恢复场景,通常有不同的恢复目标和要求。人工调整能够在不违背总体恢复目标的情况下进行调整,但无法有效回应更细化的需要从全局考虑的要求,比如对不同恢复方式的偏好等。
发明内容
鉴于以上存在的技术问题,本发明用于提供一种不正常航班一体化智能恢复方法,通过建立优化模型和设计优化算法等技术手段,能在短时间内提供大规模不正常航班的一体化恢复方案。
为解决上述技术问题,本发明采用如下的技术方案:
一种不正常航班一体化智能恢复方法,包括以下步骤:
进行航班相关数据采集输入,模型/算法参数配置和恢复场景配置;
建立飞机路径恢复、机组排班恢复和旅客行程恢复的混合整数模型并使用以列生成为核心的算法进行求解;
根据计算结果输出航班、飞机、机组的调整计划以及旅客的恢复计划,并根据执行情况统计各类评估指标。
优选地,航班相关数据采集输入具体包括将与航班恢复相关的航班相关数据转化为需要的数据格式以供后续模型和算法使用,所述航班相关数据包括飞机信息、机型信息、机场信息、航线信息、航班信息、机组人员信息和基础维修计划信息。
优选地,模型/算法参数配置具体包括对算法模型中的相关参数进行配置从而调整想获得的恢复方案的求解偏好,包括罚分类和限制类两类,其中罚分类指各种恢复措施的额罚分;限制类则指不同航空公司和机场的各类运营限制。
优选地,恢复场景配置指将实际的恢复场景转化为对具体航班、飞机或者机场的设置。
优选地,构建飞机路径恢复的整数规划模型并运用以列生成为核心的分支定价法进行求解,计算流程如下:
步骤101,在历史飞机路径的基础上结合启发式算法或随机深度优先搜索算法得到初始飞机路径集合,同时设定第一步长ε1(0≤ε1≤1)和第一初始判断标准(0≤κ1≤1),其中第一步长的初始值根据输入的航班和飞机情况进行设定,第一判断标准的初始值为1;
步骤102,求解飞机路径恢复模型,其中A表示可用飞机的集合,I表示旅客行程的集合,R表示飞机可选路径的集合,L表示所有航段的集合,模型的目标函数为:
Figure BDA0002739375060000031
目标函数中
Figure BDA0002739375060000032
为飞机路径重规划的成本,其中
Figure BDA0002739375060000033
是路径r由飞机a执飞的总成本,
Figure BDA0002739375060000034
由分配飞机飞行成本和航班任务特质决定;
Figure BDA0002739375060000035
表示飞机a是否被安排给路径r,被安排则为1,否则为0;
Figure BDA0002739375060000036
为航班取消的成本,其中参数cl(≥0)是航班l的取消成本,由航班性质决定,决策变量wl∈{0,1}表示航班l是否被取消,被取消为1,否则为0;
Figure BDA0002739375060000037
为估计的因为飞机路径调整造成的旅客行程变动成本,其中Dmdi(≥0)表示行程i的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,决策变量zi∈{0,1}表示行程i是否被取消,被取消为1,否则为0;
模型包括以下三个约束条件:
Figure BDA0002739375060000038
Figure BDA0002739375060000039
Figure BDA00027393750600000310
其中Itin(i)表示行程i包含的航段集合,第一个约束保证了每一架飞机都被安排给一个路径;第二个约束表示每个航班必须被包含在飞机路径中执行,否则被取消;第三个约束结合目标函数保证如果某行程i的一个航班被取消,则该行程被取消;
步骤103,判断当前解是否为整数解,如果不是执行步骤104,否则退出,获得新的飞机路径调整计划和航班调整计划;
步骤104,判断有哪些
Figure BDA0002739375060000041
将对应的
Figure BDA0002739375060000042
加入集合
Figure BDA0002739375060000043
步骤105,对于
Figure BDA0002739375060000044
设置
Figure BDA0002739375060000045
下界
Figure BDA0002739375060000046
表示该路径飞机被选中执飞,同时路径r中的航班l执行情况已确定,如果存在别的路径
Figure BDA0002739375060000047
包含已经被确定的航班l,设置该路径对应变量值
Figure BDA0002739375060000048
上界
Figure BDA0002739375060000049
表示路径被淘汰;
步骤106,求解模型主问题的线性松弛解;
步骤107,判断是否有可行解,如果有可行解则执行步骤108,否则更新
Figure BDA00027393750600000410
κ1=κ11,再返回步骤103;
步骤108,比较固定路径航班前后两次线性松弛解,判断其目标值是否变大,如果目标值变大,则执行步骤109,否则返回步骤103;
步骤109,采用飞机路径恢复列生成算法为每个飞机找到更优的路径r1,r2,...,rn,添加进路径集合中,R=R∪{r1,r2,...,rn},在飞机路径寻找过程中,结合机组可行性的考虑,原航班计划中以外站为到达/出发站的一对航班组需要安排一样的飞机使得执飞这对航班组的机组有足够的时间中转,转到步骤102。
优选地,所述飞机路径恢复列生成算法的计算过程如下:
步骤1091,根据需求构建航班连接网络,该网络被用于飞机路径子问题,为每一架飞机构建起点和终点,网络中剩下的点代表不同的飞机任务,网络中的弧代表可行的飞机任务连接,点集被表示为Na
步骤1092,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤1093,按照拓扑排序依次遍历每一个点i∈Na,并获得其后续节点的集合S(i),如果遍历完毕则执行步骤1095,否则执行步骤1094;
步骤1094,对于点i的后续集合S(i)中的点j,根据i和j(j∈S(i))两个事件点之间的关系进行占优判断,从而对j的子结点集合进行更新,更新完毕则返回步骤1093;
步骤1095,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即飞机路径成本最小的一条路径,若检验数小于0,则该条路径被采用。
优选地,构建机组排班恢复的整数规划模型并运用以列生成为核心的分支定价法进行求解,计算过程如下:
步骤201,在历史机组排班计划的基础上结合启发式算法或随机深度优先搜索算法得到初始机组排班计划集合,同时设定第二步长ε2(0≤ε2≤1)和第二判断标准κ2(0≤κ2≤1),其中第二步长的初始值根据机组人员情况进行设定,第二判断标准的初始值为1;
步骤202,求解机组排班恢复模型,其中k表示可用机组的集合,p表示机组可选排班计划的集合,模型的目标函数为:
Figure BDA0002739375060000051
目标函数中
Figure BDA0002739375060000052
为机组重排班的总成本,其中
Figure BDA0002739375060000053
是排班计划p由机组k执飞的成本,根据排班计划的具体任务和机组资质共同决定,
Figure BDA0002739375060000054
表示是否把排班计划p指派给机组k,被安排为1,否则为0;
Figure BDA0002739375060000055
为航班取消的总成本,参数cl(≥0)是航班l的取消成本,决策变量υl∈{0,1}表示航班l是否被取消,被取消为1,否则为0;
Figure BDA0002739375060000056
为估计的由于机组排班调整造成的旅客行程变动成本,其中Dmdi(≥0)表示行程i的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,决策变量τi∈{0,1}表示行程i是否被取消,被取消为1,否则为0;
模型包括以下三个约束条件:
Figure BDA0002739375060000061
Figure BDA0002739375060000062
Figure BDA0002739375060000063
其中,第一个约束保证了每一个机组都被指派一个排班计划;第二个约束表示每个航班必须被包含在机组排班计划中执行,否则被取消;第三个约束结合目标函数保证如果某行程i的一个航班被取消,则该行程被取消;
步骤203,判断当前解是否为整数解,如果不是执行步骤204,否则退出,获得新的机组排班计划;
步骤204,判断有哪些
Figure BDA0002739375060000064
将对应的
Figure BDA0002739375060000065
加入集合
Figure BDA0002739375060000066
步骤205,对于
Figure BDA0002739375060000067
设置
Figure BDA0002739375060000068
下界
Figure BDA0002739375060000069
表示该排班计划被机组选中执飞,同时计划p中的航班l执行情况已确定,如果存在别的排班计划
Figure BDA00027393750600000610
包含已经被确定的航班l,设置该排班计划对应变量值
Figure BDA00027393750600000611
上界
Figure BDA00027393750600000612
表示路径被淘汰;
步骤206,求解模型主问题(主问题)的线性松弛解;
步骤207,判断是否有可行解,如果有可行解则执行步骤208,否则更新
Figure BDA00027393750600000613
κ2=κ22,再返回步骤203;
步骤208,比较固定排班计划前后两次线性松弛解,判断其目标值是否变大,如果目标值变大,则执行步骤209,否则返回步骤203;
步骤209,列生成算法为每个机组找到更优的排班计划p1,p2,...,pm,添加进排班计划集合中,P=P∪{p1,p2,...,pm},转到步骤202。
优选地,所述机组排班恢复列生成算法的计算过程如下:
步骤2091,根据需求构建航班连接网络,该网络被用于机组排班子问题,为每一个机组构建起点和终点,网络中剩下的点代表机组的任务,点集被表示为Nk
步骤2092,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤2093,按照拓扑排序依次遍历每一个点i∈Nk,并获得其后续节点的集合S(i),如果遍历完毕则执行步骤2095,否则步骤2094;
步骤2094,对于点i的后续集合S(i)中的点j,根据i和j(j∈S(i))两个事件点之间的关系进行占优判断,从而对j的子结点集合进行更新,更新完毕则返回步骤2093;
步骤2095,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即机组排班成本最小的一条机组任务串,若检验数小于0,则该机组排班计划被采用。
优选地,构建旅客行程恢复的整数规划模型并运用以行列生成为核心的分支定价法进行求解,计算过程如下:
步骤301,得到初始行程集合;
步骤302,求解旅客行程恢复模型,它的目标函数为:
Figure BDA0002739375060000071
其中参数
Figure BDA0002739375060000072
是把行程i的旅客安排给行程m的单个旅客的成本,决策变量
Figure BDA0002739375060000073
是行程i被安排去行程m(包含i)的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,λi(≥0)是行程i最终被退票的旅客数量,模型约束如下:
Figure BDA0002739375060000074
Figure BDA0002739375060000075
其中,Γ(i)表示行程i的备选行程集合,Capa代表飞机a的座位数,
Figure BDA0002739375060000076
是已知的飞机恢复模型的解;第一个约束保证了每个行程的旅客都能被安排到达他的目的地,否则退票;第二个约束保证了每个航班的旅客数量不超过安排给该航班的飞机的座位数;
步骤303,获得求解旅客行程恢复模型后的对偶变量,利用旅客行程恢复列生成算法解决备选行程子问题;
步骤304,通过检验数判断是否存在更优的旅客行程,如果存在,添加新的行程变量和对应约束到主模型中,转步骤302;否则转步骤305;
步骤305,输出旅客行程调整计划。
优选地,所述旅客行程恢复列生成算法的计算的过程如下:
步骤3031,根据需求构建航班连接网络,该网络被旅客行程生成子问题,为每一组行程受影响的旅客构建起点和终点,网络中剩下的点代表被影响的旅客的同一类行程的其它可选航班,点集被表示为Np
步骤3032,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤3033,按照拓扑排序依次遍历每一个点i∈Np,并获得其后续节点的集合S(i),如果遍历完毕则执行步骤3035,否则步骤3034;
步骤3034,对于点i的后续集合S(i),根据i和j(j∈S(i))两个事件点之间的关系进行占优判断,根据占优结果对j的子结点集合进行更新,更新完毕则返回步骤3033;
步骤3035,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即旅客行程成本最小的一条备选旅客行程,若检验数小于0,则该条备选旅客行程被采用。
采用本发明具有如下的有益效果:
(1)高质量的恢复方案。该发明技术方案不囿于人工编排、经验编排的局限性,能够从全局的角度对所涉及的资源进行统筹规划,避免出现资源分配不均衡或者资源按序恢复导致的后期求解空间小的情形。据测算,该算法可降低该航司7%的延误和2%的取消,年均节省数千万元人民币。
(2)高求解速度。以列生成为基本框架的核心算法可以在较短时间内给出一套完整优质的恢复方案。以台风场景下的不正常航班恢复为例,通过调用本算法,航司的调整时间从原来的6-8小时缩减至了15分钟。
(3)高个性化程度。算法可适配丰富灵活的恢复规则、偏好设置和具体的恢复场景设置,从而提供高个性化且贴合实际的恢复方案。
(4)一方面,航空公司通过调用本算法,可以有效提高其资源利用率、对不正常航班及时做出反应从而降低航班延误率。在降低航司运营成本的同时树立良好形象以吸引潜在顾客;另一方面,能够及时恢复航班可以优化旅客的出行体验,具有一定的社会意义。
附图说明
图1为本发明实施例的不正常航班一体化智能恢复方法的步骤流程图;
图2为飞机路径恢复分支定价流程图;
图3为机组排班恢复分支定价流程图;
图4为旅客行程恢复行列生成流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
智能恢复方法分为三个主要的步骤:一、输入步骤;二、核心算法步骤;三、输出步骤。参照图1,所示为本发明实施例的不正常航班一体化智能恢复方法的步骤流程图,包括以下步骤:
进行航班相关数据采集输入,模型/算法参数配置和恢复场景配置;
建立飞机路径恢复、机组排班恢复和旅客行程恢复的混合整数模型并使用以列生成为核心的算法进行求解;
根据计算结果输出航班、飞机、机组的调整计划以及旅客的恢复计划,并根据执行情况统计各类评估指标。
航班相关数据采集输入具体包括将与航班恢复相关的航班相关数据转化为需要的数据格式以供后续模型和算法使用,所述航班相关数据包括飞机信息、机型信息、机场信息、航线信息、航班信息、机组人员信息和基础维修计划信息。具体应用实例中,飞机信息包括机号、机型、座位数、布局等;机型信息包括机型、可用架次、子机型、长短机型和最长飞行时间等;机场信息包括机场四码、机场三码、城市名、机场名、滑行时间和国际国内等;航线信息包括机型、起飞机场、落地机场、航季和飞行时间等;航班信息包括计划起终机场、计划起终时刻等;机组人员信息包括基础信息、资质和证件等。
具体应用实例中,模型/算法参数配置具体包括对算法模型中的相关参数进行配置从而调整想获得的恢复方案的求解偏好,包括罚分类和限制类两类,其中罚分类指各种恢复措施的额罚分;限制类则指不同航空公司和机场的各类运营限制。罚分类包括各类航班(飞机)恢复措施的罚分(取消、提前/延误、换机型、换飞机、调机、联程拆分/拉直、维修延误等)、机组恢复措施的罚分(置位、机组交换等)和旅客恢复措施的罚分(延误、取消、签转、降舱等);限制类包括恢复窗口设置、最大提前时间、最大延误时间、最大取消航班数、飞机过站时间、机组中转时间、旅客中转时间、机场容量限制、过夜停机限制、机库停机限制等。
具体应用实例中,恢复场景配置指将实际的恢复场景转化为对具体航班、飞机或者机场的设置。(1)航班:设置受影响航班的可起飞时间段;进行“航班调减”或“机型调减”设置;“可调机航线”设置;是否允许连接拆分、是否允许取消/延误/提前/拉直航班(航班锁定);(2)飞机:“飞机故障条目”设置;飞机锁定设置(该飞机计划执飞航班不可被延误、取消、提前或者换飞机);是否允许忽略维修弱限制计划。(3)机场:机场容量限制;(4)其它:“联程航班拆分”设置;“固定航班衔接”设置;设置“自定义过站时间”;“优化过站时间不足航班”设置。(5)特征恢复场景:“台风场景设置”,包括对受台风影响的机场投入使用的时间段的设置等。
飞机路径恢复模块旨在对航班进行调整并为飞机重新安排恢复期内的航班路径,该模块同时加入了机组恢复和旅客行程恢复的考虑。航班调整支持航班取消、航班延误、飞机交换和调机等恢复方式;为飞机重新安排路径能够满足飞机的维修要求,满足机务需求。构建飞机路径恢复的整数规划模型并运用以列生成为核心的分支定价法进行求解,计算流程如下:
步骤101,在历史飞机路径的基础上结合启发式算法或随机深度优先搜索算法得到初始飞机路径集合,同时设定第一步长ε1(0≤ε1≤1)和第一初始判断标准κ1=1(0≤κ1≤1),其中第一步长的初始值根据输入的航班和飞机情况进行设定,第一判断标准的初始值为1;
步骤102,求解飞机路径恢复模型,其中A表示可用飞机的集合,I表示旅客行程的集合,R表示飞机可选路径的集合,L表示所有航段的集合,模型的目标函数为:
Figure BDA0002739375060000111
目标函数中
Figure BDA0002739375060000112
为飞机路径重规划的成本,其中
Figure BDA0002739375060000113
是路径r由飞机a执飞的总成本,
Figure BDA00027393750600001110
由分配飞机飞行成本和航班任务特质决定;
Figure BDA0002739375060000114
表示飞机a是否被安排给路径r,被安排则为1,否则为0;
Figure BDA0002739375060000115
为航班取消的成本,其中参数cl(≥0)是航班l的取消成本,由航班性质决定,决策变量wl∈{0,1}表示航班l是否被取消,被取消为1,否则为0;
Figure BDA0002739375060000116
为估计的因为飞机路径调整造成的旅客行程变动成本,其中Dmdi(≥0)表示行程i的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,决策变量zi∈{0,1}表示行程i是否被取消,被取消为1,否则为0;
模型包括以下三个约束条件:
Figure BDA0002739375060000117
Figure BDA0002739375060000118
Figure BDA0002739375060000119
其中Itin(i)表示行程i包含的航段集合,第一个约束保证了每一架飞机都被安排给一个路径;第二个约束表示每个航班必须被包含在飞机路径中执行,否则被取消;第三个约束结合目标函数保证如果某行程i的一个航班被取消,则该行程被取消;
步骤103,判断当前解是否为整数解,如果不是执行步骤104,否则退出,获得新的飞机路径调整计划和航班调整计划;
步骤104,判断有哪些
Figure BDA0002739375060000121
将对应的
Figure BDA0002739375060000122
加入集合
Figure BDA0002739375060000123
步骤105,对于
Figure BDA0002739375060000124
设置
Figure BDA0002739375060000125
下界
Figure BDA0002739375060000126
表示该路径飞机被选中执飞,同时路径r中的航班l执行情况已确定,如果存在别的路径
Figure BDA0002739375060000127
包含已经被确定的航班l,设置该路径对应变量值
Figure BDA0002739375060000128
上界
Figure BDA0002739375060000129
表示路径被淘汰;
步骤106,求解模型主问题的线性松弛解;
步骤107,判断是否有可行解,如果有可行解则执行步骤108,否则更新
Figure BDA00027393750600001210
κ1=κ11,再返回步骤103;
步骤108,比较固定路径航班前后两次线性松弛解,判断其目标值是否变大,如果目标值变大,则执行步骤109,否则返回步骤103;
步骤109,采用飞机路径恢复列生成算法为每个飞机找到更优的路径r1,r2,...,rn,添加进路径集合中,R=R∪{r1,r2,...,rn}。在飞机路径寻找过程中,结合机组可行性的考虑。原航班计划中以外站为到达/出发站的一对航班组需要安排一样的飞机使得执飞这对航班组的机组有足够的时间中转,转到步骤102。
为便于理解,分支定价具体流程可参见图2,其中步骤103-107为求整数解的潜水算法。其中飞机路径恢复列生成算法通过多标签最短路径实现。
具体地,飞机路径恢复列生成算法的计算过程如下:
步骤1091,根据需求构建航班连接网络,该网络被用于飞机路径子问题,为每一架飞机构建起点和终点,网络中剩下的点代表不同的飞机任务(包括不同类型的维修任务和航班任务等),网络中的弧代表可行的飞机任务连接,点集被表示为Na
步骤1092,初始化所有点的标签,将出发点设置为0,将其他点设置为空,;
步骤1093,按照拓扑排序依次遍历每一个点i∈Na,并获得其后续节点的集合S(i),如果遍历完毕则执行步骤1095,否则步骤1094;
步骤1094,对于点i的后续集合S(i)中的点j,根据i和j(j∈S(i))两个事件点之间的关系,构建从点i去往点j的后续子结点集合,对该集合中的每个待选点与j的所有现有子结点之间进行占优判断,即对于两个结点来说某个结点的各个标签均不差于另一个,则被认为是前者优于后者。在实际的飞机路径网络中,标签为路径成本、累计延误时间等。根据占优结果对j的子结点集合进行更新。更新完毕则返回步骤1093;
步骤1095,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即飞机路径成本最小的一条路径,若检验数小于0,则该条路径被采用。
机组排班恢复是在飞机路径恢复的基础上进行的,旨在实现机组任务重排,尽可能减少和原排班计划的出入和相关的置位成本。由于飞机路径恢复过程中考虑了机组排班可行性,因此相比于传统求解方法,本算法的机组恢复部分有较大的求解空间。构建机组排班恢复的整数规划模型并运用以列生成为核心的分支定价法进行求解,计算过程如下:
步骤201,在历史机组排班计划的基础上结合启发式算法或随机深度优先搜索算法得到初始机组排班计划集合,同时设定第二步长ε2(0≤ε2≤1)和第二判断标准κ2(0≤κ2≤1),其中第二步长的初始值根据机组人员情况进行设定,第二判断标准的初始值为1;
步骤202,求解机组排班恢复模型,其中k表示可用机组的集合,p表示机组可选排班计划的集合,模型的目标函数为:
Figure BDA0002739375060000131
目标函数中
Figure BDA0002739375060000132
为机组重排班的总成本,其中
Figure BDA0002739375060000133
是排班计划p由机组k执飞的成本,根据排班计划的具体任务和机组资质共同决定,
Figure BDA0002739375060000141
表示是否把排班计划p指派给机组k,被安排为1,否则为0;
Figure BDA0002739375060000142
为航班取消的总成本,参数cl(≥0)是航班l的取消成本,决策变量υl∈{0,1}表示航班l是否被取消,被取消为1,否则为0;
Figure BDA0002739375060000143
为估计的由于机组排班调整造成的旅客行程变动成本,其中Dmdi(≥0)表示行程i的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,决策变量τi∈{0,1}表示行程i是否被取消,被取消为1,否则为0;
模型包括以下三个约束条件:
Figure BDA0002739375060000144
Figure BDA0002739375060000145
Figure BDA0002739375060000146
其中,第一个约束保证了每一个机组都被指派一个排班计划;第二个约束表示每个航班必须被包含在机组排班计划中执行,否则被取消;第三个约束结合目标函数保证如果某行程i的一个航班被取消,则该行程被取消;
步骤203,判断当前解是否为整数解,如果不是执行步骤204,否则退出,获得新的机组排班计划;
步骤204,判断有哪些
Figure BDA0002739375060000147
将对应的
Figure BDA0002739375060000148
加入集合
Figure BDA0002739375060000149
步骤205,对于
Figure BDA00027393750600001410
设置
Figure BDA00027393750600001411
下界
Figure BDA00027393750600001412
表示该排班计划被机组选中执飞,同时计划p中的航班l执行情况已确定,如果存在别的排班计划
Figure BDA00027393750600001413
包含已经被确定的航班l,设置该排班计划对应变量值
Figure BDA00027393750600001414
上界
Figure BDA00027393750600001415
表示路径被淘汰;
步骤206,求解模型主问题的线性松弛解;
步骤207,判断是否有可行解,如果有可行解则执行步骤208,否则更新
Figure BDA00027393750600001416
κ2=κ22,再返回步骤203;
步骤208,比较固定排班计划前后两次线性松弛解,判断其目标值是否变大,如果目标值变大,则执行步骤209,否则返回步骤203;
步骤209,机组排班恢复列生成算法为每个机组找到更优的排班计划p1,p2,...,pm,添加进排班计划集合中,P=P∪{p1,p2,...,pm},转到步骤202。
为便于理解,分支定价具体流程可参见图3,其中步骤203-207为求整数解的潜水算法。其中机组排班恢复列生成算法通过多标签最短路径实现。
进一步的,机组排班恢复列生成算法的计算过程如下:
步骤2091,根据需求构建航班连接网络,该网络被用于机组排班子问题,为每一个机组构建起点和终点,网络中剩下的点代表机组的任务(包括航班任务、机组人员的占位和置位等),点集被表示为Nk
步骤2092,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤2093,按照拓扑排序依次遍历每一个点i∈Nk,并获得其后续节点的集合S(i),如果遍历完毕则执行步骤2095,否则步骤2094;
步骤2094,对于点i的后续集合S(i)中的点j,根据i和j(j∈S(i))两个事件点之间的关系,构建从点i去往点j的后续子结点集合,对该集合中的每个待选点与j的所有现有子结点之间进行占优判断。在实际的机组排班网络中,标签为机组排班成本和当前任务串结束时间等。根据占优结果对j的子结点集合进行更新,更新完毕则返回步骤2093;
步骤2095,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即机组排班成本最小的一条机组任务串,若检验数小于0,则该机组排班计划被采用。
旅客行程恢复是在飞机路径恢复的基础上进行的,旨在实现旅客重安排,尽可能减少旅客行程延误,由于在飞机路径恢复模块和机组排班恢复模块中均包含估计的旅客成本,旅客行程恢复模块的解空间相对较大。构建旅客行程恢复的整数规划模型并运用以行列生成为核心的分支定价法进行求解,计算过程如下:
步骤301,得到初始行程集合;
步骤302,求解旅客行程恢复模型,它的目标函数为:
Figure BDA0002739375060000161
其中参数
Figure BDA0002739375060000162
是把行程i的旅客安排给行程m的单个旅客的成本,决策变量
Figure BDA0002739375060000163
是行程i被安排去行程m(包含i)的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,λi(≥0)是行程i最终被退票的旅客数量,模型约束如下:
Figure BDA0002739375060000164
Figure BDA0002739375060000165
其中,Γ(i)表示行程i的备选行程集合,Capa代表飞机a的座位数,
Figure BDA0002739375060000166
是已知的飞机恢复模型的解;第一个约束保证了每个行程的旅客都能被安排到达他的目的地,否则退票;第二个约束保证了每个航班的旅客数量不超过安排给该航班的飞机的座位数;
步骤303,获得求解旅客行程恢复模型后的对偶变量,利用旅客行程恢复列生成算法解决备选行程子问题;
步骤304,通过检验数判断是否存在更优的旅客行程,如果存在,添加新的行程变量和对应约束到主模型中,转步骤302;否则转步骤305;
步骤305,输出旅客行程调整计划。
具体应用实例中,旅客行程恢复列生成算法的计算的过程如下:
步骤3031,根据需求构建航班连接网络,该网络被旅客行程生成子问题,为每一组行程受影响的旅客构建起点和终点,网络中剩下的点代表被影响的旅客的同一类行程的其它可选航班,点集被表示为Np
步骤3032,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤3033,按照拓扑排序依次遍历每一个点i∈Np,并获得其后续节点的集合S(i),如果遍历完毕则执行步骤3035,否则步骤3034;
步骤3034,对于点i的后续集合S(i)中的点j,根据i和j(j∈S(i))两个事件点之间的关系,构建从点i去往点j的后续子结点集合,对该集合中的每个待选点与j的所有现有子结点之间进行占优判断。在实际的旅客行程网络中,标签为行程成本和累计旅客延误时间等。根据占优结果对j的子结点集合进行更新。更新完毕则返回步骤3033;
步骤3035,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即旅客行程成本最小的一条备选旅客行程,若检验数小于0,则该条备选旅客行程被采用。
目前,本方法除了被应用于民航业以外还被应用于物流业,如顺丰的货运航班恢复。目前,本方法已被应用于顺丰的五个模拟实景恢复:机场容量限制、航班强制取消、飞机故障、航班调减以及台风场景。其中,货物的转运相似于乘客的重排,算法一致。针对顺丰的141个航班的60架次飞机的航线网络,算法运用效果如下表所示:
Figure BDA0002739375060000171
应当理解,本文所述的示例性实施例是说明性的而非限制性的。尽管结合附图描述了本发明的一个或多个实施例,本领域普通技术人员应当理解,在不脱离通过所附权利要求所限定的本发明的精神和范围的情况下,可以做出各种形式和细节的改变。

Claims (9)

1.一种不正常航班一体化智能恢复方法,其特征在于,包括以下步骤:
进行航班相关数据采集输入,模型/算法参数配置和恢复场景配置;
建立飞机路径恢复、机组排班恢复和旅客行程恢复的混合整数模型并使用以列生成为核心的算法进行求解,其中构建飞机路径恢复的整数规划模型并运用以列生成为核心的分支定价法进行求解,计算流程如下:
步骤101,在历史飞机路径的基础上结合启发式算法或随机深度优先搜索算法得到初始飞机路径集合,同时设定第一步长ε1(0≤ε1≤1)和第一判断标准κ1(0≤κ1≤1),其中第一步长的初始值根据输入的航班和飞机情况进行设定,第一判断标准的初始值为1;
步骤102,求解飞机路径恢复模型,其中A表示可用飞机的集合,I表示旅客行程的集合,R表示飞机可选路径的集合,L表示所有航段的集合,模型的目标函数为:
Figure FDA0003197828570000011
目标函数中
Figure FDA0003197828570000012
为飞机路径重规划的成本,其中
Figure FDA0003197828570000013
是路径r由飞机a执飞的总成本,
Figure FDA0003197828570000014
由分配飞机飞行成本和航班任务特质决定;
Figure FDA0003197828570000015
表示飞机a是否被安排给路径r,被安排则为1,否则为0;
Figure FDA0003197828570000016
为航班取消的成本,其中参数cl(≥0)是航班l的取消成本,由航班性质决定,决策变量wl∈{0,1}表示航班l是否被取消,被取消为1,否则为0;
Figure FDA0003197828570000017
为估计的因为飞机路径调整造成的旅客行程变动成本,其中Dmdi(≥0)表示行程i的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,决策变量zi∈{0,1}表示行程i是否被取消,被取消为1,否则为0;
模型包括以下三个约束条件:
Figure FDA0003197828570000021
Figure FDA0003197828570000022
Figure FDA0003197828570000023
其中Itin(i)表示行程i包含的航段集合,第一个约束保证了每一架飞机都被安排给一个路径;第二个约束表示每个航班必须被包含在飞机路径中执行,否则被取消;第三个约束结合目标函数保证如果某行程i的一个航班被取消,则该行程被取消;
步骤103,判断当前解是否为整数解,如果不是执行步骤104,否则退出,获得新的飞机路径调整计划和航班调整计划;
步骤104,判断有哪些
Figure FDA0003197828570000024
将对应的
Figure FDA0003197828570000025
加入集合
Figure FDA0003197828570000026
步骤105,对于
Figure FDA0003197828570000027
设置
Figure FDA0003197828570000028
下界
Figure FDA0003197828570000029
表示该路径飞机被选中执飞,同时路径r中的航班l执行情况已确定,如果存在别的路径
Figure FDA00031978285700000210
包含已经被确定的航班l,设置该路径对应变量值
Figure FDA00031978285700000211
上界
Figure FDA00031978285700000212
表示路径被淘汰;
步骤106,求解模型主问题的线性松弛解;
步骤107,判断是否有可行解,如果有可行解则执行步骤108,否则更新
Figure FDA00031978285700000213
κ1=κ11,再返回步骤103;
步骤108,比较固定路径航班前后两次线性松弛解,判断其目标值是否变大,如果目标值变大,则执行步骤109,否则返回步骤103;
步骤109,采用飞机路径恢复列生成算法为每个飞机找到更优的路径r1,r2,...,rn,添加进路径集合中,R=R∪{r1,r2,...,rn},在飞机路径寻找过程中,结合机组可行性的考虑,原航班计划中以外站为到达/出发站的一对航班组需要安排一样的飞机使得执飞这对航班组的机组有足够的时间中转,转到步骤102;
根据计算结果输出航班、飞机、机组的调整计划以及旅客的恢复计划,并根据执行情况统计各类评估指标。
2.如权利要求1所述的不正常航班一体化智能恢复方法,其特征在于,航班相关数据采集输入具体包括将与航班恢复相关的航班相关数据转化为需要的数据格式以供后续模型和算法使用,所述航班相关数据包括飞机信息、机型信息、机场信息、航线信息、航班信息、机组人员信息和基础维修计划信息。
3.如权利要求1所述的不正常航班一体化智能恢复方法,其特征在于,模型/算法参数配置具体包括对算法模型中的相关参数进行配置从而调整想获得的恢复方案的求解偏好,包括罚分类和限制类两类,其中罚分类指各种恢复措施的罚分;限制类则指不同航空公司和机场的各类运营限制。
4.如权利要求1所述的不正常航班一体化智能恢复方法,其特征在于,恢复场景配置指将实际的恢复场景转化为对具体航班、飞机或者机场的设置。
5.如权利要求1所述的不正常航班一体化智能恢复方法,其特征在于,所述飞机路径恢复列生成算法的计算过程如下:
步骤1091,根据需求构建航班连接网络,该网络被用于飞机路径子问题,为每一架飞机构建起点和终点,网络中剩下的点代表不同的飞机任务,网络中的弧代表可行的飞机任务连接,点集被表示为Na
步骤1092,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤1093,按照拓扑排序依次遍历每一个点i∈Na,并获得其后续节点的集合s(i),如果遍历完毕则执行步骤1095,否则执行步骤1094;
步骤1094,对于点i的后续集合s(i)中的点j,根据i和j(j∈S(i))两个事件点之间的关系进行占优判断,从而对j的子结点集合进行更新,更新完毕则返回步骤1093;
步骤1095,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即飞机路径成本最小的一条路径,若检验数小于0,则该条路径被采用。
6.如权利要求1所述的不正常航班一体化智能恢复方法,其特征在于,构建机组排班恢复的整数规划模型并运用以列生成为核心的分支定价法进行求解,计算过程如下:
步骤201,在历史机组排班计划的基础上结合启发式算法或随机深度优先搜索算法得到初始机组排班计划集合,同时设定第二步长ε2(0≤ε2≤1)和第二判断标准κ2(0≤κ2≤1),其中第二步长的初始值根据机组排班情况进行设定,第二判断标准的初始值为1;
步骤202,求解机组排班恢复模型,其中k表示可用机组的集合,p表示机组可选排班计划的集合,模型的目标函数为:
Figure FDA0003197828570000041
目标函数中
Figure FDA0003197828570000042
为机组重排班的总成本,其中
Figure FDA0003197828570000043
是排班计划p由机组k执飞的成本,根据排班计划的具体任务和机组资质共同决定,
Figure FDA0003197828570000044
表示是否把排班计划p指派给机组k,被安排为1,否则为0;
Figure FDA0003197828570000045
为航班取消的总成本,参数cl(≥0)是航班l的取消成本,决策变量υl∈{0,1}表示航班l是否被取消,被取消为1,否则为0;
Figure FDA0003197828570000046
为估计的由于机组排班调整造成的旅客行程变动成本,其中Dmdi(≥0)表示行程i的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,决策变量τi∈{0,1}表示行程i是否被取消,被取消为1,否则为0;
模型包括以下三个约束条件:
Figure FDA0003197828570000047
Figure FDA0003197828570000048
Figure FDA0003197828570000049
其中,第一个约束保证了每一个机组都被指派一个排班计划;第二个约束表示每个航班必须被包含在机组排班计划中执行,否则被取消;第三个约束结合目标函数保证如果某行程i的一个航班被取消,则该行程被取消;
步骤203,判断当前解是否为整数解,如果不是执行步骤204,否则退出,获得新的机组排班计划;
步骤204,判断有哪些
Figure FDA0003197828570000051
将对应的
Figure FDA0003197828570000052
加入集合
Figure FDA0003197828570000053
步骤205,对于
Figure FDA0003197828570000054
设置
Figure FDA0003197828570000055
下界
Figure FDA0003197828570000056
表示该排班计划被机组选中执飞,同时计划p中的航班l执行情况已确定,如果存在别的排班计划
Figure FDA0003197828570000057
包含已经被确定的航班l,设置该排班计划对应变量值
Figure FDA0003197828570000058
上界
Figure FDA0003197828570000059
表示路径被淘汰;
步骤206,求解模型主问题的线性松弛解;
步骤207,判断是否有可行解,如果有可行解则执行步骤208,否则更新
Figure FDA00031978285700000510
κ2=κ22,再返回步骤203;
步骤208,比较固定排班计划前后两次线性松弛解,判断其目标值是否变大,如果目标值变大,则执行步骤209,否则返回步骤203;
步骤209,列生成算法为每个机组找到更优的排班计划p1,p2,...,pm,添加进排班计划集合中,P=P∪{p1,p2,...,pm},转到步骤202。
7.如权利要求6所述的不正常航班一体化智能恢复方法,其特征在于,所述机组排班恢复列生成算法的计算过程如下:
步骤2091,根据需求构建航班连接网络,该网络被用于机组排班子问题,为每一个机组构建起点和终点,网络中剩下的点代表机组的任务,点集被表示为Nk
步骤2092,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤2093,按照拓扑排序依次遍历每一个点i∈Nk,并获得其后续节点的集合s(i),如果遍历完毕则执行步骤2095,否则步骤2094;
步骤2094,对于点i的后续集合s(i)中的点j,根据i和j(j∈S(i))两个事件点之间的关系进行占优判断,从而对j的子结点集合进行更新,更新完毕则返回步骤2093;
步骤2095,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即机组排班成本最小的一条机组任务串,若检验数小于0,则该机组排班计划被采用。
8.如权利要求1所述的不正常航班一体化智能恢复方法,其特征在于,构建旅客行程恢复的整数规划模型并运用以行列生成为核心的分支定价法进行求解,计算过程如下:
步骤301,得到初始行程集合;
步骤302,求解旅客行程恢复模型,它的目标函数为:
Figure FDA0003197828570000061
其中参数
Figure FDA0003197828570000062
是把行程i的旅客安排给行程m的单个旅客的成本,决策变量
Figure FDA0003197828570000063
是行程i被安排去行程m(包含i)的旅客数量,ci(≥0)表示行程i的单位旅客取消成本,λi(≥0)是行程i最终被退票的旅客数量,模型约束如下:
Figure FDA0003197828570000064
Figure FDA0003197828570000065
其中,Γ(i)表示行程i的备选行程集合,Capa代表飞机a的座位数,
Figure FDA0003197828570000066
是已知的飞机恢复模型的解;第一个约束保证了每个行程的旅客都能被安排到达他的目的地,否则退票;第二个约束保证了每个航班的旅客数量不超过安排给该航班的飞机的座位数;
步骤303,获得求解旅客行程恢复模型后的对偶变量,利用旅客行程恢复列生成算法解决备选行程子问题;
步骤304,通过检验数判断是否存在更优的旅客行程,如果存在,添加新的行程变量和对应约束到主模型中,转步骤302;否则转步骤305;
步骤305,输出旅客行程调整计划。
9.如权利要求8所述的不正常航班一体化智能恢复方法,其特征在于,所述旅客行程恢复列生成算法的计算的过程如下:
步骤3031,根据需求构建航班连接网络,该网络被旅客行程生成子问题,为每一组行程受影响的旅客构建起点和终点,网络中剩下的点代表被影响的旅客的同一类行程的其它可选航班,点集被表示为Np
步骤3032,初始化所有点的标签,将出发点设置为0,将其他点设置为空;
步骤3033,按照拓扑排序依次遍历每一个点i∈Np,并获得其后续节点的集合s(i),如果遍历完毕则执行步骤3035,否则步骤3034;
步骤3034,对于点i的后续集合s(i)中的点j,根据i和j(j∈s(i))两个事件点之间的关系进行占优判断,从而对j的子结点集合进行更新,更新完毕则返回步骤3033;
步骤3035,根据上一轮模型主问题的对偶变量的值计算出可行的所有路径的检验数,选出检验数,即旅客行程成本最小的一条备选旅客行程,若检验数小于0,则该条备选旅客行程被采用。
CN202011144973.4A 2020-10-23 2020-10-23 不正常航班一体化智能恢复方法 Active CN112330983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011144973.4A CN112330983B (zh) 2020-10-23 2020-10-23 不正常航班一体化智能恢复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011144973.4A CN112330983B (zh) 2020-10-23 2020-10-23 不正常航班一体化智能恢复方法

Publications (2)

Publication Number Publication Date
CN112330983A CN112330983A (zh) 2021-02-05
CN112330983B true CN112330983B (zh) 2021-09-28

Family

ID=74311770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011144973.4A Active CN112330983B (zh) 2020-10-23 2020-10-23 不正常航班一体化智能恢复方法

Country Status (1)

Country Link
CN (1) CN112330983B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112990725A (zh) * 2021-03-24 2021-06-18 携程旅游网络技术(上海)有限公司 航班自动补班的方法、系统、设备及介质
CN114004541A (zh) * 2021-11-25 2022-02-01 杭州优迈科思信息科技有限责任公司 一种智能飞行机组排班的方法及设备
CN114333430A (zh) * 2021-12-22 2022-04-12 悠桦林信息科技(上海)有限公司 航班信息生成方法、装置、设备、存储介质和计算机程序产品
CN114491317B (zh) * 2022-04-18 2022-06-21 中国民航大学 飞机集中除冰作业方法、系统、存储介质及计算机设备
CN115662198B (zh) * 2022-12-28 2023-03-10 中国电子科技集团公司第二十八研究所 基于动态路径规划场的穿越民航航路方法及系统
CN117273406B (zh) * 2023-11-22 2024-03-12 青岛民航凯亚系统集成有限公司 基于甘特图的民航机场运行指挥调度系统、方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108875128A (zh) * 2018-05-03 2018-11-23 西安理工大学 一种带决策因子的航班恢复建模方法
CN108985621A (zh) * 2018-07-13 2018-12-11 南京航空航天大学 基于风险管控的区域多机场不正常航班恢复方法
CN109544000A (zh) * 2018-11-21 2019-03-29 中国民航大学 面向航班正常性的航空公司排班计划优化方法和系统
CN109840610A (zh) * 2017-11-28 2019-06-04 梁哲 不正常航班飞机路径与旅客行程自动恢复系统及方法
CN110533228A (zh) * 2019-08-13 2019-12-03 哈尔滨工程大学 一种考虑旅客意愿的航班恢复方法
CN110751309A (zh) * 2019-08-30 2020-02-04 中国南方航空股份有限公司 一种不正常航班的恢复方法、电子设备及存储介质
CN110826754A (zh) * 2018-08-09 2020-02-21 阿里巴巴集团控股有限公司 一种目标参数值的确定、航班调度方法、装置及其设备
CN110851933A (zh) * 2019-11-08 2020-02-28 四川航空股份有限公司 航班智能规划方法、装置、电子设备及存储介质
CN110889609A (zh) * 2019-11-18 2020-03-17 杉数科技(北京)有限公司 一种航班恢复策略生成方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109840610A (zh) * 2017-11-28 2019-06-04 梁哲 不正常航班飞机路径与旅客行程自动恢复系统及方法
CN108875128A (zh) * 2018-05-03 2018-11-23 西安理工大学 一种带决策因子的航班恢复建模方法
CN108985621A (zh) * 2018-07-13 2018-12-11 南京航空航天大学 基于风险管控的区域多机场不正常航班恢复方法
CN110826754A (zh) * 2018-08-09 2020-02-21 阿里巴巴集团控股有限公司 一种目标参数值的确定、航班调度方法、装置及其设备
CN109544000A (zh) * 2018-11-21 2019-03-29 中国民航大学 面向航班正常性的航空公司排班计划优化方法和系统
CN110533228A (zh) * 2019-08-13 2019-12-03 哈尔滨工程大学 一种考虑旅客意愿的航班恢复方法
CN110751309A (zh) * 2019-08-30 2020-02-04 中国南方航空股份有限公司 一种不正常航班的恢复方法、电子设备及存储介质
CN110851933A (zh) * 2019-11-08 2020-02-28 四川航空股份有限公司 航班智能规划方法、装置、电子设备及存储介质
CN110889609A (zh) * 2019-11-18 2020-03-17 杉数科技(北京)有限公司 一种航班恢复策略生成方法和装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
An Optimization Approach to Airline Integrated Recovery;Petersen,Jon D. 等;《TRANSPORTATION SCIENCE》;20121130;第46卷(第4期);第482-500页 *
Introduction to the constraint language NCL;Zhou,JY;《JOURNAL OF LOGIC PROGRAMMING》;20001031;第45卷(第1-3期);第71-103页 *
不正常航班恢复优化问题研究;朱博;《中国博士学位论文全文数据库 经济与管理科学辑》;20171115(第11期);第67-72页 *
不正常航班恢复问题研究;赵鹏;《中国优秀硕士学位论文全文数据库 经济与管理科学辑》;20150815(第08期);第32-47页 *
不正常航班飞机和机组计划恢复问题研究;朱博;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20130415(第04期);第7-51页 *
航空公司不正常航班恢复模型及算法研究;赵秀丽;《中国博士学位论文全文数据库 经济与管理科学辑》;20110115(第01期);第68-89页 *

Also Published As

Publication number Publication date
CN112330983A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
CN112330983B (zh) 不正常航班一体化智能恢复方法
Kasirzadeh et al. Airline crew scheduling: models, algorithms, and data sets
Eltoukhy et al. Airline schedule planning: a review and future directions
Liang et al. On a new rotation tour network model for aircraft maintenance routing problem
Petersen et al. An optimization approach to airline integrated recovery
Yan et al. A passenger demand model for airline flight scheduling and fleet routing
CN104751681B (zh) 一种基于统计学习模型的停机位分配方法
Van Den Briel et al. America west airlines develops efficient boarding strategies
Shao et al. A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, and crew pairing problem
CN109840610A (zh) 不正常航班飞机路径与旅客行程自动恢复系统及方法
Delcea et al. Methods for accelerating the airplane boarding process in the presence of apron buses
CN111680833A (zh) 航班计划自动编排方法
Justin et al. Demand modeling and operations optimization for advanced regional air mobility
CN112819317B (zh) 一种不正常航班飞机、旅客及机务一体化恢复系统
CN112862258B (zh) 一种考虑旅客偏好的有限理性的航班恢复方法
CN110909946B (zh) 一种基于公路换乘的航班计划优化方法
Straubinger et al. Proposing a scenario-based estimation of global urban air mobility demand
CN112418620A (zh) 机组成员自动排班系统
CN114936804B (zh) 一种机场多维资源协同调度方法
Xu et al. Robust integrated airline scheduling with chance constraints
Shabanpour et al. Integrated linear integer model of a fleet allocation and aircraft routing problem with operational constraints
Li et al. Integration of fleet assignment and aircraft routing
Unal et al. A new approach to fleet assignment and aircraft routing problems
Li et al. High-speed train network routing with column generation
Schosser et al. Theoretical foundation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant