CN112326618B - 一种对苯二酚的检测方法 - Google Patents

一种对苯二酚的检测方法 Download PDF

Info

Publication number
CN112326618B
CN112326618B CN202011230974.0A CN202011230974A CN112326618B CN 112326618 B CN112326618 B CN 112326618B CN 202011230974 A CN202011230974 A CN 202011230974A CN 112326618 B CN112326618 B CN 112326618B
Authority
CN
China
Prior art keywords
hydroquinone
concentration
protamine sulfate
detection method
fluorescence intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011230974.0A
Other languages
English (en)
Other versions
CN112326618A (zh
Inventor
宋波
鲍慧娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Wanbang Chemical Industry Co.,Ltd.
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN202011230974.0A priority Critical patent/CN112326618B/zh
Publication of CN112326618A publication Critical patent/CN112326618A/zh
Application granted granted Critical
Publication of CN112326618B publication Critical patent/CN112326618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6443Fluorimetric titration

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种对苯二酚的检测方法,用硫酸鱼精蛋白检测对苯二酚,往一定的量的硫酸鱼精蛋白中加入对苯二酚,随着体系中不断增加对苯二酚,交联原位生成的荧光聚合物纳米粒子的荧光逐渐增强,加入对苯二酚的浓度与聚合物纳米粒子的荧光强度呈良好的线性关系,据此建立了一种检测对苯二酚有机污染物的新方法。该方法操作简单,检测限低,灵敏度高,选择性好,能快速实时的对对苯二酚的浓度进行检测。

Description

一种对苯二酚的检测方法
技术领域
本发明属于检测领域,具体涉及一种对苯二酚的检测方法。
背景技术
酚类化合物是一种毒性很强的物质,不管是对人类,动物还是植物,都具有毒性,因此酚类化合物高危害性是公认的。而在酚类物质之间,尤其需要大家注意的就是对苯二酚(1,4- 二羟基苯,HQ),不管是化学工业(塑料,煤焦油生产和橡胶等),化妆品行业还是染料和医药农药(例如药品和杀虫剂)领域,HQ都是常用的有机原料,经常在很多大型生物和工业领域使用。HQ毒性大,即使浓度非常低,HQ也会对生物体和人类造成严重伤害,吸入导致呼吸道疾病,甚至摄入量多了,会引起头痛、肝脏功能下降、心动过速,严重的会诱发急性髓细胞性白血病和癌症等。因此,建立一种有效地检测污水中对苯二酚含量的方法至关重要。
目前,用来检测对苯二酚的主要分析方法有电化学发光法,比色法,分光光度法,电化学和荧光分析法。荧光分析法的优势很多,如操作简单,灵敏度高,分析快,选择性好,因此近年很多构建荧光探针用来检测HQ的研究报道。然而,目前大多数的荧光测定法利用的都是HQ被碱催化氧化生成对苯醌,然后对苯醌猝灭荧光团荧光的性质,来设计一种荧光“猝灭”型的荧光探针。这种荧光“猝灭”型传感系统易受背景影响而降低探针的灵敏度。相比而言,荧光“增强”型探针的在检测过程中几乎不受假阳性信号的干扰。因此,开发一种荧光“增强”型检测对苯二酚的探针具有重要意义。
发明内容
本发明的目的在于提供一种对苯二酚的检测方法,利用硫酸鱼精蛋白检测对苯二酚(HQ),往一定的量的硫酸鱼精蛋白中加入对苯二酚,随着体系中不断增加对苯二酚,交联原位生成的荧光聚合物纳米粒子的荧光逐渐增强,加入对苯二酚的浓度与聚合物纳米粒子的荧光强度呈良好的线性关系,据此建立了一种检测对苯二酚有机污染物的新方法。该方法操作简单,检测限低,灵敏度高,选择性好,能快速实时的对对苯二酚的浓度进行检测。
本发明具体技术方案如下:
一种对苯二酚的检测方法,包括以下步骤:
将硫酸鱼精蛋白溶液和不同浓度的对苯二酚溶液混合,调整pH至碱性,加热反应后,冷却至室温,产物测出荧光强度,构建荧光强度和对苯二酚浓度的线性关系,实现对对苯二酚的检测。
硫酸鱼精蛋白溶液和不同浓度的对苯二酚溶液用水配置。
优选的,调节pH至7.8-9,优选为8.1。
所述加热反应是指80℃条件下反应60-120min,优选的为90min。
所述硫酸鱼精蛋白终浓度为0.9-1.1g L-1,优选为1.1g L-1
所述对苯二酚最终浓度分别为0,5,10,15,20,25,30,35,40,45,50,60,80, 100,120,160,200μM。
进一步的,所述检测方法为:
取400μL 5.5g L-1的硫酸鱼精蛋白与500μL不同浓度的对苯二酚混合,加入磷酸缓冲溶液调节pH=8.1,再用超纯水定容至2.0mL,然后,将混合物在80℃的恒温干燥箱中反应90min,反应完全后冷却至室温,依次将所有样品通过设定激发波长为333nm,激发 /发射缝隙均为5nm的荧光分光光度计测出荧光光谱,以测得的430nm处最大荧光强度对 HQ的浓度绘制曲线,体系的荧光随加入的HQ的增多而变强,当HQ的量达到一定量时,荧光增长速度逐渐减慢,这是因为逐渐达到化学平衡,体系荧光强度与HQ浓度(0μmol L-1至25 μmol L-1)之间具有良好的线性比例关系,相关系数的平方R2=0.999,直线方程为F=237.186 +107.469C,C的单位μmol L-1,F为荧光强度,。
本发明中,鱼精蛋白是一种含胺的聚合物蛋白质,该蛋白质本身不发射荧光。实验发现对苯二酚能够交联硫酸鱼精蛋白合成荧光聚合物纳米粒子(HPNP),其荧光激发波长和发射波长分别为333nm和430nm。通过TEM,FTIR和XPS等对HPNP进行了表征。当往一定的量的硫酸鱼精蛋白中加入对苯二酚时,随着体系中不断增加对苯二酚,交联原位生成的荧光聚合物纳米粒子的荧光逐渐增强。在选定的最佳条件下,当硫酸鱼精蛋白的浓度为1.1g L-1,对苯二酚浓度为0-25μmol L-1时,加入对苯二酚的浓度与聚合物纳米粒子的荧光强度呈良好的线性关系,检测限为0.21μmol L-1。据此建立了一种检测对苯二酚有机污染物的新方法。该方法操作简单,检测限低,灵敏度高,选择性好,能快速实时的对对苯二酚的浓度进行检测。
附图说明
图1为硫酸鱼精蛋白、对苯二酚和硫酸鱼精蛋白与对苯二酚反应物的荧光发射光谱;
图2为硫酸鱼精蛋白作为探针检测对苯二酚示意图;
图3为反应时间对体系荧光强度的影响;
图4为pH对体系荧光强度的影响;
图5为硫酸鱼精蛋白的浓度对体系荧光强度的影响;
图6为硫酸鱼精蛋白探针体系与不同浓度的对苯二酚反应后的荧光光谱图;
图7为荧光强度与对苯二酚浓度关系曲线;
图8为硫酸鱼精蛋白探针检测对苯二酚的标准曲线;
图9为硫酸鱼精蛋白与对苯二酚或与其他物质作用后在下430nm处的荧光强度;
图10为HPNP的透射电镜图;
图11为对苯二酚、硫酸鱼精蛋白和HPNP的红外光谱图;
图12为HPNP的XPS光谱;
图13为硫酸鱼精蛋白,对苯二酚、和HPNP纳米材料的紫外–可见吸收光谱图。
具体实施方式
实施例1
鱼精蛋白与对苯二酚的交联作用:
取400μL 5.5g L-1的硫酸鱼精蛋白置于4.0mL离心管中,然后添加500μL 80μmolL-1的对苯二酚,加入磷酸缓冲溶液调节pH=8.1,再用超纯水定容至2.0mL,硫酸鱼精蛋白终浓度为1.1g L-1,对苯二酚终浓度20μmol L-1;然后,将混合物在80℃的恒温干燥箱中反应90min,反应完全后冷却至室温,再检测其荧光性能。
用333nm波长作为激发波长,1.1g L-1硫酸鱼精蛋白溶液(pH=8.1)和20μmol L-1对苯二酚溶液(pH=8.1)均没有荧光发射,如图1所示,但硫酸鱼精蛋白与HQ混合反应后导致荧光强度增加。这主要是因为在碱性环境下,环境中的氧气(O2)很容易将对苯二酚氧化为对苯醌,形成的对苯醌与硫酸鱼精蛋白的氨基发生席夫碱缩合反应,生成含C=N键的产物,然后通过共价交联和聚集形成荧光纳米材料(HPNP),反应示意图如图2所示。
HPNP的透射电子显微镜(TEM)图像显示如图10,硫酸鱼精蛋白和对苯二酚成功制备出了HPNP,粒径约20–50nm,且HPNP粒子分散性良好。HPNP的形成可以归因于亚胺交联后,疏水性芳香核和C=N键结合到硫酸鱼精蛋白中,对苯醌分子可以通过C=N键使鱼精蛋白分子间交联,在水性介质中收缩并自组装成HPNP。由于HPNP表面上仍具很多胺基,HPNP颗粒在水中的分散性良好。
由对苯二酚在pH=8.1的碱性溶液中放置于空气中2h制得的对苯二酚,硫酸鱼精蛋白和HPNP的FTIR光谱如图11所示。由于HPNP实质上是由HQ被氧化后的对苯醌和硫酸鱼精蛋白反应得到,这里用碱性溶液下与空气反应后的对苯二酚(Hydroquinone),硫酸鱼精蛋白(Protamine Sulfate)的红外光谱作为参考,对苯二酚中3380cm-1附近有个大的吸收峰,这是–OH的伸缩振动,1630cm-1是C=O的伸缩振动,1472cm-1和1514cm-1两个吸收峰属于C=C伸缩振动,1365cm-1处的峰是C–O伸缩振动。硫酸鱼精蛋白中2951cm-1和2875cm-1处的峰值归因于对称的–CH2伸缩振动,1660cm-1处的峰归因于C=O拉伸振动和N–H弯曲振动, 1540cm-1处的峰归因于N–H弯曲振动,而在1453cm-1处的峰属于C–H弯曲振动,1089cm-1的峰是C–OH伸缩振动。由于图中的对苯二酚中存在C=O键,说明HQ在碱性条件下的确被空气里含有的氧气氧化成对苯醌。HPNP与对苯二酚和硫酸鱼精蛋白的红外光谱对比,可以看出硫酸鱼精蛋白处于1540cm-1处的吸收峰消失,但是在HPNP的FTIR光谱中的1655cm-1处发现了一个强吸收峰,该峰是HQ氧化生成的对苯醌与鱼精蛋白发生席夫碱反应生成含C=N的 HPNP并附着其表面导致的。综合以上分析,证明在形成HPNP过程中,涉及了HQ被氧化成对苯醌和对苯醌与鱼精蛋白发生席夫碱反应与交联。
本发明还通过X射线光电子能谱(XPS)研究了HPNP表面的元素组成和化学键。从图12可以看出,XPS光谱包含四个峰,分别为168eV的S 2p,285eV的C1s,399.2eV的N1s 和530.9eV的O1s。
图13是硫酸鱼精蛋白(pH=8.1),对苯二酚(pH=8.1)、和HPNP纳米材料(pH=8.1)的紫外–可见吸收光谱图。其中,硫酸鱼精蛋白浓度为1.83g L-1,对苯二酚浓度为230μmolL-1,HPNP纳米材料为230μmol L-1对苯二酚和1.83g L-1硫酸鱼精蛋白的反应产物;图中硫酸鱼精蛋白和对苯二酚在350nm以上没有显著吸收,而HPNP在384nm处出现新的具有强特征吸收峰,新的吸收带是来自于C=N键的n→π*跃迁。
实施例2
一种对苯二酚的检测方法,包括以下步骤:
取400μL 5.5g L-1的硫酸鱼精蛋白置于4.0mL离心管中,然后添加500μL不同浓度的对苯二酚,加入磷酸缓冲溶液调节pH=8.1,再用超纯水定容至2.0mL,硫酸鱼精蛋白终浓度为1.1g L-1,对苯二酚最终浓度分别为0,5,10,15,20,25,30,35,40,45,50, 60,80,100,120,160,200μM;然后,将混合物在80℃的恒温干燥箱中反应90min,反应完全后冷却至室温,依次将所有样品通过设定激发波长为333nm,激发/发射缝隙均为5nm 的荧光分光光度计测出荧光光谱,如图6。以测得的430nm处最大荧光强度对HQ的浓度绘制曲线。结果如图7所示,体系的荧光随加入的HQ的增多而变强,当HQ的量达到一定量时,荧光增长速度逐渐减慢,这是因为逐渐达到化学平衡。由图8所示,体系荧光强度与HQ浓度 (0μmol L-1至25μmolL-1)之间具有良好的线性比例关系(R2=0.999),直线方程为F=237.186 +107.469C,C的单位μmol L-1。使用公式Clim=3δ/k,其中δ是5次空白实验的标准偏差, 7.52。k是标准曲线的斜率,确定的检测限(Clim)为0.21μmol L-1。据此建立了一种检测对苯二酚的方法,该方法操作简单,能快速实时的对对苯二酚浓度进行检测。
实施例3检测条件对比:
重复实施例1,不同在于分别只改变反应时间、pH或硫酸鱼精蛋白的浓度,具体如下:
反应时间对比实验:
重复实施例1,区别在于对苯二酚1终浓度为10μmol L-1;反应时间对比如图3,从图3中可以看出,0~80min之间,鱼精蛋白和HQ混合溶液的荧光强度随反应时间增加而逐渐增强,80min后,体系荧光强度变化不大。为了保证反应彻底,因此,在后续的荧光定量过程中选择反应时间t=90min。
pH对比实验:
重复实施例1,区别在于对苯二酚1终浓度为10μmol L-1,通过磷酸缓冲溶液或NaOH调节体系的pH,分别为7.5,7.8,8.1,8.5,9,10,11,反应pH对体系荧光强度的影响,结果如图4所示。从图4可以清楚地看到,随着pH值从7.5增加8.1,HPNP在430nm处的荧光强度逐渐增加,这是因为较低的pH值HQ不易被氧化为对苯二酮。当pH从8.5增加到 11时,硫酸鱼精蛋白和HQ的混合溶液的荧光强度逐渐下降,这是因为较高的pH值不利于对苯二酮与硫酸鱼精蛋白的席夫碱缩合反应。
硫酸鱼精蛋白的浓度对比实验:
重复实施例1,区别在于对苯二酚终浓度100μmol L-1,改变硫酸鱼精蛋白的终浓度,浓度分别为0.05,0.3,0.6,0.8,0.9,1.1,1.6g L-1,结果硫酸鱼精蛋白的浓度对比如图5。硫酸鱼精蛋白的用量也会对荧光聚合物纳米粒子HPNP的荧光强度产生影响。从图5可看到,当对苯二酚浓度在100μmol L-1时,随着硫酸鱼精蛋白的浓度从0.05增加0.9g L-1时,HPNP在430nm处的荧光强度逐渐增加。当硫酸鱼精蛋白的浓度大于0.9g L-1时,HPNP 在430nm处的荧光强度基本维持不变。综上所述,本发明荧光滴定实验是使用硫酸鱼精蛋白浓度为1.1g L-1,磷酸缓冲溶液调节pH为8.1下反应90min进行,效果最优。
实施例4选择性实验
一个好的检测方法必须有较好的选择性和抗干扰能力。通过测定由各种潜在干扰物质的存在引起的荧光强度来评估探针检测对苯二酚的选择性。因此,本发明选择了一系列干扰物,包括邻苯二酚、间苯二酚、硝基苯酚、柠檬酸、苯甲酸、乙二胺、K2CrO4、MgCl2、硫脲和多巴胺,用于测定此探针的选择性,实验过程如实施例1,区别在于替换对苯二酚分别为上述干扰物。结果如图9所示,检测体系中,硫酸鱼精蛋白1.1g L-1;图9中1-12分别为空白、对苯二酚(20μmol L-1)、邻苯二酚(20μmol L-1)、间苯二酚(20μmol L-1)、硝基苯酚(200μmolL-1)、柠檬酸(200μmol L-1)、苯甲酸(200μmol L-1)、乙二胺(200μmol L -1)、K2CrO4(200μmolL-1)、MgCl2(200μmol L-1)、硫脲(200μmol L-1)和多巴胺(200 μmol L-1)。
由对苯二酚终浓度20μmol L-1,引起的探针系统的荧光强度显着大于其他测试物质的荧光强度(图9中2)。与对苯二酚具有类似结构的邻苯二酚与硫酸鱼精蛋白虽然也发射荧光,但其荧光强度较弱(图9中3)。而间苯二酚(图9中4)对体系没有干扰,这是因为间苯二酚无法生成对应醌结构。其余物质均不与硫酸鱼精蛋白作用产生荧光,不存在干扰,表明该检测具有良好的选择性。
实施例5
为了验证本发明检测方法在检测对苯二酚的准确性,通过往自来水中加入已知量的对苯二酚,再利用所构建的方法检测对苯二酚的浓度。
检测方法为:
取400μL 5.5g L-1的硫酸鱼精蛋白置于4.0mL离心管中,然后500μL添加待测样品,加入磷酸缓冲溶液调节pH=8.1,再用超纯水定容至2.0mL,硫酸鱼精蛋白终浓度为1.1g L-1;然后,将混合物在80℃的恒温干燥箱中反应90min,反应完全后冷却至室温,将样品通过设定激发波长为333nm,激发/发射缝隙均为5nm的荧光分光光度计测出荧光光谱,测得的430nm处最大荧光强度,利用实施例2所述的线性关系得到待测样品浓度。检测结果如下表1所示。
表1实施例5检测结果
Figure BDA0002765192720000061
样品中对苯二酚的平均回收率范围为99.3%-103%,相对标准偏差(RSD)低于5%。所有这些结果表明所提出的传感器可以用于水样品中对苯二酚的检测。

Claims (9)

1.一种对苯二酚的检测方法,其特征在于,所述检测方法包括以下步骤:
将硫酸鱼精蛋白溶液和不同浓度的对苯二酚溶液混合,调整pH至碱性,加热反应后,冷却至室温,产物测出荧光强度,构建荧光强度和对苯二酚浓度的线性关系,实现对对苯二酚的检测。
2.根据权利要求1所述的检测方法,其特征在于,调节pH至7.8-9。
3.根据权利要求1或2所述的检测方法,其特征在于,调节pH至8.1。
4.根据权利要求1所述的检测方法,其特征在于,所述加热反应是指80℃条件下反应60-120min。
5.根据权利要求1所述的检测方法,其特征在于,所述硫酸鱼精蛋白终浓度为0.9-1.1gL-1
6.根据权利要求1或5所述的检测方法,其特征在于,所述对苯二酚最终浓度分别为0,5,10,15,20,25,30,35,40,45,50,60,80,100,120,160,200μM。
7.根据权利要求1所述的检测方法,其特征在于,测定430nm处最大荧光强度。
8.根据权利要求1所述的检测方法,其特征在于,所述检测方法为:取400μL 5.5g L-1的硫酸鱼精蛋白与500μL不同浓度的对苯二酚混合,加入磷酸缓冲溶液调节pH=8.1,再用超纯水定容至2.0mL,然后,将混合物在80℃的恒温干燥箱中反应90min,反应完全后冷却至室温,依次将所有样品通过设定激发波长为333nm,激发/发射缝隙均为5nm的荧光分光光度计测出荧光光谱,以测得的430nm处最大荧光强度对HQ的浓度绘制曲线,构建荧光强度和对苯二酚浓度的线性关系。
9.根据权利要求1或8所述的检测方法,其特征在于,所述线性关系:F=237.186+107.469C,C的单位μmol L-1,F为荧光强度,相关系数的平方R2=0.999。
CN202011230974.0A 2020-11-06 2020-11-06 一种对苯二酚的检测方法 Active CN112326618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011230974.0A CN112326618B (zh) 2020-11-06 2020-11-06 一种对苯二酚的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011230974.0A CN112326618B (zh) 2020-11-06 2020-11-06 一种对苯二酚的检测方法

Publications (2)

Publication Number Publication Date
CN112326618A CN112326618A (zh) 2021-02-05
CN112326618B true CN112326618B (zh) 2022-11-01

Family

ID=74315682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011230974.0A Active CN112326618B (zh) 2020-11-06 2020-11-06 一种对苯二酚的检测方法

Country Status (1)

Country Link
CN (1) CN112326618B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252588B (zh) * 2021-05-11 2022-08-16 西南科技大学 有机黏土及其制备方法、检测对苯二酚的显色体系和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2619676A1 (en) * 2005-09-02 2007-03-08 Bayer Schering Pharma Ag Optically fluorescent nanoparticles
KR20140108937A (ko) * 2013-03-04 2014-09-15 한국과학기술연구원 금속 나노구조를 이용한 실시간 단백질 검출 방법 및 검출 키트
CN106583747A (zh) * 2016-12-06 2017-04-26 南华大学 鱼精蛋白金纳米簇的制备及在模拟酶比色和荧光检测中的应用
CN106645048A (zh) * 2016-09-28 2017-05-10 安徽师范大学 一种鱼精蛋白的检测方法
CN110398482A (zh) * 2019-07-30 2019-11-01 安徽师范大学 利用聚乙烯亚胺定量检测对苯二酚和β-葡萄糖苷酶的方法
CN111208104A (zh) * 2020-01-20 2020-05-29 福建医科大学 一种粒径可控的荧光聚多巴胺纳米粒子的制备以及胰蛋白酶的检测
CN111879741A (zh) * 2020-07-15 2020-11-03 安徽师范大学 一种检测α-葡萄糖苷酶活性的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796259B2 (ja) * 2000-05-04 2011-10-19 シーメンス・ヘルスケア・ダイアグノスティックス・プロダクツ・ゲーエムベーハー 複数のアナライトの検出において使用するための組成物
US9977016B2 (en) * 2015-11-05 2018-05-22 Kansas State University Research Foundation Two-dimensional fluorescence difference spectroscopy characterization of nanoparticles and their interactions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2619676A1 (en) * 2005-09-02 2007-03-08 Bayer Schering Pharma Ag Optically fluorescent nanoparticles
KR20140108937A (ko) * 2013-03-04 2014-09-15 한국과학기술연구원 금속 나노구조를 이용한 실시간 단백질 검출 방법 및 검출 키트
CN106645048A (zh) * 2016-09-28 2017-05-10 安徽师范大学 一种鱼精蛋白的检测方法
CN106583747A (zh) * 2016-12-06 2017-04-26 南华大学 鱼精蛋白金纳米簇的制备及在模拟酶比色和荧光检测中的应用
CN110398482A (zh) * 2019-07-30 2019-11-01 安徽师范大学 利用聚乙烯亚胺定量检测对苯二酚和β-葡萄糖苷酶的方法
CN111208104A (zh) * 2020-01-20 2020-05-29 福建医科大学 一种粒径可控的荧光聚多巴胺纳米粒子的制备以及胰蛋白酶的检测
CN111879741A (zh) * 2020-07-15 2020-11-03 安徽师范大学 一种检测α-葡萄糖苷酶活性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Turn-On" Fluorescence Determination of β‑Glucosidase Activity Using Fluorescent Polymer Nanoparticles Formed from Polyethylenimine Cross-Linked with Hydroquinone;Jinshui Liu 等;《American Chemical Society》;20190930(第1期);3057-3063 *
β-环糊精荧光增敏的间苯二酚荧光分析法;夏开豪等;《华侨大学学报(自然科学版)》;20081031(第04期);550-553 *
糖胺聚糖分析测定的研究进展;张莉 等;《分析化学(FENXIHUAXUE)评述与进展》;20050731;第33卷(第7期);1023-1028 *

Also Published As

Publication number Publication date
CN112326618A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
Chen et al. Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols
Ye et al. Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper (II) ions
Tan et al. Acid-assisted hydrothermal synthesis of red fluorescent carbon dots for sensitive detection of Fe (III)
Xiao et al. Porous carbon quantum dots: one step green synthesis via L-cysteine and applications in metal ion detection
CN111285897B (zh) 一种用于铜离子检测和分离的介孔硅荧光探针及其制备方法
CN107236541B (zh) 氮掺杂石墨烯量子点的制备方法及抗坏血酸的检测方法
CN109307665B (zh) 一种利用荧光碳量子点检测Fe3+的方法
Wei et al. A novel molecularly imprinted polymer thin film at surface of ZnO nanorods for selective fluorescence detection of para-nitrophenol
CN112326618B (zh) 一种对苯二酚的检测方法
Chen et al. Barbituric acid-modified graphitic carbon nitride nanosheets for ratiometric fluorescent detection of Cu 2+
Chu et al. A new fluorescence probe comprising nitrogen-doped graphene quantum dots for the selective and quantitative determination of cerium (iv)
CN114369458B (zh) 一种碘掺杂碳量子点及其制备方法和应用
Liu et al. Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn (vii) and Cr (vi)
Zeng et al. Novel N, F co-doped carbon dots to detect sulfide and cadmium ions with high selectivity and sensitivity based on a “turn-off-on” mechanism
CN111004621B (zh) 基于偶氮苯-量子点的荧光探针及制备方法以及其在分子开关型荧光传感器中的应用
CN110907589B (zh) 一种基于GQDs光催化可视化检测Cu2+的方法
Liu et al. Improved fluorescence test of chromium (VI) in aqueous solution with g-C3N4 nanosheet and mechanisms
CN113698499A (zh) 一种铁离子响应的纳米纤维素基荧光材料及其制备方法和应用
CN113777088B (zh) 一种基于碳点的乙酰胆碱酯酶的荧光检测方法
CN113310960B (zh) 硫量子点的合成方法及基于硫量子点测定Fe2+和H2O2的方法
CN107699235B (zh) 基于Mn掺杂ZnS量子点的固体磷光探针材料的制备及应用
CN110257050B (zh) 一种氮硫共掺杂碳纳米粒子及在2,4,6-三硝基苯酚检测中的应用
Chen et al. Amino-functionalized Cu metal–organic framework nanosheets as fluorescent probes for detecting TNP
Diyuk et al. Luminescent carbon nanoparticles immobilized in polymer hydrogels for pH sensing
Kaur et al. Anion recognition properties of chromone-based organic and organic–inorganic hybrid nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240802

Address after: 257237 Dongying Port Economic Development Zone, Dongying City, Shandong Province, east of Gangxi Third Road, south of S-1 Road, and west of Haike Ruilin

Patentee after: Shandong Wanbang Chemical Industry Co.,Ltd.

Country or region after: China

Address before: 241000 Wuhu Road, Yijiang District, Anhui,

Patentee before: ANHUI NORMAL University

Country or region before: China