CN112321776A - 一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法 - Google Patents

一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法 Download PDF

Info

Publication number
CN112321776A
CN112321776A CN202011285397.5A CN202011285397A CN112321776A CN 112321776 A CN112321776 A CN 112321776A CN 202011285397 A CN202011285397 A CN 202011285397A CN 112321776 A CN112321776 A CN 112321776A
Authority
CN
China
Prior art keywords
capsaicin
molecularly imprinted
magnetic beads
imprinted magnetic
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011285397.5A
Other languages
English (en)
Inventor
刘治刚
于世华
高艳
陈杰
举煜恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Institute of Chemical Technology
Original Assignee
Jilin Institute of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Institute of Chemical Technology filed Critical Jilin Institute of Chemical Technology
Priority to CN202011285397.5A priority Critical patent/CN112321776A/zh
Publication of CN112321776A publication Critical patent/CN112321776A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/10Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法,属于食品分析样品前处理领域;该发明主要以磁性Fe3O4微球为载体,利用含有双键的偶联剂对其进行表面改性;之后将双键修饰的磁性微球与辣椒碱模板分子、功能单体、偶联剂、引发剂和分散剂混合共聚;将上述合成的磁性微球用甲醇‑乙酸溶液洗脱,洗去模板分子,水洗、醇洗备用。本发明所制备的辣椒碱分子印迹磁珠能够对地沟油中的辣椒碱进行选择性、高效的萃取和分离,为后续利用HPLC、HPLC‑MS、拉曼等仪器进行检测提供一种样品前处理技术,进而来鉴定地沟油。

Description

一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法
技术领域
本发明属于食品安全样品前处理领域,尤其涉及一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法。
背景技术
地沟油俗称泔水油,回收于餐桌,经过特殊的炼制在回用于餐桌,因此,地沟油中经常含有一定的有毒有害物质,比如:多环芳烃、多氯联苯,重金属,黄曲霉素等物质,长期食用会对人体产生一定的危害。由于地沟油的大量非法使用,近几年,也发展起了一些用于鉴定地沟油的方法,比如,利用气相色谱、液相色谱、质谱、拉曼光谱等对地沟油中的常见物质进行检测,但对于上述危险物质的检出,并不能有效的对地沟油进行鉴定,因为,植物油品在储运或加工的过程中也会引入。辣椒碱(Capsaicin,CA),是辣椒的主要成分,2008年,中科院大化所张忠平课题组发现辣椒碱可以作为鉴定地沟油的特征分子,并用HPLC-MS技术做了详细的研究。我们知道,植物油组成复杂,而且辣椒碱在植物油中的含量极低,因此在利用分析仪器测定植物油中的辣椒碱之前,要对辣椒碱进行萃取和分离,萃取效果直接决定方法的灵敏度和特异性。
2012年,张忠课题组(张忠,色谱,2012,30(11):1108-1112.)利用液液萃取的方式对地沟油中的辣椒碱类物质进行萃取和分离,再结合液相色谱技术进行检测,因植物油本身是极性疏水性有机化合物,该方法使得油脂处理不干净,容易污染色谱柱。
2016年,梁桂娟课题组(梁桂娟,中国酿造,2016,35(7):175-179.)利用氨基化的固相萃取小柱对地沟油中的辣椒碱进行萃取和分离,并利用液相色谱进行检测,主要是利用氨基与辣椒碱的羟基进行离子交换来进行萃取,因植物油中含有大量的多酚类物质,因此该方法选择性差,萃取效率低。
2016年,赵琴课题组(赵琴,分析科学学报,2014,30(6):777-782.)利用benzo填料为吸附剂,对地沟油中的辣椒碱进行萃取,该萃取原理也是基于氢键作用对辣椒碱进行萃取,故也存在选择性差,因存在竞争吸附,使得萃取效率低。
发明内容
本发明目的在于提供一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法,以解决现有技术检测辣椒碱选择性差和萃取效率低的技术问题。
为实现上述目的,本发明的一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法的具体技术方案如下:
该发明主要以磁性Fe3O4微球为载体,利用含有双键的偶联剂对其进行表面改性;之后将双键修饰的磁性微球与辣椒碱模板分子、功能单体、偶联剂、引发剂和分散剂混合共聚;模板去除:将上述合成的磁性微球用甲醇-乙酸溶液洗脱5次,洗去模板分子,水洗、醇洗、干燥备用。对所制备的磁性分子印迹聚合物(magnetic molecularly imprintedpolymer,MMIP)进行了傅立叶红外光谱(FT-IR)和扫描电子显微镜(SEM)表征分析,最后通过HPLC验证MMIP对地沟油中辣椒碱的萃取性能。
王龙星等(色谱,2012,30(17):1094~1099.)报道对辣椒碱类物质进行碱性提取,然后将其酸化为中性分子,再通过C18小柱进一步分离富集,该方法能有效去除油脂基质,但是操作繁琐耗时。赵琴等(分析科学学报,2014(06):777-782)采用氨基化的固相萃取小柱对地沟油中的辣椒碱进行萃取,简化了操作流程,但方法不具有选择性,仍存在着污染色谱柱和萃取效率低等问题。
本发明所制备的辣椒碱分子印迹磁珠能够对地沟油中的辣椒碱进行选择性、高效的萃取和分离,为后续利用HPLC、HPLC-MS、拉曼等仪器进行检测提供一种样品前处理技术,进而来鉴定地沟油。
所述辣椒碱印迹磁珠的制备工艺包括:四氧化三铁表面的双键修饰、印迹聚合和模板洗脱三个部分,详细制备方法如下:
(1)双键改性:为了将分子印迹聚合物均匀的包裹在四氧化三铁表面,需要对其表面进行双键修饰。以四氧化三铁为载体,利用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)或者油酸对四氧化三铁表面进行改性,过程如下:80-100mL的无水乙醇溶液中加入0.1-0.3g四氧化三铁、2-3mL的NH3·H2O和1-3mL的γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)或油酸,超声混匀后,加热回流1-5h,待其反应完全后,用乙醇进行洗涤,定至50mL。
(2)辣椒碱分子印迹聚合:以辣椒碱为模板分子,在双键修饰的四氧化三铁表面包覆分子印迹聚合物,以实现对辣椒碱分子的选择性识别。在三口烧瓶中分别加入30-50mL双键改性的四氧化三铁、0.01~0.1g天然辣椒碱(或二氢辣椒碱),80-100mL甲苯、50~200μL甲基丙烯酸甲酯(MAA),超声震荡15min,避光12h,形成模板-单体预聚物,然后依次再加入10-50μL交联剂乙二醇二甲基丙烯酸脂(EGDMA)、0.1-0.2g引发剂2,2偶氮二异丁腈(AIBN),室温下超声震荡15min,在65℃水浴中机械搅拌反应5~12h,冷却后,磁分离除去没有反应的功能单体及模板分子。
(3)模板分子去除:将聚合物中的模板分子,通过适当的方法洗脱或解离出来,形成具有识别模板分子的特异结合位点,用于选择性萃取辣椒碱分子。通过索氏提取法(甲醇:醋酸=9:1的混合溶液)除去聚合物中的辣椒素模板,紫外分光光度计检测萃取液中280nm处吸光情况监测辣椒素是否去除完全,乙醇,水交替清洗三次,加水定容至10mL,获得辣椒素磁性分子印迹聚合物(MMIP)。
本发明还提供了一种辣椒碱分子印迹磁珠的应用,所制备的辣椒碱磁性分子印迹磁珠可以选择性的萃取和分离地沟油中的辣椒碱,分离之后利用HPLC、HPLC-MS或表面增强拉曼光谱等仪器进行检测,用于地沟油的鉴定,极大降低了检测过程中基质的干扰,提高了检测的选择性和灵敏度。
本发明还提供了一种辣椒碱分子印迹磁珠的使用方法,包括以下步骤:
步骤B1:准确量取1mL辣椒碱加标油样于5mL的聚丙稀离心管中,加入2mL正己烷,在涡旋混合器上充分混匀后,加入400μL辣椒碱分子印迹磁珠进行涡旋萃取,放在磁力架上磁吸;
步骤B2:弃掉上清液后,加入2mL,20%的乙酸乙酯的正己烷洗涤一次,磁吸弃掉淋洗液;
步骤B3:之后加入200μL甲醇-乙酸混合溶液洗脱,磁吸收集洗脱液,用HPLC测定回收率。
本发明的一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法具有以下优点:本发明所制备的辣椒碱分子印迹磁珠能够对地沟油中的辣椒碱进行选择性、高效的萃取和分离,为后续利用HPLC、HPLC-MS、拉曼等仪器进行检测提供一种样品前处理技术,进而来鉴定地沟油。
附图说明
图1为实施例1中辣椒碱分子印迹磁珠制备工艺路线图。
图2为实施例1中辣椒碱分子印迹磁珠扫描电镜图。
图3为实施例1中辣椒碱分子印迹磁珠红外光谱图。
具体实施方式
为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法做进一步详细的描述。
如图1-图3所示,本发明主要以磁性Fe3O4微球为载体,利用含有双键的偶联剂对其进行表面改性;之后将双键修饰的磁性微球与辣椒碱模板分子、功能单体、偶联剂、引发剂和分散剂混合共聚;将上述合成的磁性微球用甲醇-乙酸混合溶液洗脱,洗去模板分子,水洗、醇洗备用。对所制备的MMIP进行了傅里叶红外光谱(FT-IR)和X-射线衍射(XRD)表征分析。最后通过HPLC验证MMIP对地沟油中辣椒碱的萃取和回收性能。
实施例1:
一、双键改性:
100mL的无水乙醇溶液中加入0.1g四氧化三铁、2mL的NH3·H2O和1mL的γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS),超声混匀后,加热回流5h,待其反应完全后,用乙醇进行洗涤,定至50mL。
二、辣椒碱分子印迹聚合:
三口烧瓶中分别加入50mL双键改性的四氧化三铁、50mL乙醇、0.05g二氢辣椒碱,90mL甲苯、50μL甲基丙烯酸(MAA),超声震荡15min,避光12h,形成模板-单体预聚物,然后依次再加入1.2mL交联剂乙二醇二甲基丙烯酸脂(EGDMA),以及0.2g引发剂2,2偶氮二异丁腈(AIBN),室温下超声震荡15min,在65℃水浴中机械搅拌反应10h,冷却后,磁分离除去没有反应的功能单体及模板分子。
三、模板分子去除:
通过索氏提取法(甲醇:乙酸=9:1的混合溶液)除去聚合物中的辣椒素模板,紫外分光光度计检测萃取液中280nm处吸光情况,用于监测辣椒素是否去除完全,乙醇,水交替清洗三次,加水定容至10mL,获得辣椒素磁性分子印迹聚合物(MMIP)。
四、表征和性能测试:
将上述制备的MMIP分别利用扫面电镜和红外光谱表征,结果见附图2和附图3。
图2显示辣椒碱分子印迹磁珠,为粒径均一、表面粗糙的球形结构,粗糙的外表层表明分子印迹聚合物成功包覆在四氧化三铁上。因此,以磁性四氧化三铁为核,以辣椒碱为模板分子的分子印迹磁珠制备成功。表面粗糙印迹层为去除模板分子辣椒碱之后形成的印迹孔穴,此时识别位点能够选择性的识别模板分子及其类似物。
图3是制备的辣椒碱分子印迹磁的红外光谱图,从图中可以看出,580cm-1波数处为Fe-O振动吸收峰,1087cm-1吸收峰为Si-O-Si伸缩振动峰,1640和1381cm-1两处吸收峰为C=C伸缩振动峰。另外,在1720cm-1和1150cm-1处分别归属于C=O伸缩和C-O-C伸缩特征吸收峰,红外谱图分析表明MIP成功包覆在四氧化三铁表面。
性能测定:准确量取1mL天然辣椒碱加标油样(辣椒碱浓度:1μg/mL)于5mL的聚丙稀离心管中,加入2mL正己烷,在涡旋混合器上充分混匀后,加入200μL实施例1制备得到的辣椒碱分子印迹磁珠进行涡旋萃取5min,放在磁力架上磁吸1min,弃掉上清液后,加入2mL,20%的乙酸乙酯的正己烷洗涤一次,磁吸弃掉淋洗液,之后加入200μL甲醇乙酸混合溶液洗脱,磁吸收集洗脱液,用于HPLC测定回收率,回收率90%。
实施例2:
一、双键改性:
100mL的无水乙醇溶液中加入0.1g四氧化三铁、2mL的NH3·H2O和1mL油酸,超声混匀后,加热回流5h,待其反应完全后,用乙醇洗涤至无游离的油酸,甲苯定至50mL。
二、辣椒碱分子印迹聚合:
三口烧瓶中分别加入50mL双键改性的四氧化三铁、0.1g天然辣椒碱,90mL甲苯、200μL甲基丙烯酸(MAA),超声震荡15min,避光12h,形成模板-单体预聚物,然后依次再加入1.2mL交联剂乙二醇二甲基丙烯酸脂(EGDMA),以及0.2g引发剂2,2偶氮二异丁腈(AIBN),室温下超声震荡15min,在65℃水浴中机械搅拌反应12h,冷却后,磁分离除去没有反应的功能单体及模板分子。
三、模板分子去除:
通过索氏提取法(甲醇:醋酸=9:1的混合溶液)除去聚合物中的辣椒素模板,紫外分光光度计检测萃取液中280nm处吸光情况监测辣椒素是否去除完全,乙醇,水交替清洗三次,用水定容至10mL,获得辣椒素磁性分子印迹聚合物(MMIP)。
四、性能测定:
准确量取1mL辣椒碱加标油样(辣椒碱浓度:10μg/mL)于5mL的聚丙稀离心管中,加入2mL正己烷,在涡旋混合器上充分混匀后,加入400μL辣椒碱分子印迹磁珠进行涡旋萃取5min,放在磁力架上磁吸1min,弃掉上清液后,加入2mL,20%的乙酸乙酯的正己烷洗涤一次,磁吸弃掉淋洗液,之后加入200μL甲醇洗脱,磁吸收集洗脱液,用于HPLC测定回收率,回收率90%。
以上所述仅是本发明的优化实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,在此基础上做出的配方比例改进,这些改进也应视为本发明的保护范围。
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。

Claims (10)

1.一种辣椒碱分子印迹磁珠的制备方法,其特征在于,所述辣椒碱分子印迹磁珠的制备方案是以天然辣椒碱或二氢辣椒碱两种分子作为模板分子,以含有双键的小分子作为功能单体和偶联剂,通过乳液聚合的方式制备得到,且所述辣椒碱分子印迹磁珠对辣椒碱具有特异性吸附作用。
2.根据权利要求1所述的辣椒碱分子印迹磁珠的制备方法,其特征在于,包括以下步骤,且以下步骤顺次进行:
步骤A1:双键改性:以四氧化三铁为载体,利用γ-甲基丙烯酰氧基丙基三甲氧基硅烷或者油酸对四氧化三铁表面进行改性;
步骤A2:辣椒碱分子印迹聚合;
步骤A3:模板分子去除。
3.根据权利要求2所述的辣椒碱分子印迹磁珠的制备方法,其特征在于,所述步骤A1:双键改性具体操作如下:
向80-100mL的无水乙醇溶液中加入0.1-0.3g四氧化三铁、2-3mL的NH3·H2O和1-3mL的γ-甲基丙烯酰氧基丙基三甲氧基硅烷或油酸,超声混匀后,加热回流,待其反应完全后,用乙醇进行洗涤,定容。
4.根据权利要求2所述的辣椒碱分子印迹磁珠的制备方法,其特征在于,所述步骤A2:辣椒碱分子印迹聚合具体操作为:
三口烧瓶中分别加入50mL双键改性的四氧化三铁、0.01~0.1g天然辣椒碱或二氢辣椒碱,80-100mL甲苯、50~200μL甲基丙烯酸甲酯,超声震荡,避光,形成模板-单体预聚物;
然后依次再加入10-50μL交联剂、0.1-0.2g引发剂,室温下超声震荡,在一定温度水浴中机械搅拌反应后,获得辣椒素磁性分子印迹聚合物。
5.根据权利要求2所述的辣椒碱分子印迹磁珠的制备方法,其特征在于,所述步骤A2中使用的交联剂为乙二醇二甲基丙烯酸脂,引发剂为2,2偶氮二异丁腈。
6.根据权利要求2所述的辣椒碱分子印迹磁珠的制备方法,其特征在于,所述步骤A3:模板分子去除具体操作为:
通过索氏提取法除去聚合物中的辣椒素模板,乙醇,水交替清洗,定容,备用。
7.根据权利要求6所述的辣椒碱分子印迹磁珠的制备方法,其特征在于,所述步骤A3:模板分子去除时,使用甲醇:醋酸=9:1的混合溶液。
8.根据权利要求6所述的辣椒碱分子印迹磁珠的制备方法,其特征在于,所述步骤A3:模板分子去除时,使用紫外分光光度计检测萃取液中280nm处吸光情况检测辣椒素是否去除完全。
9.一种如权利要求1-8中任意一项所述的辣椒碱分子印迹磁珠的应用,其特征在于,所制备的辣椒碱分子印迹磁珠应用于地沟油的鉴定,可以选择性的萃取和分离地沟油中的辣椒碱。
10.一种如权利要求1-8中任意一项所述的辣椒碱分子印迹磁珠的使用方法,其特征在于,包括以下步骤:
步骤B1:准确量取辣椒碱加标油样于聚丙稀离心管中,加入正己烷,在涡旋混合器上充分混匀后,加入辣椒碱分子印迹磁珠进行涡旋萃取,放在磁力架上磁吸;
步骤B2:弃掉上清液后,加入20%的乙酸乙酯的正己烷洗涤一次,磁吸弃掉淋洗液;
步骤B3:在所述步骤B2之后加入甲醇乙酸混合液洗脱,磁吸收集洗脱液,测定回收率。
CN202011285397.5A 2020-11-17 2020-11-17 一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法 Pending CN112321776A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011285397.5A CN112321776A (zh) 2020-11-17 2020-11-17 一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011285397.5A CN112321776A (zh) 2020-11-17 2020-11-17 一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法

Publications (1)

Publication Number Publication Date
CN112321776A true CN112321776A (zh) 2021-02-05

Family

ID=74320847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011285397.5A Pending CN112321776A (zh) 2020-11-17 2020-11-17 一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法

Country Status (1)

Country Link
CN (1) CN112321776A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115078330A (zh) * 2022-06-29 2022-09-20 江苏大学 一种消除CAP干扰的MOFs基复合预处理材料的制备方法及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382252A (zh) * 2011-08-23 2012-03-21 浙江大学 辣椒碱分子印迹聚合物及其制备方法
CN102675537A (zh) * 2012-04-06 2012-09-19 江苏大学 一种脱除油品中二苯并噻吩的磁性材料的制备方法
CN103833942A (zh) * 2013-12-02 2014-06-04 东南大学 己烯雌酚分子印迹磁性微球的制备方法及其应用
CN110982022A (zh) * 2019-12-20 2020-04-10 中国药科大学 一种磁性辣椒碱分子印迹聚合物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382252A (zh) * 2011-08-23 2012-03-21 浙江大学 辣椒碱分子印迹聚合物及其制备方法
CN102675537A (zh) * 2012-04-06 2012-09-19 江苏大学 一种脱除油品中二苯并噻吩的磁性材料的制备方法
CN103833942A (zh) * 2013-12-02 2014-06-04 东南大学 己烯雌酚分子印迹磁性微球的制备方法及其应用
CN110982022A (zh) * 2019-12-20 2020-04-10 中国药科大学 一种磁性辣椒碱分子印迹聚合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU ZHIGANG, ET AL.: "Three-template magnetic molecular imprinted polymer for the rapid separation and specific recognition of illegal cooking oil markers", 《MICROCHEMICAL JOURNAL》 *
俞远志等: "辣椒碱分子印迹聚合物的合成研究", 《浙江科技学院学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115078330A (zh) * 2022-06-29 2022-09-20 江苏大学 一种消除CAP干扰的MOFs基复合预处理材料的制备方法及其用途

Similar Documents

Publication Publication Date Title
Jiang et al. Molecularly imprinted solid-phase extraction for the selective determination of 17β-estradiol in fishery samples with high performance liquid chromatography
Gros et al. Trace level determination of β-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography–quadrupole-linear ion trap mass spectrometry
Wei et al. Molecularly imprinted solid phase extraction coupled to high performance liquid chromatography for determination of aflatoxin M 1 and B 1 in foods and feeds
CN110918073A (zh) 一种磁性mof基双酚a分子印迹高选择性纳米复合材料的制备方法及应用
Li et al. Application of deep eutectic solvents in hybrid molecularly imprinted polymers and mesoporous siliceous material for solid-phase extraction of levofloxacin from green bean extract
Wang et al. Magnetic molecularly imprinted nanoparticles based on dendritic-grafting modification for determination of estrogens in plasma samples
CN108940213B (zh) 用于磁性固相萃取的磁性纳米材料及其制备方法
Zeng et al. Molecularly imprinted polymer for selective extraction and simultaneous determination of four tropane alkaloids from Przewalskia tangutica Maxim. fruit extracts using LC-MS/MS
Santos et al. Direct doping analysis of beta-blocker drugs from urinary samples by on-line molecularly imprinted solid-phase extraction coupled to liquid chromatography/mass spectrometry
CN105884985A (zh) 一种磁性镉离子印迹聚合物及其制备方法
Mohajeri et al. Preparation and characterization of a lamotrigine imprinted polymer and its application for drug assay in human serum
Zhang et al. Molecularly imprinted solid‐phase extraction for the selective HPLC determination of ractopamine in pig urine
CN111495332B (zh) 一种磁性吸附材料及其在苯甲酰脲类杀虫剂检测中的应用
CN108623834B (zh) 分子印迹-分散固相萃取检测农产品中三嗪类除草剂残留的方法
Xu et al. Molecularly imprinted solid‐phase extraction method for the gas chromatographic analysis of organochlorine fungicides in ginseng
Ho et al. Development of molecular imprinted polymer for selective adsorption of benz [a] pyrene among airborne polycyclic aromatic hydrocarbon compounds
CN112321776A (zh) 一种辣椒碱分子印迹磁珠的制备方法及应用和使用方法
CN104193875A (zh) 己烯雌酚磁性分子印迹聚合物的制备方法及其应用
Sanagi et al. Determination of organophosphorus pesticides using molecularly imprinted polymer solid phase extraction
Li et al. Novel sample preparation technique based on functional nanofiber mat for sensitive and precise determination of phenolic environmental estrogens in environmental water
Wang et al. Molecularly imprinted solid-phase extraction coupled with gas chromatography for the determination of four chloroacetamide herbicides in soil
Kareem et al. Determination of methamphetamine drug by GC-MS based on molecularly imprinted solid-phase used meth acrylic acid and acryl amide as functional monomers
Wu et al. Synthesis and evaluation of dummy molecularly imprinted microspheres for the specific solid‐phase extraction of six anthraquinones from slimming tea
CN107022037A (zh) 一种2,6‑二氨基吡啶改性壳聚糖及其制备方法和应用
Jiang et al. Selective molecularly imprinted stationary phases for Bisphenol A analysis prepared by modified precipitation polymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210205