CN112321318A - 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法 - Google Patents

一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法 Download PDF

Info

Publication number
CN112321318A
CN112321318A CN202011124661.7A CN202011124661A CN112321318A CN 112321318 A CN112321318 A CN 112321318A CN 202011124661 A CN202011124661 A CN 202011124661A CN 112321318 A CN112321318 A CN 112321318A
Authority
CN
China
Prior art keywords
printing
slurry
preparation
ceramic
forming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011124661.7A
Other languages
English (en)
Inventor
范鑫
刘欢
皮志超
汤浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Hangyi High Tech Development Research Institute Co ltd
Original Assignee
Shanghai Hangyi High Tech Development Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hangyi High Tech Development Research Institute Co ltd filed Critical Shanghai Hangyi High Tech Development Research Institute Co ltd
Priority to CN202011124661.7A priority Critical patent/CN112321318A/zh
Publication of CN112321318A publication Critical patent/CN112321318A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及陶瓷材料制备技术领域,具体为一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统,所述系统包括:浆料配置单元、3D打印机和煅烧锅炉;所述浆料配置单元包括:预处理罐和超声搅拌釜;所述预处理罐用于制备改性造孔剂,所述超声搅拌釜用于将改性造孔剂、磁性纳米颗粒、惰性填料与聚合物先驱体加入有机溶剂中进行搅拌混合,并通过超声波处理挥发有机溶剂,得到打印浆料;所述3D打印机利用打印浆料打印得到素胚;所述煅烧锅炉煅烧素胚得到多孔磁性陶瓷。本发明的制备方法,用于制备所述的多孔磁性陶瓷,包括A:浆料配置;B:素胚制备;C:气氛烧结。该发明制备工艺简单、生产成本低,且制备产物经济价值高。

Description

一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统及 其制备方法
技术领域
本发明涉及陶瓷材料制备技术领域,具体为一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法。
背景技术
聚合物先驱体转化陶瓷将陶瓷前驱体经交联固化处理转化为热固性聚合物,再经高温裂解而制得陶瓷产物。聚合物先驱体转化陶瓷具有特殊的无定形结构,且含有自由碳,具有良好的介电性能,与此同时,还具有陶瓷材料本身具有的抗氧化、耐高温、硬度高等优异性能,因此在雷达及无线电发射设备的吸波领域得到广泛关注,可以防止电磁辐射,减轻电磁污染,保障人体健康和操作安全。
目前,传统性陶瓷的成型方式只能制备于简单形状的陶瓷材料。而随着现代电磁器件趋向于高性能、定制化的方向发展,传统工艺已不能满足多孔陶瓷材料个性化的需求,且生产成本昂贵,产物的经济价值较低。
申请号为CN201910096993.X的中国专利公开了一种3D打印磁性陶瓷的方法及其制备的磁性陶瓷,使用价格便宜的前驱体颗粒粉末为原料,通过将前驱体粉末进行球磨的方式使颗粒更为均匀,并首次使用球磨后前驱体粉末进行3D打印磁性陶瓷。该方法使用粘接剂,使这种3D打印技术存在一定的技术挑战,且只能制备磁性基体的陶瓷如氧化铁陶瓷、碳酸钡陶瓷、碳酸锶陶瓷或碳酸铅陶瓷。
申请号为CN201910961461.8的中国专利公开了一种利用粉煤灰制备球形磁性陶瓷复合微波吸收材料的方法,首先对粉煤灰进行球磨、筛分处理,得到粉煤灰粉,通过缓慢喷入粘结剂和金属盐离子溶液造粒形成粉煤灰基复合微球,接着将复合微球经干燥、还原处理获得负载系列磁性组分的复合微波吸收材料。该方法使用粘接剂,制备的陶瓷可能存在裂纹较多,且无法制备形状复杂的多孔陶瓷。
鉴于此,我们提出一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法。
发明内容
本发明的目的在于提供一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统,所述系统包括:浆料配置单元、3D打印机和煅烧锅炉;
所述浆料配置单元包括:预处理罐和超声搅拌釜;
所述预处理罐用于制备改性造孔剂,
所述超声搅拌釜用于将改性造孔剂、磁性纳米颗粒、惰性填料与聚合物先驱体加入有机溶剂中进行搅拌混合,并通过超声波处理挥发有机溶剂,得到打印浆料;
所述3D打印机利用打印浆料打印得到素胚;
所述煅烧锅炉煅烧素胚得到多孔磁性陶瓷。
本发明还提供一种制备方法,用于制备所述的多孔磁性陶瓷,包括以下步骤:
A:浆料配置
将有机造孔剂倒入预处理罐中,并添加改性剂进行改性,处理得到改性造孔剂;
将改性造孔剂、磁性纳米颗粒、惰性填料与聚合物先驱体加入超声搅拌釜中,并添加有机溶剂进行高速搅拌混合,并通过超声波处理挥发有机溶剂,得到打印浆料;
其中:造孔剂∶纳米磁性颗粒∶惰性填料∶陶瓷先驱体质量比为:5-50∶1-20∶1-20∶50-150,打印浆料在1s-1剪切速率下的粘性为200Pa·s-1500Pa·s;
B:素胚制备
将步骤A中得到的打印浆料置于3D打印机中,并通过墨水直写3D打印得到素胚;
C:气氛烧结
将步骤B得到的素胚置于煅烧锅炉中在30-50℃条件下干燥5-15小时,再在氩气气氛下经500-1200℃恒温烧结0.5-5小时后,随炉冷却至室温得到多孔磁性陶瓷。
优选的,步骤A中,所述有机造孔剂为:淀粉、天然纤维、纳米晶纤维素中的一种或多种混合;
所述改性剂为硅烷偶联剂、琥珀酸酐、氢氧化钠溶液中的一种。
优选的,步骤A中,所述磁性纳米颗粒为:铁、钴、镍的单质或其化合物中的一种或多种混合,磁性纳米颗粒外包裹有聚合物层或二氧化硅层。
优选的,步骤A中,所述惰性填料为:碳化硅粉末、氮化硅粉末、二氧化硅粉末、氧化锆粉末、氧化铝粉末中的一种或多种混合,且所述惰性填料通过表面处理,粒径小于1μm。
优选的,步骤A中,所述聚合物先驱体为:聚碳硅烷、聚硅氧烷、聚硅烷、聚硅氮烷中的一种或多种混合。
优选的,步骤A中,所述有机溶剂为:正己烷、环己烷、异丙醇、二甲苯、四氢呋喃、甲苯中的一种或多种混合。
与现有技术相比,本发明的有益效果是:
(1)通过3D打印直写成型技术可以制备形状结构复杂的多孔磁性陶瓷;
(2)采用聚合物转化陶瓷前驱体具有分子可设计性,转化成陶瓷的温度低的特点,可以通过设计聚合物分子和热解工艺过程来调整所得陶瓷的成分和结构,而且工艺所需温度低,降低制备成本;
(3)通过添加惰性填料调节打印浆料的粘度,实现浆料的可3D打印;
(4)本发明制备的磁性多孔陶瓷不仅具有陶瓷所具备的热稳定性高、抗氧化性强等优势,还具有良好的电磁吸波性能,具有较为广阔的应用前景。
附图说明
图1为本发明实施例1的整体结构框图;
图2为本发明实施例2的工艺流程图。
图中:100、浆料配置单元;101、预处理罐;102、超声搅拌釜;200、3D打印机;300、煅烧锅炉。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本专利的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“设置”应做广义理解,例如,可以是固定相连、设置,也可以是可拆卸连接、设置,或一体地连接、设置。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本专利中的具体含义。
实施例1
如图1所示,一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统,系统包括:浆料配置单元100、3D打印机200和煅烧锅炉300;
浆料配置单元100包括:预处理罐101和超声搅拌釜102;
预处理罐101用于制备改性造孔剂,
超声搅拌釜102用于将改性造孔剂、磁性纳米颗粒、惰性填料与聚合物先驱体加入有机溶剂中进行搅拌混合,并通过超声波处理挥发有机溶剂,得到打印浆料;
3D打印机200利用打印浆料打印得到素胚;
煅烧锅炉300煅烧素胚得到多孔磁性陶瓷。
该制备系统结构简单,且工艺流程简易,能充分利用原料的特性制备多孔磁性陶瓷,降低了制备系统的生产成本,便于使用。
实施例2
如图2所示,本发明还提供一种制备方法,用于制备所述的多孔磁性陶瓷,包括以下步骤:
A:浆料配置
将有机造孔剂倒入预处理罐中,并添加改性剂进行改性,处理得到改性造孔剂;
将改性造孔剂、磁性纳米颗粒、惰性填料与聚合物先驱体加入超声搅拌釜中,并添加有机溶剂进行高速搅拌混合,并通过超声波处理挥发有机溶剂,得到打印浆料;
其中:造孔剂∶纳米磁性颗粒∶惰性填料∶陶瓷先驱体质量比为:5-50∶1-20∶1-20∶50-150,打印浆料在1s-1剪切速率下的粘性为200Pa·s-1500Pa·s;
B:素胚制备
将步骤A中得到的打印浆料置于3D打印机中,并通过墨水直写3D打印得到素胚;
C:气氛烧结
将步骤B得到的素胚置于煅烧锅炉中在30-50℃条件下干燥5-15小时,再在氩气气氛下经500-1200℃恒温烧结0.5-5小时后,随炉冷却至室温得到多孔磁性陶瓷。
本实施例中,步骤A中,有机造孔剂为:淀粉、天然纤维、纳米晶纤维素中的一种或多种混合;
改性剂为硅烷偶联剂、琥珀酸酐、氢氧化钠溶液中的一种。
值得说明的是,步骤A中,磁性纳米颗粒为:铁、钴、镍的单质或其化合物中的一种或多种混合,磁性纳米颗粒外包裹有聚合物层或二氧化硅层。
具体的,步骤A中,惰性填料为:碳化硅粉末、氮化硅粉末、二氧化硅粉末、氧化锆粉末、氧化铝粉末中的一种或多种混合,且惰性填料通过表面处理,粒径小于1μm。
除此之外,步骤A中,聚合物先驱体为:聚碳硅烷、聚硅氧烷、聚硅烷、聚硅氮烷中的一种或多种混合。
具体的,步骤A中,有机溶剂为正己烷、环己烷、异丙醇、二甲苯、四氢呋喃、甲苯中的一种或多种混合。
实施例3
制备所述的多孔磁性陶瓷,包括以下步骤:
A:浆料配置
用硅烷偶联剂KH570对纳米晶纤维素进行预处理得到改性纳米晶纤维素;
将改性纳米晶纤维素、表面包覆有硅烷的三氧化四铁纳米颗粒、碳化硅粉末与聚碳硅烷加入正己烷中高速搅拌混合,再超声处理,挥发部分有机溶剂得到打印浆料;
其中:改性纳米晶纤维素、表面包覆有硅烷的三氧化四铁纳米颗粒、碳化硅粉末与聚碳硅烷质量比为:20∶6∶12:120,打印浆料在1s-1剪切速率下的粘性为656Pa·s;
B:素胚制备:将打印浆料置于3D打印机中通过墨水直写3D打印得到素胚;
C:气氛烧结:将素胚置于烘箱中在35℃条件下干燥10小时,再在氩气气氛下经1100℃下烧结3小时后随炉冷却至室温得到多孔磁性陶瓷。
得到的多孔磁性陶瓷性能测试结果见表1
实施例4
制备所述的多孔磁性陶瓷,包括以下步骤:
A:浆料配置:
用琥珀酸酐对淀粉进行预处理得到改性淀粉;
将改性淀粉、表面包覆有二氧化硅的氧化钴纳米颗粒、氮化硅粉末与聚硅氮烷加入异丙醇中高速搅拌混合,再超声处理,挥发部分有机溶剂得到打印浆料;
其中:改性淀粉、表面包覆有二氧化硅的氧化钴纳米颗粒、氮化硅粉末与聚硅氮烷质量比为:6∶9∶15:100,打印浆料在1s-1剪切速率下的粘性为882Pa·s;
B:素胚制备:将打印浆料置于3D打印机中通过墨水直写3D打印得到素胚;
C:气氛烧结:将素胚置于烘箱中在35℃条件下干燥13小时,再在氩气气氛下经1150℃下烧结5小时后随炉冷却至室温。
得到的多孔磁性陶瓷性能测试结果见表1
实施例5
制备所述的多孔磁性陶瓷,包括以下步骤:
A:浆料配置:用氢氧化钠溶液对聚甲基丙烯酸甲酯(PMMA)微球进行预处理得到改性PMMA微球;
将改性淀粉、表面包覆有二氧化硅的氧化钴纳米颗粒、氮化硅粉末与聚硅氮烷加入环己烷中高速搅拌混合,再超声处理,挥发部分有机溶剂得到打印浆料;
其中:改性PMMA微球、表面包覆聚苯乙烯的镍纳米颗粒、二氧化硅粉末与聚硅氧烷质量比为:20∶7∶12:150,打印浆料在1s-1剪切速率下的粘性为1137Pa·s;
B:素胚制备:将打印浆料置于3D打印机中通过墨水直写3D打印得到素胚;
C:气氛烧结:将素胚置于烘箱中在46℃条件下干燥6小时,再在氩气气氛下经1200℃下烧结2小时后随炉冷却至室温。
得到的多孔磁性陶瓷性能测试结果见表1
Figure BDA0002733202410000081
表1
通过上述内容不难看出,本发明的基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法:
(1)通过3D打印直写成型技术可以制备形状结构复杂的多孔磁性陶瓷;
(2)采用聚合物转化陶瓷前驱体具有分子可设计性,转化成陶瓷的温度低的特点,可以通过设计聚合物分子和热解工艺过程来调整所得陶瓷的成分和结构,而且工艺所需温度低;
(3)通过添加惰性填料调节打印浆料的粘度,实现浆料的可3D打印;
(4)本发明制备的磁性多孔陶瓷不仅具有陶瓷所具备的热稳定性高、抗氧化性强等优势,还具有良好的电磁吸波性能,具有较为广阔的应用前景。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的仅为本发明的优选例,并不用来限制本发明,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种基于3D打印技术的聚合物先驱体制多孔磁性陶瓷系统,其特征在于,所述系统包括:浆料配置单元、3D打印机和煅烧锅炉;
所述浆料配置单元包括:预处理罐和超声搅拌釜;
所述预处理罐用于制备改性造孔剂,
所述超声搅拌釜用于将改性造孔剂、磁性纳米颗粒、惰性填料与聚合物先驱体加入有机溶剂中进行搅拌混合,并通过超声波处理挥发有机溶剂,得到打印浆料;
所述3D打印机利用打印浆料打印得到素胚;
所述煅烧锅炉煅烧素胚得到多孔磁性陶瓷。
2.一种制备方法,用于制备权利要求1所述的多孔磁性陶瓷,其特征在于,包括以下步骤:
A:浆料配置
将有机造孔剂倒入预处理罐中,并添加改性剂进行改性,处理得到改性造孔剂;
将改性造孔剂、磁性纳米颗粒、惰性填料与聚合物先驱体加入超声搅拌釜中,并添加有机溶剂进行高速搅拌混合,并通过超声波处理挥发有机溶剂,得到打印浆料;
其中:造孔剂∶纳米磁性颗粒∶惰性填料∶陶瓷先驱体质量比为:5-50∶1-20∶1-20∶50-150,打印浆料在1s-1剪切速率下的粘性为200Pa·s-1500Pa·s;
B:素胚制备
将步骤A中得到的打印浆料置于3D打印机中,并通过墨水直写3D打印得到素胚;
C:气氛烧结
将步骤B得到的素胚置于煅烧锅炉中在30-50℃条件下干燥5-15小时,再在氩气气氛下经500-1200℃恒温烧结0.5-5小时后,随炉冷却至室温得到多孔磁性陶瓷。
3.根据权利要求2所述的制备方法,其特征在于:步骤A中,所述有机造孔剂为:淀粉、天然纤维、纳米晶纤维素中的一种或多种混合;
所述改性剂为硅烷偶联剂、琥珀酸酐、氢氧化钠溶液中的一种。
4.根据权利要求2所述的制备方法,其特征在于:步骤A中,所述磁性纳米颗粒为:铁、钴、镍的单质或其化合物中的一种或多种混合,磁性纳米颗粒外包裹有聚合物层或二氧化硅层。
5.根据权利要求2所述的制备方法,其特征在于:步骤A中,所述惰性填料为:碳化硅粉末、氮化硅粉末、二氧化硅粉末、氧化锆粉末、氧化铝粉末中的一种或多种混合,且所述惰性填料通过表面处理,粒径小于1μm。
6.根据权利要求2所述的制备方法,其特征在于:步骤A中,所述聚合物先驱体为:聚碳硅烷、聚硅氧烷、聚硅烷、聚硅氮烷中的一种或多种混合。
7.根据权利要求2所述的制备方法,其特征在于:步骤A中,所述有机溶剂为:正己烷、环己烷、异丙醇、二甲苯、四氢呋喃、甲苯中的一种或多种混合。
CN202011124661.7A 2020-10-20 2020-10-20 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法 Pending CN112321318A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011124661.7A CN112321318A (zh) 2020-10-20 2020-10-20 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011124661.7A CN112321318A (zh) 2020-10-20 2020-10-20 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法

Publications (1)

Publication Number Publication Date
CN112321318A true CN112321318A (zh) 2021-02-05

Family

ID=74311735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011124661.7A Pending CN112321318A (zh) 2020-10-20 2020-10-20 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法

Country Status (1)

Country Link
CN (1) CN112321318A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754365A (zh) * 2021-09-28 2021-12-07 共享智能装备有限公司 基于煤制油废渣的3d打印用材料、制备方法及使用方法
CN114702325A (zh) * 2022-02-11 2022-07-05 惠州学院 一种在陶瓷粉体中均匀混合大长径比硅基纳米相的方法
CN116041067A (zh) * 2022-11-28 2023-05-02 深圳大学 一种光固化3d打印的磁性复合吸波陶瓷及其制备方法与应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057084A (zh) * 2013-03-20 2014-09-24 江苏天一超细金属粉末有限公司 一种打印金属、陶瓷制品的水溶型墨水
CN105000889A (zh) * 2015-07-01 2015-10-28 山东大学 一种前驱体转化法制备含铁硅碳氮陶瓷的方法
DE102014006519A1 (de) * 2014-05-03 2015-11-05 Smart Material Printing B.V. Verwendung magnetischer und/oder magnetisierbarer, polymerer Mikro- und/oder Nanocomposite zur Herstellung komplexer, magnetischer und/oder magnetisierbarer Formteile mithilfe additiver Fabrikatoren
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN107130133A (zh) * 2017-05-26 2017-09-05 哈尔滨工业大学 一种梯度双连续结构的陶瓷/金属复合材料以及其制备方法和应用
CN107200583A (zh) * 2017-05-26 2017-09-26 哈尔滨工业大学 一种具有孔隙率连续梯度的多孔材料及其制备方法
US20170341297A1 (en) * 2016-05-27 2017-11-30 Florida State University Research Foundation, Inc. Polymeric Ceramic Precursors, Apparatuses, Systems, and Methods
CN107651963A (zh) * 2017-09-08 2018-02-02 中南大学 先驱体转化陶瓷的直写成型方法
CN108136496A (zh) * 2015-10-09 2018-06-08 赛丹思科大学 3d打印原料及其应用
CN109400179A (zh) * 2018-11-30 2019-03-01 中南大学 一种制备宏观与微观结构皆可控的材料的方法
CN109534817A (zh) * 2017-09-21 2019-03-29 中南大学 一种先驱体转化类陶瓷的定向多孔结构制备方法
CN109627028A (zh) * 2019-01-16 2019-04-16 苏州宏久航空防热材料科技有限公司 一种3d打印碳纤维增韧碳化硅陶铝复合材料及其制备方法
CN109702853A (zh) * 2019-01-24 2019-05-03 青岛大学 一种3d打印磁性陶瓷的方法及其制备的磁性陶瓷
CN110395967A (zh) * 2019-07-18 2019-11-01 河北工业大学 喷射3d打印功能梯度电磁防护材料及其制备方法
CN110981457A (zh) * 2019-12-20 2020-04-10 安徽金岩高岭土科技有限公司 一种轻质多孔莫来石陶瓷及其直写3d打印制备方法
CN111620678A (zh) * 2020-05-27 2020-09-04 新化县群华陶瓷科技有限公司 一种有机复合多孔陶瓷材料及其制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057084A (zh) * 2013-03-20 2014-09-24 江苏天一超细金属粉末有限公司 一种打印金属、陶瓷制品的水溶型墨水
DE102014006519A1 (de) * 2014-05-03 2015-11-05 Smart Material Printing B.V. Verwendung magnetischer und/oder magnetisierbarer, polymerer Mikro- und/oder Nanocomposite zur Herstellung komplexer, magnetischer und/oder magnetisierbarer Formteile mithilfe additiver Fabrikatoren
CN105000889A (zh) * 2015-07-01 2015-10-28 山东大学 一种前驱体转化法制备含铁硅碳氮陶瓷的方法
CN108136496A (zh) * 2015-10-09 2018-06-08 赛丹思科大学 3d打印原料及其应用
US20170341297A1 (en) * 2016-05-27 2017-11-30 Florida State University Research Foundation, Inc. Polymeric Ceramic Precursors, Apparatuses, Systems, and Methods
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN107130133A (zh) * 2017-05-26 2017-09-05 哈尔滨工业大学 一种梯度双连续结构的陶瓷/金属复合材料以及其制备方法和应用
CN107200583A (zh) * 2017-05-26 2017-09-26 哈尔滨工业大学 一种具有孔隙率连续梯度的多孔材料及其制备方法
CN107651963A (zh) * 2017-09-08 2018-02-02 中南大学 先驱体转化陶瓷的直写成型方法
CN109534817A (zh) * 2017-09-21 2019-03-29 中南大学 一种先驱体转化类陶瓷的定向多孔结构制备方法
CN109400179A (zh) * 2018-11-30 2019-03-01 中南大学 一种制备宏观与微观结构皆可控的材料的方法
CN109627028A (zh) * 2019-01-16 2019-04-16 苏州宏久航空防热材料科技有限公司 一种3d打印碳纤维增韧碳化硅陶铝复合材料及其制备方法
CN109702853A (zh) * 2019-01-24 2019-05-03 青岛大学 一种3d打印磁性陶瓷的方法及其制备的磁性陶瓷
CN110395967A (zh) * 2019-07-18 2019-11-01 河北工业大学 喷射3d打印功能梯度电磁防护材料及其制备方法
CN110981457A (zh) * 2019-12-20 2020-04-10 安徽金岩高岭土科技有限公司 一种轻质多孔莫来石陶瓷及其直写3d打印制备方法
CN111620678A (zh) * 2020-05-27 2020-09-04 新化县群华陶瓷科技有限公司 一种有机复合多孔陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何江锋;张海军;葛胜涛;刘杰;吴文浩;张少伟;: "SiC多孔陶瓷制备方法研究进展" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754365A (zh) * 2021-09-28 2021-12-07 共享智能装备有限公司 基于煤制油废渣的3d打印用材料、制备方法及使用方法
CN114702325A (zh) * 2022-02-11 2022-07-05 惠州学院 一种在陶瓷粉体中均匀混合大长径比硅基纳米相的方法
CN116041067A (zh) * 2022-11-28 2023-05-02 深圳大学 一种光固化3d打印的磁性复合吸波陶瓷及其制备方法与应用
CN116041067B (zh) * 2022-11-28 2024-02-27 深圳大学 一种光固化3d打印的磁性复合吸波陶瓷及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN112321318A (zh) 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统及其制备方法
CN109762519B (zh) 高熵合金/氧化物复合纳米吸波材料的制备方法
CN108570202B (zh) 聚四氟乙烯复合基板材料的制备方法
CN108046789B (zh) 一种电磁屏蔽复合材料的制备方法
CN105948098B (zh) 一种球形氧化镧
CN110104620B (zh) 一种利用溶胶-凝胶法制备氮化铝纳米粉体的方法
CN110157226B (zh) 一种耐高温吸波涂料及其制备方法
CN112341199B (zh) 一种高熵吸波碳化物陶瓷粉体材料、制备方法及其应用
US10144645B1 (en) Method for preparing spherical aluminum oxynitride powder
CN213680424U (zh) 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统
CN102049514B (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
CN110548528B (zh) 一种核壳结构SiO2/SiC材料及其制备方法与用途
CN111848206A (zh) 一种单分散微米级中空陶瓷微球的制备方法
CN105502421A (zh) 一种硅酸锌空心微米球的制备方法
CN108822797A (zh) 一种钛硅碳复合吸波剂及其制备方法与应用
CN1699276A (zh) 一种可低温度烧结的钛酸锌高频介质陶瓷及其制备方法
CN110606736A (zh) 一种无溶剂合成的陶瓷微球及其制备方法和应用
CN112321297B (zh) 利用地质聚合物作为粘结剂制备多孔氧化物微球的方法
CN111217342B (zh) 一种多孔氮化铌粉体微波吸收材料的制备方法
CN100581335C (zh) 氧化锌吸波材料及其制备工艺
CN113817946A (zh) 一种HEA-SiC高温吸波材料及其制备方法
CN101328068A (zh) 一种含硼的微波介质陶瓷水基流延膜片的制备方法
CN107720764B (zh) 一种湿化学法制备高纯超细硅酸三钙粉体的方法
CN114106678B (zh) 一种风机叶片表面的防冰涂层及其制备方法和应用
CN112079632B (zh) 一种β相锂霞石陶瓷粉体、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210205