CN112310294A - 发光器件、发光装置、电子设备、照明装置及化合物 - Google Patents

发光器件、发光装置、电子设备、照明装置及化合物 Download PDF

Info

Publication number
CN112310294A
CN112310294A CN202010684691.7A CN202010684691A CN112310294A CN 112310294 A CN112310294 A CN 112310294A CN 202010684691 A CN202010684691 A CN 202010684691A CN 112310294 A CN112310294 A CN 112310294A
Authority
CN
China
Prior art keywords
light
emitting device
skeleton
layer
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010684691.7A
Other languages
English (en)
Inventor
奥山拓梦
桥本直明
泷田悠介
门间裕史
铃木恒德
濑尾哲史
广濑智哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN112310294A publication Critical patent/CN112310294A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • C07D215/30Metal salts; Chelates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种新颖发光器件。另外,提供一种发光效率良好的发光器件。另外,提供一种寿命良好的发光器件。另外,提供一种驱动电压低的发光器件。提供一种发光器件,包括阳极、阴极、位于所述阳极和所述阴极之间的EL层,其中,包括阳极、阴极以及位于所述阳极和所述阴极之间的EL层,其中,所述EL层包括发光层及电子传输层,所述电子传输层位于所述发光层和所述阴极之间,所述电子传输层包括电子传输材料,所述电子传输材料是包括第一骨架、第二骨架及第三骨架的有机化合物,所述第一骨架具有传输电子的功能,所述第二骨架具有接收空穴的功能,并且,所述第三骨架包括单环的缺π电子型杂芳环。

Description

发光器件、发光装置、电子设备、照明装置及化合物
技术领域
本发明的一个方式涉及一种发光器件、发光元件、显示模块、照明模块、显示装置、发光装置、电子设备及照明装置。注意,本发明的一个方式不局限于上述技术领域。本说明书等所公开的发明的一个方式的技术领域涉及一种物体、方法或制造方法。或者,本发明的一个方式涉及一种程序(process)、机器(machine)、产品(manufacture)或者组合物(composition of matter)。因此,更具体而言,作为本说明书所公开的本发明的一个方式的技术领域的例子,可以举出半导体装置、显示装置、液晶显示装置、发光装置、照明装置、蓄电装置、存储装置、摄像装置、它们的驱动方法或者它们的制造方法。
背景技术
近年来,使用有机化合物且利用电致发光(EL:Electroluminescence)的发光器件(有机EL元件)的实用化非常活跃。在这些发光器件的基本结构中,在一对电极之间夹有包含发光材料的有机化合物层(EL层)。通过对该元件施加电压,注入载流子,利用该载流子的复合能量,可以获得来自发光材料的发光。
因为这些发光器件是自发光型发光器件,所以当将该发光器件用于显示器的像素时比起液晶有可见度更高、不需要背光源等优势。因此,该发光器件适合于平板显示器元件。另外,使用这些发光器件的显示器可以被制造成薄且轻,这也是极大的优点。再者,非常高速的响应也是该发光器件的特征之一。
此外,因为这些发光器件的发光层可以在二维上连续地形成,所以可以获得面发光。因为这是在以白炽灯或LED为代表的点光源或者以荧光灯为代表的线光源中难以得到的特征,所以作为可应用于照明等的面光源,这些发光器件的利用价值也高。
如上所述,虽然使用发光器件的显示器或照明装置适用于各种各样的电子设备,但是为了追求具有更良好的效率及寿命的发光器件的研究开发日益活跃。
专利文献1公开了在接触于空穴注入层的空穴传输层与发光层之间设置其HOMO能级介于空穴注入层的HOMO能级与主体材料的HOMO能级之间的空穴传输材料的结构。
发光器件的特性明显得到了提高,但是还不足以对应对效率和耐久性等各种特性的高度要求。
[专利文献1]国际公开第2011/065136号小册子
发明内容
于是,本发明的一个方式的目的是提供一种新颖发光器件。另外,本发明的一个方式的目的是提供一种发光效率良好的发光器件。另外,本发明的一个方式的目的是提供一种寿命良好的发光器件。另外,本发明的一个方式的目的是提供一种驱动电压低的发光器件。本发明的一个方式的目的是提供一种新颖化合物。
另外,本发明的另一个方式的目的是提供一种可靠性高的发光装置、电子设备及显示装置。另外,本发明的另一个方式的目的是提供一种低功耗的发光装置、电子设备及显示装置。
本发明的一个方式只要实现上述目的中的任一个即可。
本发明的一个方式是一种发光器件,包括:阳极;阴极;以及位于所述阳极和所述阴极之间的EL层,其中,所述EL层包括发光层及电子传输层,所述电子传输层位于所述发光层和所述阴极之间,所述电子传输层包括电子传输材料,所述电子传输材料是包括第一骨架、第二骨架及第三骨架的有机化合物,所述第一骨架具有传输电子的功能,所述第二骨架具有接收空穴的功能,并且,所述第三骨架包括单环的缺π电子型杂芳环。
另外,本发明的另一个方式是一种的发光器件,包括:阳极;阴极;以及位于所述阳极和所述阴极之间的EL层,其中,所述EL层包括发光层及电子传输层,所述电子传输层包括电子传输材料,所述电子传输材料是包括第一骨架、第二骨架及第三骨架的有机化合物,所述第一骨架具有传输电子的功能,所述第二骨架具有接收空穴的功能,所述第二骨架包括二环以上的稠合芳香烃环,并且,所述第三骨架包括单环的缺π电子型杂芳环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架包括三环以上的稠合芳香烃环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架是三环或四环的稠合芳香烃环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架中的形成环的碳原子数为14以上。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述稠合芳香烃环只由六元环构成。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架包括蒽环、菲环、苯并芴环、四苯环、
Figure BDA0002587108980000041
环、三亚苯环及芘环中的任一个。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架是蒽环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述电子传输层还包括金属、金属盐、金属氧化物或有机金属盐。
另外,本发明的另一个方式是一种发光器件,包括:阳极;阴极;以及位于所述阳极和所述阴极之间的EL层,其中,所述EL层包括空穴注入层、发光层及电子传输层,所述空穴注入层位于所述阳极和所述发光层之间,所述电子传输层位于所述发光层和所述阴极之间,所述空穴注入层包括空穴传输材料和受体材料,所述电子传输层包括电子传输材料和金属、金属盐、金属氧化物或有机金属盐,所述空穴传输材料是具有空穴传输性并具有-5.7eV以上且-5.4eV以下的HOMO能级的有机化合物,所述受体材料是对所述空穴传输材料呈现电子接收性的物质,所述电子传输材料是包括第一骨架、第二骨架及第三骨架的有机化合物,所述第一骨架具有传输电子的功能,所述第二骨架具有接收空穴的功能,并且,所述第三骨架包括单环的缺π电子型杂芳环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架是二环以上且四环以下的稠合芳香烃环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架是三环或四环的稠合芳香烃环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架包括萘环、芴环、蒽环、菲环、四苯环、
Figure BDA0002587108980000051
环、三亚苯环及芘环中的任一个。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架中的形成环的碳原子数为14以上。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述稠合芳香烃环只由六元环构成。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第二骨架是蒽环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述受体材料是有机化合物。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述金属、金属盐、金属氧化物或有机金属盐是包含碱金属或碱土金属的金属配合物。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述金属、金属盐、金属氧化物或有机金属盐是具有包含氮及氧的配体和碱金属或碱土金属的金属配合物。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述金属、金属盐、金属氧化物或有机金属盐是包括具有8-羟基喹啉结构的配体和一价金属离子的金属配合物。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述金属、金属盐、金属氧化物或有机金属盐是包括具有8-羟基喹啉结构的配体的锂配合物。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述电子传输材料中的所述第一骨架和所述第三骨架通过所述第二骨架键合。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述电子传输材料中的LUMO主要分布在所述第一骨架中。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第一骨架包括含氮的稠合芳香环或三嗪环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第一骨架包含两个以上的氮原子。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第一骨架是包括喹喔啉环、二苯并[h,g]喹喔啉环、三嗪环及苯并呋喃并嘧啶环中的任一个的骨架。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第一骨架是包括喹喔啉环的骨架。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述电子传输材料中的HOMO主要分布在所述第二骨架中。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第三骨架包含具有氮原子的六元环的杂芳环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第三骨架是吡啶环、嘧啶环、吡嗪环及三嗪环中的任一个。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第三骨架以氮位于与所述第二骨架键合的碳的β位的方式键合于所述第二骨架。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述第三骨架是在三位取代的吡啶环、在五位取代的嘧啶环或吡嗪环。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述电子传输层与所述阴极接触。
另外,本发明的另一个方式是一种具有上述结构的发光器件,其中所述发光层具有主体材料及发光材料,并且所述发光材料发射蓝色荧光。
另外,本发明的另一个方式是一种电子设备,包括:上述任一个中记载的发光器件;以及传感器、操作按钮、扬声器或麦克风。
另外,本发明的另一个方式是一种发光装置,包括:上述任一个中记载的发光器件;以及晶体管或衬底。
另外,本发明的另一个方式是一种照明装置,包括:上述任一个中记载的发光器件;以及外壳。
另外,本发明的另一个方式是一种包括第一骨架、第二骨架及第三骨架并被用于电子传输层的化合物,其中,所述第一骨架具有传输电子的功能,所述第二骨架具有接收空穴的功能,并且,所述第三骨架包括单环的缺π电子型杂芳环。
在本说明书中,发光装置包括使用发光器件的图像显示器件。另外,发光装置有时还包括如下模块:发光器件安装有连接器诸如各向异性导电膜或TCP(Tape CarrierPackage:带载封装)的模块;在TCP的端部设置有印刷线路板的模块;或者通过COG(Chip OnGlass:玻璃覆晶封装)方式在发光器件上直接安装有IC(集成电路)的模块。再者,照明装置等有时包括发光装置。
本发明的一个方式能够提供一种新颖发光器件。另外,本发明的一个方式能够提供一种寿命良好的发光器件。另外,本发明的一个方式能够提供一种发光效率良好的发光器件。
另外,本发明的另一个方式能够提供一种可靠性高的发光装置、电子设备及显示装置。另外,本发明的另一个方式能够提供一种低功耗的发光装置、电子设备及显示装置。
注意,这些效果的记载不妨碍其他效果的存在。另外,本发明的一个方式并不需要具有所有上述效果。另外,这些效果以外的效果从说明书、附图、权利要求书等的记载是显然的,并可以从所述记载中抽出。
附图说明
图1A、图1B及图1C是发光器件的示意图;
图2A及图2B是有源矩阵型发光装置的示意图;
图3A及图3B是有源矩阵型发光装置的示意图;
图4是有源矩阵型发光装置的示意图;
图5A及图5B是示出照明装置的图;
图6A、图6B1、图6B2及图6C是示出电子设备的图;
图7A、图7B及图7C是示出电子设备的图;
图8是示出照明装置的图;
图9是示出照明装置的图;
图10是示出车载显示装置及照明装置的图;
图11A、图11B及图11C是示出电子设备的图;
图12A及图12B是示出电子设备的图;
图13是示出发光器件1及对比发光器件1的亮度-电流密度特性的图;
图14是示出发光器件1及对比发光器件1的电流效率-亮度特性的图;
图15是示出发光器件1及对比发光器件1的亮度-电压特性的图;
图16是示出发光器件1及对比发光器件1的电流-电压特性的图;
图17是示出发光器件1及对比发光器件1的外量子效率-亮度特性的图;
图18是示出发光器件1及对比发光器件1的发射光谱的图;
图19是示出发光器件1及对比发光器件1的归一化亮度-时间变化特性的图;
图20是示出测定用元件的结构的图;
图21是示出测定用元件的电流密度-电压特性的图;
图22是示出直流电压为7.0V时的ZADN:Liq(1:1)的电容C的所算出的频率特性的图;
图23是示出直流电压为7.0V的ZADN:Liq(1:1)的-△B的频率特性的图;
图24是示出各有机化合物中的电子迁移率的电场强度依存性的图;
图25A及图25B是示出BfpmPPyA的1H NMR谱的图;
图26A及图26B是示出DBqPPyA的1H NMR谱的图;
图27A及图27B是示出NfprPPyA的1H NMR谱的图;
图28是示出发光器件2至发光器件4的亮度-电流密度特性的图;
图29是示出发光器件2至发光器件4的电流效率-亮度特性的图;
图30是示出发光器件2至发光器件4的亮度-电压特性的图;
图31是示出发光器件2至发光器件4的电流-电压特性的图;
图32是示出发光器件2至发光器件4的外量子效率-亮度特性的图;
图33是示出发光器件2至发光器件4的发射光谱的图;
图34是示出发光器件2至发光器件4的归一化亮度-时间变化特性的图。
具体实施方式
以下利用附图详细地说明本发明的实施方式。注意,本发明不局限于下述说明,其方式及详细内容在不脱离本发明的宗旨及其范围的情况下可以被变换为各种各样的形式。因此,本发明不应该被解释为仅局限在以下所示的实施方式所记载的内容中。
实施方式1
图1A是示出本发明的一个方式的发光器件的图。本发明的一个方式的发光器件包括阳极101、阴极102及EL层103,该EL层至少包括发光层113及电子传输层114。
在图1A的EL层103中,除了发光层113及电子传输层114之外还示出空穴注入层111及空穴传输层112,但是EL层103的结构不局限于此。如图1B所示,EL层103也可以包括电子注入层115,空穴传输层112也可以包括第一空穴传输层112-1及第二空穴传输层112-2,电子传输层114也可以包括第一电子传输层114-1及第二电子传输层114-2。
在本发明的一个方式的发光器件中,用于电子传输层114的电子传输材料包括第一骨架、第二骨架及第三骨架,各骨架具有彼此不同的功能。
第一骨架是具有传输电子的功能的骨架。此外,该电子传输材料的LUMO主要分布在第一骨架中,且该电子传输材料的电子传输功能来源于第一骨架。为了呈现电子传输性,第一骨架优选是含氮的稠合芳香环或三嗪骨架。此外,为了使LUMO分布在第一骨架中(换言之,提高第一骨架的电子接收性来使第一骨架与第三骨架相比容易接收电子),第一骨架更优选包含两个以上的氮原子。尤其优选的是,该两个以上的氮原子位于六元环的芳香环上。作为能够适合用作第一骨架的骨架,可以举出喹喔啉环、二苯并[h,g]喹喔啉环、三嗪环及苯并呋喃并嘧啶环等,尤其优选使用包含喹喔啉环的骨架。
第二骨架是具有接收空穴的功能的骨架。此外,第二骨架优选是二环以上的稠合芳香烃环。此外,为了接收空穴,第二骨架更优选具有三环以上的稠合芳香烃环。为了保持升华性和适当的溶解性,该稠合芳香烃环优选是六环以下的稠合芳香烃环,从保持大能隙的观点来看,更优选是四环以下的稠合芳香烃环。但是,为了提高耐热性,该稠合芳香烃环的形成环的碳数优选为14以上。此外,在考虑激发态的稳定性时,该稠合芳香烃环优选只由六元环构成。另外,作为能够适合用作第二骨架的稠合芳香烃环,具体地,可以举出萘环、芴环、蒽环、菲环、苯并芴环、四苯环、
Figure BDA0002587108980000111
环、三亚苯环及芘环等。由于可以得到适当的空穴接收性及化学稳定性,尤其优选的是蒽环。此外,优选在第二骨架中分布有该电子传输材料的HOMO。
第三骨架是单环的缺π电子型杂芳环,并且为了具有来自阴极的电子的注入性,第三骨架优选是具有氮原子的六元环。具体而言,优选是吡啶环、嘧啶环、吡嗪环及三嗪环。另外,在第三骨架键合于第二骨架时,在第三骨架中,相对于与第二骨架键合的碳位于β位的原子优选是氮。也就是说,第三骨架优选是吡嗪环、在三位取代的吡啶环或在五位取代的嘧啶环。这是因为与阴极之间的接触性变高,且高亮度一侧的驱动电压得到降低。另外,通过使第三骨架具有这种结构,即使在电子传输层114和阴极102之间不设置电子注入层,也可以得到驱动电压低且特性良好的发光器件。
另外,在第一骨架和第三骨架键合时,LUMO分布于两者的可能性增大,因此这些骨架优选通过第二骨架键合。
发光层113包括主体材料及发光材料。另外,发光层113也可以同时包括与主体材料及发光材料不同的其他材料,或者也可以是组成不同的两层的叠层。
发光中心材料可以是荧光发光物质、磷光发光物质、呈现热活化延迟荧光(TADF)的物质或其他发光材料。另外,可以为单层,也可以由多个层构成。本发明的一个方式适合用于将呈现荧光发光的层用作发光层113的情况,尤其适合用于将发光层113用作呈现蓝色荧光发光的层的情况。
在发光层113中,作为能够用作荧光发光物质的材料,例如可以举出5,6-双[4-(10-苯基-9-蒽基)苯基]-2,2'-联吡啶(简称:PAP2BPy)、5,6-双[4'-(10-苯基-9-蒽基)联苯基-4-基]-2,2'-联吡啶(简称:PAPP2BPy)、N,N’-二苯基-N,N’-双[4-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6FLPAPrn)、N,N’-双(3-甲基苯基)-N,N’-双[3-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6mMemFLPAPrn)、N,N'-双[4-(9H-咔唑-9-基)苯基]-N,N'-二苯基二苯乙烯-4,4'-二胺(简称:YGA2S)、4-(9H-咔唑-9-基)-4'-(10-苯基-9-蒽基)三苯胺(简称:YGAPA)、4-(9H-咔唑-9-基)-4'-(9,10-二苯基-2-蒽基)三苯胺(简称:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(简称:PCAPA)、二萘嵌苯、2,5,8,11-四-叔丁基二萘嵌苯(简称:TBP)、4-(10-苯基-9-蒽基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBAPA)、N,N”-(2-叔丁基蒽-9,10-二基二-4,1-亚苯基)双[N,N',N'-三苯基-1,4-苯二胺](简称:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(简称:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N',N'-三苯基-1,4-苯二胺(简称:2DPAPPA)、N,N,N',N',N”,N”,N”',N”'-八苯基二苯并[g,p]
Figure BDA0002587108980000131
(chrysene)-2,7,10,15-四胺(简称:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(简称:2PCAPA)、N-[9,10-双(1,1'-联苯基-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(简称:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N',N'-三苯基-1,4-苯二胺(简称:2DPAPA)、N-[9,10-双(1,1'-联苯-2-基)-2-蒽基]-N,N',N'-三苯基-1,4-苯二胺(简称:2DPABPhA)、9,10-双(1,1'-联苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(简称:2YGABPhA)、N,N,9-三苯基蒽-9-胺(简称:DPhAPhA)、香豆素545T、N,N'-二苯基喹吖酮(简称:DPQd)、红荧烯、5,12-双(1,1'-联苯-4-基)-6,11-二苯基并四苯(简称:BPT)、2-(2-{2-[4-(二甲氨基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亚基)丙二腈(简称:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCM2)、N,N,N',N'-四(4-甲基苯基)并四苯-5,11-二胺(简称:p-mPhTD)、7,14-二苯基-N,N,N',N'-四(4-甲基苯基)苊并[1,2-a]荧蒽-3,10-二胺(简称:p-mPhAFD)、2-{2-异丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTI)、2-{2-叔丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTB)、2-(2,6-双{2-[4-(二甲氨基)苯基]乙烯基}-4H-吡喃-4-亚基)丙二腈(简称:BisDCM)、2-{2,6-双[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:BisDCJTM)、N,N’-二苯基-N,N’-(1,6-芘-二基)双[(6-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](简称:1,6BnfAPrn-03)、3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)、3,10-双[N-(二苯并呋喃-3-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10FrA2Nbf(IV)-02)等。尤其是,以1,6FLPAPrn、1,6mMemFLPAPrn、1,6BnfAPrn-03等芘二胺化合物为代表的稠合芳族二胺化合物具有合适的空穴俘获性且良好的发光效率及可靠性,所以是优选的。
在发光层113中,当作为发光中心材料使用磷光发光物质时,作为可使用的材料,例如可以举出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}铱(III)(简称:[Ir(mpptz-dmp)3])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)铱(III)(简称:[Ir(Mptz)3])、三[4-(3-联苯)-5-异丙基-3-苯基-4H-1,2,4-三唑]铱(III)(简称:[Ir(iPrptz-3b)3])等具有4H-三唑骨架的有机金属铱配合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]铱(III)(简称:[Ir(Mptz1-mp)3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)铱(III)(简称:[Ir(Prptz1-Me)3])等具有1H-三唑骨架的有机金属铱配合物;fac-三[1-(2,6-二异丙基苯基)-2-苯基-1H-咪唑]铱(III)(简称:[Ir(iPrpmi)3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]铱(III)(简称:[Ir(dmpimpt-Me)3])等具有咪唑骨架的有机金属铱配合物;以及双[2-(4',6'-二氟苯基)吡啶根-N,C2']铱(III)四(1-吡唑基)硼酸盐(简称:FIr6)、双[2-(4',6'-二氟苯基)吡啶根-N,C2']铱(III)吡啶甲酸酯(简称:FIrpic)、双{2-[3',5'-双(三氟甲基)苯基]吡啶根-N,C2'}铱(III)吡啶甲酸酯(简称:[Ir(CF3ppy)2(pic)])、双[2-(4',6'-二氟苯基)吡啶根-N,C2']铱(III)乙酰丙酮(简称:FIr(acac))等以具有拉电子基的苯基吡啶衍生物为配体的有机金属铱配合物。上述物质是发射蓝色磷光的化合物,并且是在440nm至520nm具有发光峰的化合物。
另外,作为能够用于发光层113的材料,可以举出:三(4-甲基-6-苯基嘧啶根)铱(III)(简称:[Ir(mppm)3])、三(4-叔丁基-6-苯基嘧啶根)铱(III)(简称:[Ir(tBuppm)3])、(乙酰丙酮根)双(6-甲基-4-苯基嘧啶根)铱(III)(简称:[Ir(mppm)2(acac)])、(乙酰丙酮根)双(6-叔丁基-4-苯基嘧啶根)铱(III)(简称:[Ir(tBuppm)2(acac)])、(乙酰丙酮根)双[6-(2-降冰片基)-4-苯基嘧啶根]铱(III)(简称:[Ir(nbppm)2(acac)])、(乙酰丙酮根)双[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶根]铱(III)(简称:Ir(mpmppm)2(acac))、(乙酰丙酮根)双(4,6-二苯基嘧啶根)铱(III)(简称:[Ir(dppm)2(acac)])等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(3,5-二甲基-2-苯基吡嗪根)铱(III)(简称:[Ir(mppr-Me)2(acac)])、(乙酰丙酮根)双(5-异丙基-3-甲基-2-苯基吡嗪根)铱(III)(简称:[Ir(mppr-iPr)2(acac)])等具有吡嗪骨架的有机金属铱配合物;三(2-苯基吡啶根-N,C2')铱(III)(简称:[Ir(ppy)3])、双(2-苯基吡啶根-N,C2')铱(III)乙酰丙酮(简称:[Ir(ppy)2(acac)])、双(苯并[h]喹啉)铱(III)乙酰丙酮(简称:[Ir(bzq)2(acac)])、三(苯并[h]喹啉)铱(III)(简称:[Ir(bzq)3])、三(2-苯基喹啉-N,C2']铱(III)(简称:[Ir(pq)3])、双(2-苯基喹啉-N,C2')铱(III)乙酰丙酮(简称:[Ir(pq)2(acac)])等具有吡啶骨架的有机金属铱配合物;以及三(乙酰丙酮根)(单菲咯啉)铽(III)(简称:[Tb(acac)3(Phen)])等稀土金属配合物。上述物质主要是发射绿色磷光的化合物,并且在500nm至600nm具有发光峰。另外,由于具有嘧啶骨架的有机金属铱配合物具有特别优异的可靠性及发光效率,所以是特别优选的。
另外,作为能够用于发光层113的材料,可以举出:(二异丁酰基甲烷根)双[4,6-双(3-甲基苯基)嘧啶基]铱(III)(简称:[Ir(5mdppm)2(dibm)])、双[4,6-双(3-甲基苯基)嘧啶根)(二新戊酰基甲烷根)铱(III)(简称:[Ir(5mdppm)2(dpm)])、双[4,6-二(萘-1-基)嘧啶根](二新戊酰基甲烷根)铱(III)(简称:[Ir(d1npm)2(dpm)])等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(2,3,5-三苯基吡嗪根)铱(III)(简称:[Ir(tppr)2(acac)])、双(2,3,5-三苯基吡嗪根)(二新戊酰基甲烷根)铱(III)(简称:[Ir(tppr)2(dpm)])、(乙酰丙酮根)双[2,3-双(4-氟苯基)喹喔啉合]铱(III)(简称:[Ir(Fdpq)2(acac)])等具有吡嗪骨架的有机金属铱配合物;三(1-苯基异喹啉-N,C2’)铱(III)(简称:[Ir(piq)3])、双(1-苯基异喹啉-N,C2’)铱(III)乙酰丙酮(简称:[Ir(piq)2(acac)])等具有吡啶骨架的有机金属铱配合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉铂(II)(简称:PtOEP)等的铂配合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(单菲咯啉)铕(III)(简称:[Eu(DBM)3(Phen)])、三[1-(2-噻吩甲酰基)-3,3,3-三氟丙酮](单菲咯啉)铕(III)(简称:[Eu(TTA)3(Phen)])等稀土金属配合物。上述物质是发射红色磷光的化合物,并且在600nm至700nm具有发光峰。另外,具有吡嗪骨架的有机金属铱配合物可以获得色度良好的红色发光。
另外,除了上述磷光化合物以外,还可以选择已知的磷光发光材料而使用。
作为TADF材料可以使用富勒烯及其衍生物、吖啶及其衍生物以及伊红衍生物等。另外,还可以举出包含镁(Mg)、锌(Zn)、镉(Cd)、锡(Sn)、铂(Pt)、铟(In)或钯(Pd)等含金属卟啉。作为该含金属卟啉,例如,也可以举出由下述结构式表示的原卟啉-氟化锡配合物(SnF2(Proto IX))、中卟啉-氟化锡配合物(SnF2(Meso IX))、血卟啉-氟化锡配合物(SnF2(Hemato IX))、粪卟啉四甲酯-氟化锡配合物(SnF2(Copro III-4Me)、八乙基卟啉-氟化锡配合物(SnF2(OEP))、初卟啉-氟化锡配合物(SnF2(Etio I))以及八乙基卟啉-氯化铂配合物(PtCl2OEP)等。
[化学式1]
Figure BDA0002587108980000181
另外,还可以使用由下述结构式表示的2-(联苯-4-基)-4,6-双(12-苯基吲哚[2,3-a]咔唑-11-基)-1,3,5-三嗪(简称:PIC-TRZ)、9-(4,6-二苯基-1,3,5-三嗪-2-基)-9’-苯基-9H,9’H-3,3’-联咔唑(简称:PCCzTzn)、9-[4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-9H,9’H-3,3’-联咔唑(简称:PCCzPTzn)、2-[4-(10H-吩恶嗪-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(简称:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氢吩嗪-10-基)苯基]-4,5-二苯基-1,2,4-三唑(简称:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧杂蒽-9-酮(简称:ACRXTN)、双[4-(9,9-二甲基-9,10-二氢吖啶)苯基]硫砜(简称:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(简称:ACRSA)等具有富π电子型杂芳环和缺π电子型杂芳环的一方或双方的杂环化合物。该杂环化合物具有富π电子型杂芳环和缺π电子型杂芳环,电子传输性和空穴传输性都高,所以是优选的。尤其是,在具有缺π电子杂芳环的骨架中,吡啶骨架、二嗪骨架(嘧啶骨架、吡嗪骨架、哒嗪骨架)及三嗪骨架稳定且可靠性良好,所以是优选的。尤其是,苯并呋喃并嘧啶骨架、苯并噻吩并嘧啶骨架、苯并呋喃并吡嗪骨架、苯并噻吩并吡嗪骨架的电子接受性高且可靠性良好,所以是优选的。另外,在具有富π电子杂芳环的骨架中,吖啶骨架、吩恶嗪骨架、吩噻嗪骨架、呋喃骨架、噻吩骨架及吡咯骨架稳定且可靠性良好,所以优选具有上述骨架中的至少一个。另外,作为呋喃骨架优选使用二苯并呋喃骨架,作为噻吩骨架优选使用二苯并噻吩骨架。作为吡咯骨架,特别优选使用吲哚骨架、咔唑骨架、吲哚咔唑骨架、联咔唑骨架、3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。在富π电子型芳杂环和缺π电子型芳杂环直接键合的物质中,富π电子芳杂环的电子供给性和缺π电子型芳杂环的电子接受性都高而S1能级与T1能级之间的能量差变小,可以高效地获得热活化延迟荧光,所以是特别优选的。注意,也可以使用键合有氰基等吸电子基团的芳环代替缺π电子型芳杂环。此外,作为富π电子骨架,可以使用芳香胺骨架、吩嗪骨架等。此外,作为缺π电子骨架,可以使用氧杂蒽骨架、二氧化噻吨(thioxanthene dioxide)骨架、噁二唑骨架、三唑骨架、咪唑骨架、蒽醌骨架、苯基硼烷或boranthrene等含硼骨架、苯甲腈或氰苯等具有腈基或氰基的芳香环或杂芳环、二苯甲酮等羰骨架、氧化膦骨架、砜骨架等。如此,可以使用缺π电子骨架及富π电子骨架代替缺π电子杂芳环以及富π电子杂芳环中的至少一个。
[化学式2]
Figure BDA0002587108980000201
TADF材料是指S1能级和T1能级之差较小且具有通过反系间窜越将三重激发能转换为单重激发能的功能的材料。因此,能够通过微小的热能量将三重激发能上转换(up-convert)为单重激发能(反系间窜越)并能够高效地产生单重激发态。此外,可以将三重激发能转换为发光。
以两种物质形成激发态的激基复合物(Exciplex)因S1能级和T1能级之差极小而具有将三重激发能转换为单重激发能的TADF材料的功能。
注意,作为T1能级的指标,可以使用在低温(例如,77K至10K)下观察到的磷光光谱。关于TADF材料,优选的是,当以通过在荧光光谱的短波长侧的尾处引切线得到的外推线的波长能量为S1能级并以通过在磷光光谱的短波长侧的尾处引切线得到的外推线的波长能量为T1能级时,S1与T1之差为0.3eV以下,更优选为0.2eV以下。
此外,当使用TADF材料作为发光中心材料时,主体材料的S1能级优选比TADF材料的S1能级高。此外,主体材料的T1能级优选比TADF材料的T1能级高。
作为发光层的主体材料,可以使用具有电子传输性的材料或具有空穴传输性的材料、上述TADF材料等各种载流子传输材料。
作为能够用作主体材料的具有空穴传输性的材料,优选为具有胺骨架及富π电子型杂芳环骨架的有机化合物。例如,可以举出:4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(简称:NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(简称:TPD)、4,4'-双[N-(螺-9,9’-二芴-2-基)-N-苯基氨基]联苯(简称:BSPB)、4-苯基-4'-(9-苯基芴-9-基)三苯胺(简称:BPAFLP)、4-苯基-3'-(9-苯基芴-9-基)三苯胺(简称:mBPAFLP)、4-苯基-4'-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBA1BP)、4,4'-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBBi1BP)、4-(1-萘基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBANB)、4,4'-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]芴-2-胺(简称:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9'-螺双[9H-芴]-2-胺(简称:PCBASF)等具有芳香胺骨架的化合物;1,3-双(N-咔唑基)苯(简称:mCP)、4,4'-二(N-咔唑基)联苯(简称:CBP)、3,6-双(3,5-二苯基苯基)-9-苯基咔唑(简称:CzTP)、3,3'-双(9-苯基-9H-咔唑)(简称:PCCP)等具有咔唑骨架的化合物;4,4',4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-芴-9-基)苯基]二苯并噻吩(简称:DBTFLP-III)、4-[4-(9-苯基-9H-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:DBTFLP-IV)等具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:DBF3P-II)、4-{3-[3-(9-苯基-9H-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物、具有咔唑骨架的化合物具有良好的可靠性和高空穴传输性并有助于降低驱动电压,所以是优选的。此外,也可以使用作为用于下述复合材料的具有空穴传输性的有机化合物的例子举出的空穴传输材料。
作为能够用作主体材料的具有电子传输性的材料,例如优选为双(10-羟基苯并[h]喹啉)铍(II)(简称:BeBq2)、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝(III)(简称:BAlq)、双(8-羟基喹啉)锌(II)(简称:Znq)、双[2-(2-苯并噁唑基)苯酚]锌(II)(简称:ZnPBO)、双[2-(2-苯并噻唑基)苯酚]锌(II)(简称:ZnBTZ)等金属配合物或具有缺π电子型芳杂环骨架的有机化合物。作为具有缺π电子型芳杂环骨架的有机化合物,例如2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(简称:PBD)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(简称:TAZ)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(简称:CO11)、2,2',2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(简称:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(简称:mDBTBIm-II)等具有多唑骨架的杂环化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mCzBPDBq)、4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mPnP2Pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mDBTP2Pm-II)等具有二嗪骨架的杂环化合物;以及3,5-双[3-(9H-咔唑-9-基)苯基]吡啶(简称:35DCzPPy)、1,3,5-三[3-(3-吡啶基)-苯基]苯(简称:TmPyPB)等的具有吡啶骨架的杂环化合物。其中,具有二嗪骨架的杂环化合物或具有吡啶骨架的杂环化合物具有良好的可靠性,所以是优选的。尤其是,具有二嗪(嘧啶或吡嗪)骨架的杂环化合物具有高电子传输性,也有助于降低驱动电压。
作为能够用作主体材料的TADF材料,可以使用与上述TADF材料同样的材料。当使用TADF材料作为主体材料时,由TADF材料生成的三重激发能经反系间窜跃转换为单重激发能并进一步能量转移到发光中心物质,由此可以提高发光器件的发光效率。此时,TADF材料被用作能量供体,发光中心物质被用作能量受体。
当上述发光中心物质为荧光发光物质时这是非常有效的。此外,此时,为了得到高发光效率,TADF材料的S1能级优选比荧光发光物的S1能级高。此外,TADF材料的T1能级优选比荧光发光物质的S1能级高。因此,TADF材料的T1能级优选比荧光发光物质的T1能级高。
此外,优选使用呈现与荧光发光物质的最低能量一侧的吸收带的波长重叠的发光的TADF材料。由此,激发能顺利地从TADF材料转移到荧光发光物质,可以高效地得到发光,所以是优选的。
为了高效地从三重激发能通过反系间窜跃生成单重激发能,优选在TADF材料中产生载流子复合。此外,优选的是在TADF材料中生成的三重激发能不转移到荧光发光物质。为此,荧光发光物质优选在荧光发光物质所具有的发光体(成为发光的原因的骨架)的周围具有保护基。作为该保护基,优选为不具有π键的取代基,优选为饱和烃,具体而言,可以举出碳原子数为3以上且10以下的烷基、取代或未取代的碳原子数为3以上且10以下的环烷基、碳原子数为3以上且10以下的三烷基硅基,更优选具有多个保护基。不具有π键的取代基由于几乎没有传输载流子的功能,所以对载流子传输或载流子复合几乎没有影响,可以使TADF材料与荧光发光物质的发光体彼此远离。在此,发光体是指在荧光发光物质中成为发光的原因的原子团(骨架)。发光体优选为具有π键的骨架,优选包含芳香环,并优选具有稠合芳香环或稠合杂芳环。作为稠合芳香环或稠合杂芳环,可以举出菲骨架、二苯乙烯骨架、吖啶酮骨架、吩恶嗪骨架、吩噻嗪骨架等。尤其是,具有萘骨架、蒽骨架、芴骨架、
Figure BDA0002587108980000241
骨架、三亚苯骨架、并四苯骨架、芘骨架、苝骨架、香豆素骨架、喹吖啶酮骨架、萘并双苯并呋喃骨架的荧光发光物质具有高荧光量子产率,所以是优选的。
在将荧光发光物质用作发光中心物质的情况下,作为主体材料,优选使用具有蒽骨架的材料。通过将具有蒽骨架的物质用作荧光发光物质的主体材料,可以实现发光效率及耐久性都良好的发光层。在用作主体材料的具有蒽骨架的物质中,具有二苯基蒽骨架(尤其是9,10-二苯基蒽骨架)的物质在化学上稳定,所以是优选的。另外,在主体材料具有咔唑骨架的情况下,空穴的注入/传输性得到提高,所以是优选的,尤其是,在包含苯环稠合到咔唑的苯并咔唑骨架的情况下,其HOMO能级比咔唑浅0.1eV左右,空穴容易注入,所以是更优选的。尤其是,在主体材料具有二苯并咔唑骨架的情况下,其HOMO能级比咔唑浅0.1eV左右,不仅空穴容易注入,而且空穴传输性及耐热性也得到提高,所以是优选的。因此,进一步优选用作主体材料的物质是具有9,10-二苯基蒽骨架及咔唑骨架(或者苯并咔唑骨架或二苯并咔唑骨架)的物质。注意,从上述空穴注入/传输性的观点来看,也可以使用苯并芴骨架或二苯并芴骨架代替咔唑骨架。作为这种物质的例子,可以举出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:PCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(简称:PCPN)、9-[4-(10-苯基蒽-9-基)苯基]-9H-咔唑(简称:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(简称:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(简称:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-芴-9-基)-联苯-4’-基}-蒽(简称:FLPPA)、9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:BH513)等。尤其是,CzPA、cgDBCzPA、2mBnfPPA、PCzPA呈现非常良好的特性,所以是优选的。
另外,主体材料也可以是混合多种物质的材料,当使用混合的主体材料时,优选混合具有电子传输性的材料和具有空穴传输性的材料。通过混合具有电子传输性的材料和具有空穴传输性的材料,可以使发光层113的传输性的调整变得更加容易,也可以更简便地进行复合区域的控制。具有空穴传输性的材料和具有电子传输性的材料的含量的重量比例为1:19至19:1即可。
注意,作为上述混合的材料的一部分,可以使用磷光发光物质。磷光发光物质在作为发光中心材料使用荧光发光物质时可以被用作对荧光发光物质供应激发能的能量供体。
另外,也可以使用这些混合了的材料形成激基复合物。通过以形成发射与发光材料的最低能量一侧的吸收带的波长重叠的光的激基复合物的方式选择混合材料,可以使能量转移变得顺利,从而高效地得到发光,所以是优选的。另外,通过采用该结构可以降低驱动电压,因此是优选的。
注意,形成激基复合物的材料的至少一个可以为磷光发光物质。由此,可以高效地将三重激发能经反系间窜跃转换为单重激发能。
关于高效地形成激基复合物的材料的组合,具有空穴传输性的材料的HOMO能级优选为具有电子传输性的材料的HOMO能级以上。此外,具有空穴传输性的材料的LUMO能级优选为具有电子传输性的材料的LUMO能级以上。注意,材料的LUMO能级及HOMO能级可以从通过循环伏安(CV)测定测得的材料的电化学特性(还原电位及氧化电位)求出。
注意,激基复合物的形成例如可以通过如下方法确认:对具有空穴传输性的材料的发射光谱、具有电子传输性的材料的发射光谱及混合这些材料而成的混合膜的发射光谱进行比较,当观察到混合膜的发射光谱比各材料的发射光谱向长波长一侧漂移(或者在长波长一侧具有新的峰值)的现象时说明形成有激基复合物。或者,对具有空穴传输性的材料的瞬态光致发光(PL)、具有电子传输性的材料的瞬态PL及混合这些材料而成的混合膜的瞬态PL进行比较,当观察到混合膜的瞬态PL寿命与各材料的瞬态PL寿命相比具有长寿命成分或者延迟成分的比率变大等瞬态响应不同时说明形成有激基复合物。此外,可以将上述瞬态PL称为瞬态电致发光(EL)。换言之,与对具有空穴传输性的材料的瞬态EL、具有电子传输性的材料的瞬态EL及这些材料的混合膜的瞬态EL进行比较,观察瞬态响应的不同,可以确认激基复合物的形成。
具有上述结构的本发明的一个方式的发光器件可以具有良好的可靠性,尤其是,其中劣化曲线的倾斜可以小,且长期劣化可以受到抑制。
接着,对能够用于EL层103的其他层进行说明。
空穴注入层111是用来使空穴容易注入到EL层103的层,并由空穴注入性高的材料构成。空穴注入层111也可以单独使用受体性物质构成,优选使用包含受体性物质和具有空穴传输性的有机化合物的复合材料构成。
受体性物质是对空穴传输层及空穴注入层所包括的具有空穴传输性的有机化合物呈现电子接收性的物质。
作为受体性物质,也可以使用无机化合物或有机化合物,优选使用具有吸电子基团(尤其是如氟基等卤基、氰基)的有机化合物等。作为受体性物质,可以从如上物质中适当地选择对空穴传输层或空穴注入层所包含的具有空穴传输性的有机化合物呈现电子接收性的物质。
作为这种受体性物质,可以举出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(简称:F4-TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮杂三亚苯(简称:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(简称:F6-TCNNQ)、2-(7-二氰基亚甲基-1,3,4,5,6,8,9,10-八氟-7H-芘-2-亚基)丙二腈等。尤其是,吸电子基团键合于具有多个杂原子的稠合芳香环的化合物诸如HAT-CN等热稳定,所以是优选的。另外,包括吸电子基团(尤其是如氟基等卤基、氰基)的[3]轴烯衍生物的电子接收性非常高所以特别优选的,具体而言,可以举出:α,α’,α”-1,2,3-环丙烷三亚基三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α”-1,2,3-环丙烷三亚基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-环丙烷三亚基三[2,3,4,5,6-五氟苯乙腈]等有机化合物。在该受体性物质是无机化合物的情况下,也可以使用过渡金属氧化物。尤其优选的是属于元素周期表中第四族至第八族的金属的氧化物,作为该属于元素周期表中第四族至第八族的金属的氧化物,因具有高电子接收性而优选使用氧化钒、氧化铌、氧化钽、氧化铬、氧化钼、氧化钨、氧化锰、氧化铼等。尤其优选使用氧化钼,因为氧化钼在大气中也稳定,吸湿性低,并且容易处理。
用于复合材料的具有空穴传输性的有机化合物优选是空穴传输材料,并具有-5.7eV以上且-5.4eV以下的较深的HOMO能级。通过使用于复合材料的具有空穴传输性的有机化合物具有较深的HOMO能级,空穴的感应适当地受到抑制,但是容易向空穴传输层112注入所感应的空穴。
用于复合材料的具有空穴传输性的有机化合物优选具有咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架及蒽骨架中的任一个。尤其是,优选为具有包括二苯并呋喃环或二苯并噻吩环的取代基的芳香胺、包括萘环的芳香单胺,或者可以为9-芴基通过亚芳基键合于胺的氮的芳香单胺。注意,当这些物质是包括N,N-双(4-联苯)氨基的物质时,可以制造寿命良好的发光器件,所以是优选的。作为上述物质,具体而言,可以举出N-(4-联苯)-6,N-二苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BnfABP)、N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)、4,4’-双(6-苯基苯并[b]萘并[1,2-d]呋喃-8-基)-4”-苯基三苯基胺(简称:BnfBB1BP)、N,N-双(4-联苯)苯并[b]萘并[1,2-d]呋喃-6-胺(简称:BBABnf(6))、N,N-双(4-联苯)苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf(8))、N,N-双(4-联苯)苯并[b]萘并[2,3-d]呋喃-4-胺(简称:BBABnf(II)(4))、N,N-双[4-(二苯并呋喃-4-基)苯基]-4-氨基-p-三联苯基(简称:DBfBB1TP)、N-[4-(二苯并噻吩-4-基)苯基]-N-苯基-4-联苯胺(简称:ThBA1BP)、4-(2-萘基)-4’,4”-二苯基三苯基胺(简称:BBAβNB)、4-[4-(2-萘基)苯基]-4’,4”-二苯基三苯基胺(简称:BBAβNBi)、4-(2;1’-联萘基-6-基)-4’,4”-二苯基三苯基胺(简称:BBAαNβNB)、4,4’-二苯基-4”-(7;1’-联萘基-2-基)三苯基胺(简称:BBAαNβNB-03)、4,4’-二苯基-4”-(7-苯基)萘基-2-基三苯基胺(简称:BBAPβNB-03)、4-(6;2’-联萘基-2-基)-4’,4”-二苯基三苯基胺(简称:BBA(βN2)B)、4-(2;2’-联萘基-7-基)-4’,4”-二苯基三苯基胺(简称:BBA(βN2)B-03)、4-(1;2’-联萘基-4-基)-4’,4”-二苯基三苯基胺(简称:BBAβNαNB)、4-(1;2’-联萘基-5-基)-4’,4”-二苯基三苯基胺(简称:BBAβNαNB-02)、4-(4-联苯基)-4’-(2-萘基)-4”-苯基三苯基胺(简称:TPBiAβNB)、4-(3-联苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(简称:mTPBiAβNBi)、4-(4-联苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(简称:TPBiAβNBi)、4-(1-萘基)-4’-苯基三苯基胺(简称:αNBA1BP)、4,4’-双(1-萘基)三苯基胺(简称:αNBB1BP)、4,4’-二苯基-4”-[4’-(咔唑-9-基)联苯-4-基]三苯基胺(简称:YGTBi1BP)、4’-[4-(3-苯基-9H-咔唑-9-基)苯基]三(1,1’-联苯-4-基)胺(简称:YGTBi1BP-02)、4-二苯基-4’-(2-萘基)-4”-{9-(4-联苯基)咔唑)}三苯胺(简称:YGTBiβNB)、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-[4-(1-萘基)苯基]-9,9'-螺双[9H-芴]-2-胺(简称:PCBNBSF)、N,N-双([1,1'-联苯基]-4-基)-9,9’-螺双[9H-芴]-2-胺(简称:BBASF)、N,N-双([1,1’-联苯基]-4-基)-9,9’-螺双[9H-芴]-4-胺(简称:BBASF(4))、N-(1,1’-联苯-2-基)-N-(9,9-二甲基-9H-芴-2-基)-9,9’-螺-双(9H-芴)-4-胺(简称:oFBiSF)、N-(4-联苯基)-N-(9,9-二甲基-9H-芴-2-基)二苯并呋喃-4-胺(简称:FrBiF)、N-[4-(1-萘基)苯基]-N-[3-(6-苯基二苯并呋喃-4-基)苯基]-1-萘基胺(简称:mPDBfBNBN)、4-苯基-4’-(9-苯基芴-9-基)三苯基胺(简称:BPAFLP)、4-苯基-3’-(9-苯基芴-9-基)三苯基胺(简称:mBPAFLP)、4-苯基-4’-[4-(9-苯基芴-9-基)苯基]三苯基胺(简称:BPAFLBi)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBNBB)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9’-螺双[9H-芴]-2-胺(简称:PCBASF)、N-(1,1’-联苯-4-基)-9,9-二甲基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9H-芴-2-胺(简称:PCBBiF)等。
另外,具有空穴传输性的有机化合物的空穴迁移率在电场强度[V/cm]的平方根为600时优选是1×10-3cm2/Vs以下。
复合材料中的具有受体性及空穴传输性的有机化合物的组成优选为1:0.01至1:0.15(重量比)。另外,更优选为1:0.01至1:0.1(重量比)。
在将上述复合材料用于空穴注入层111,将具有-5.7eV以上且-5.4eV以下的HOMO能级的有机化合物用作具有空穴传输性的有机化合物的情况下,作为电子传输层114中的电子传输材料的第二骨架可以使用二环以上且四环以下的稠合芳香烃环。
此外,此时电子传输层114的电子迁移率在电场强度[V/cm]的平方根为600时优选是1×10-7cm2/Vs以上且5×10-5cm2/Vs以下。
再者,此时电子传输层114优选包含金属、金属盐、金属氧化物或有机金属盐,该金属、金属盐、金属氧化物或有机金属盐优选是包含碱金属或碱土金属的金属配合物。该金属配合物优选具有包含氮及氧的配体,该配体更优选具有8-羟基喹啉结构。尤其优选包含一价金属离子的配合物,具体而言,例如优选包含8-羟基喹啉-锂(简称:Liq)、8-羟基喹啉-纳(简称:Naq)等。尤其优选包含锂的配合物,更优选包含Liq。另外,在具有8-羟基喹啉结构时,也可以采用其甲基取代物(例如,2-甲基取代物或5-甲基取代物)等。
如上所述,在电子传输层114一起使用金属、金属盐、金属氧化物或有机金属盐和电子传输材料时,因为金属、金属盐、金属氧化物或有机金属盐辅助接收空穴的功能,所以作为电子传输材料的第二骨架可以适当地使用二环以上且四环以下的稠合芳香烃环。适合用于稠合芳香烃环的结构如上所述,作为该二环以上且四环以下的稠合芳香烃环例如可以举出萘环、芴环、蒽环、菲环、四苯环、
Figure BDA0002587108980000311
环、三亚苯环及芘环。另外,作为第二骨架优选使用三环以上且四环以下的稠合芳香环,更优选使用蒽环。
此外,电子传输层114中的上述金属、金属盐、金属氧化物或有机金属盐优选在其厚度方向上具有浓度差(包括浓度为0的情况)。由此,可以实现具有更良好的寿命及可靠性的发光器件。
另外,用于电子传输层114的电子传输材料的HOMO能级优选为-6.0eV以上。
在具有上述结构的发光器件中,在通过电流密度恒定的条件下的驱动测试得到的亮度的劣化曲线中有时示出具有极大值的形状,即具有随着时间推移亮度上升的部分的形状。呈现该劣化举动的发光器件可以利用该亮度上升使其与驱动初期的急剧劣化(即,所谓的初始劣化)相抵,由此可以实现初始劣化小且具有非常良好的驱动寿命的发光器件。这种发光器件被称为Recombination-Site Tailoring Injection元件(ReSTI元件)。
具有上述结构的空穴注入层包含HOMO能级深的空穴传输材料,所以被感应的空穴容易注入到空穴传输层及发光层中。因此,在驱动的初始阶段,空穴的一小部分容易穿过发光层而到达电子传输层。
在此,在具有包含电子传输材料和碱金属、碱土金属、碱金属或碱土金属的化合物或配合物的电子传输层的发光器件中观察到在使该发光器件连续点亮时电子传输层的电子注入·传输性提高的现象。另一方面,如上所述,在空穴注入层中空穴的感应适当地受到抑制,因此不能将多量的空穴供应到电子传输层。其结果是,能够到达电子传输层的空穴随着时间推移减少,且空穴在发光层内与电子复合的概率增高。也就是说,在连续点亮时,在发光层内更容易产生复合的载流子平衡的迁移产生。由于该迁移,可以得到劣化曲线具有随着时间推移亮度上升的部分的初始劣化受到抑制的发光器件。
具有上述结构的本发明的一个方式的发光器件可以为寿命非常优良的发光器件。尤其是,可以大幅度地延长初始亮度的95%(LT95)左右的劣化极小的区域的寿命。再者,作为电子传输材料使用包括具有传输电子的功能的第一骨架、具有接收空穴的功能的第二骨架、单环的缺π电子型杂芳环的第三骨架的化合物的本发明的一个方式的发光器件可以是长期劣化非常小且寿命良好的发光器件。
另外,由于可以抑制初始劣化,由此可以大幅度地减少有机EL器件的巨大缺点之一的烧屏(burn-in)问题以及为了减少该问题在出货前进行的老化(aging)工序所需的时间及劳力。
空穴传输层112也可以是单层(图1A),优选包括第一空穴传输层112-1及第二空穴传输层112-2(图1B)。此外,还可以包括多个空穴传输层。
空穴传输层112可以使用空穴传输材料形成。作为用于该空穴传输层112的空穴传输材料,可以举出能够用作上述主体材料的空穴传输材料及能够用作复合材料的具有空穴传输性的有机化合物。
在将空穴传输层112形成为多个层时,对于分别构成相邻的空穴传输层的各空穴传输材料,用于更靠近发光层113一侧的空穴传输层的材料优选具有较深的HOMO能级,其差异优选为0.2eV以内。
此外,在空穴注入层111由复合材料形成时,用于与空穴注入层111接触的空穴传输层112的空穴传输材料的HOMO能级优选比用于复合材料的具有空穴传输性的有机化合物深,其差异优选为0.2eV以内。
通过使HOMO能级具有上述关系,可以使空穴顺利地注入各层中,由此可以防止驱动电压上升及发光层中空穴过少的状态。
另外,用于空穴传输层112的空穴传输材料优选包含具有传输空穴的功能的骨架。作为这些具有传输空穴的功能的骨架,优选采用有机化合物的HOMO能级不过浅的咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架及蒽骨架,尤其优选采用二苯并呋喃骨架。此外,在空穴注入层111及多个空穴传输层112中的相邻层所包含的具有传输空穴的功能的骨架相同时,顺利地进行空穴注入,所以是优选的。另外,由于相同理由,空穴注入层111及多个空穴传输层112中的相邻层优选使用相同的空穴传输材料。
在层叠多个空穴传输层的情况下,第一空穴传输层112-1位于比第二空穴传输层112-2更靠近阳极101一侧。注意,有时第二空穴传输层112-2还同时具有电子阻挡层的功能。
具有如上那样的结构的本发明的一个方式的发光器件可以为寿命非常优良的发光器件。
实施方式2
接着,对上述发光器件的详细结构和材料的例子进行说明。在本实施方式中以如下结构为例进行说明:在阳极101和阴极102这一对电极间包括由多个层构成的EL层103,并且该EL层103从阳极101一侧包括发光层113以及电子传输层114。注意,作为EL层103所包括的层,可以采用空穴注入层、空穴传输层、电子注入层、载流子阻挡层、激子阻挡层、电荷产生层等各种层结构。
阳极101优选使用功函数大(具体为4.0eV以上)的金属、合金、导电化合物以及它们的混合物等形成。具体地,例如可以举出氧化铟-氧化锡(ITO:Indium Tin Oxide,铟锡氧化物)、包含硅或氧化硅的氧化铟-氧化锡、氧化铟-氧化锌、包含氧化钨及氧化锌的氧化铟(IWZO)等。虽然通常通过溅射法形成这些导电金属氧化物膜,但是也可以应用溶胶-凝胶法等来形成。作为形成方法的例子,可以举出使用对氧化铟添加有1wt%至20wt%的氧化锌的靶材通过溅射法形成氧化铟-氧化锌的方法等。另外,可以使用对氧化铟添加有0.5wt%至5wt%的氧化钨和0.1wt%至1wt%的氧化锌的靶材通过溅射法形成包含氧化钨及氧化锌的氧化铟(IWZO)。另外,可以举出金(Au)、铂(Pt)、镍(Ni)、钨(W)、铬(Cr)、钼(Mo)、铁(Fe)、钴(Co)、铜(Cu)、钯(Pd)或金属材料的氮化物(例如,氮化钛)等。此外,也可以使用石墨烯。注意,虽然在此举出功函数大且典型地用于形成阳极的材料的物质,但是在本发明的一个方式中,作为空穴注入层111使用包含具有空穴传输性的有机化合物和对该有机化合物呈现电子接收性的物质的复合材料,因此可以在选择电极材料时无需顾及功函数。
在本实施方式中,如图1B所示,作为EL层103的叠层结构说明包括空穴注入层111、空穴传输层112(第一空穴传输层112-1、第二空穴传输层112-2)、发光层113、电子传输层114(第一电子传输层114-1、第二电子传输层114-2)及电子注入层115的结构。下面具体地示出构成各层的材料。
因为对空穴注入层111、空穴传输层112(第一空穴传输层112-1、第二空穴传输层112-2)、发光层113及电子传输层114(第一电子传输层114-1、第二电子传输层114-2)在实施方式1中详细地进行了说明,所以省略重复记载。参照实施方式1的记载。
可以在电子传输层114和阴极102之间设置由氟化锂(LiF)、氟化铯(CsF)、氟化钙(CaF2)等的碱金属、碱土金属或它们的化合物形成的电子注入层115。电子注入层115可以使用将碱金属、碱土金属或它们的化合物包含在由具有电子传输性的物质构成的层中的层或电子化合物(electride)。作为电子化合物,例如可以举出对钙和铝的混合氧化物以高浓度添加电子的物质等。
另外,可以在电子传输层114与阴极102之间设置电荷产生层,而代替电子注入层115。电荷产生层是通过施加电位,可以对与该层的阴极一侧接触的层注入空穴,并且对与该层的阳极一侧接触的层注入电子的层。电荷产生层至少包括P型层。P型层优选使用上述构成空穴注入层111的复合材料来形成。另外,P型层也可以将作为构成复合材料的材料包含上述呈现电子接收性的物质的膜和包含空穴传输材料的膜层叠来形成。通过对P型层施加电位,电子和空穴分别注入到电子传输层114和阴极102,使得发光器件工作。
另外,电荷产生层除了包括P型层之外,优选还包括电子中继层及电子注入缓冲层中的任一个或两个。
电子中继层至少包含具有电子传输性的物质,并且能够防止电子注入缓冲层和P型层的相互作用,并顺利地传递电子。优选将电子中继层所包含的具有电子传输性的物质的LUMO能级设定在P型层中的电子接收性物质的LUMO能级与电子传输层114中的接触于电荷产生层的层所包含的物质的LUMO能级之间。具体而言,电子中继层中的具有电子传输性的物质的LUMO能级优选为-5.0eV以上,更优选为-5.0eV以上且-3.0eV以下。另外,作为电子中继层中的具有电子传输性的物质,优选使用酞菁类材料或具有金属-氧键合和芳香配体的金属配合物。
电子注入缓冲层可以使用碱金属、碱土金属、稀土金属以及这些物质的化合物(碱金属化合物(包括氧化锂等氧化物、卤化物、碳酸锂或碳酸铯等碳酸盐)、碱土金属化合物(包括氧化物、卤化物、碳酸盐)或稀土金属的化合物(包括氧化物、卤化物、碳酸盐))等电子注入性高的物质。
另外,在电子注入缓冲层包含具有电子传输性的物质及电子供体性物质的情况下,作为电子供体性物质,除了碱金属、碱土金属、稀土金属和这些物质的化合物(碱金属化合物(包括氧化锂等氧化物、卤化物、碳酸锂或碳酸铯等碳酸盐)、碱土金属化合物(包括氧化物、卤化物、碳酸盐)或稀土金属的化合物(包括氧化物、卤化物、碳酸盐))以外,还可以使用四硫并四苯(tetrathianaphthacene)(简称:TTN)、二茂镍、十甲基二茂镍等有机化合物。另外,作为具有电子传输性的物质,可以使用与上面所说明的用于电子传输层114的材料同样的材料形成。
作为形成阴极102的物质,可以使用功函数小(具体为3.8eV以下)的金属、合金、导电化合物以及它们的混合物等。作为这种阴极材料的具体例子,可以举出锂(Li)或铯(Cs)等碱金属、镁(Mg)、钙(Ca)或者锶(Sr)等的属于元素周期表中的第1族或第2族的元素、包含它们的合金(MgAg、AlLi)、铕(Eu)、镱(Yb)等稀土金属以及包含它们的合金等。然而,通过在阴极102和电子传输层之间设置电子注入层,可以不顾及功函数的大小而将各种导电材料诸如Al、Ag、ITO、包含硅或氧化硅的氧化铟-氧化锡等用作阴极102。这些导电材料可以通过真空蒸镀法、溅射法等干式法、喷墨法、旋涂法等形成。另外,电极可以通过利用溶胶-凝胶法等湿式法或利用金属材料的膏剂的湿式法形成。
另外,作为EL层103的形成方法,不论干式法或湿式法,都可以使用各种方法。例如,也可以使用真空蒸镀法、凹版印刷法、照相凹版印刷法、丝网印刷法、喷墨法或旋涂法等。
另外,也可以通过使用不同成膜方法形成上面所述的各电极或各层。
注意,设置在阳极101与阴极102之间的层的结构不局限于上述结构。但是,优选采用在离阳极101及阴极102远的部分设置空穴与电子复合的发光区域的结构,以便抑制由于发光区域与用于电极或载流子注入层的金属邻接而发生的猝灭。
另外,为了抑制从在发光层中产生的激子的能量转移,接触于发光层113的如空穴传输层和电子传输层,尤其是靠近发光层113中的复合区域的载流子传输层优选使用如下物质构成,即具有比构成发光层的发光材料或者包含在发光层中的发光材料大的带隙的物质。
接着,参照图1C说明具有层叠有多个发光单元的结构的发光器件(以下也称为叠层型元件或串联元件)的方式。该发光器件是在阳极和阴极之间具有多个发光单元的发光器件。一个发光单元具有与图1A或图1B所示的EL层103大致相同的结构。就是说,可以说,图1C所示的发光器件是具有多个发光单元的发光器件,而图1A、图1B所示的发光器件是具有一个发光单元的发光器件。
在图1C中,在阳极501和阴极502之间层叠有第一发光单元511和第二发光单元512,并且在第一发光单元511和第二发光单元512之间设置有电荷产生层513。阳极501和阴极502分别相当于图1A中的阳极101和阴极102,并且可以应用与图1A的说明同样的材料。另外,第一发光单元511和第二发光单元512可以具有相同结构,也可以具有不同结构。
电荷产生层513具有在对阳极501及阴极502施加电压时,对一个发光单元注入电子并对另一个发光单元注入空穴的功能。就是说,在图1C中,在以阳极的电位比阴极的电位高的方式施加电压的情况下,电荷产生层513只要是对第一发光单元511注入电子并对第二发光单元512注入空穴的层即可。
电荷产生层513优选具有上述电荷产生层同样的结构。因为有机化合物与金属氧化物的复合材料具有良好的载流子注入性及载流子传输性,从而能够实现低电压驱动及低电流驱动。注意,在发光单元的阳极一侧的面接触于电荷产生层513的情况下,电荷产生层513可以具有发光单元的空穴注入层的功能,所以在发光单元中也可以不设置空穴注入层。
另外,当在电荷产生层513中设置电子注入缓冲层时,因为该电子注入缓冲层具有阳极一侧的发光单元中的电子注入层的功能,所以在阳极一侧的发光单元中不一定必须设置电子注入层。
虽然在图1C中说明了具有两个发光单元的发光器件,但是可以同样地应用层叠三个以上的发光单元的发光器件。如根据本实施方式的发光器件,通过在一对电极之间将多个发光单元使用电荷产生层513隔开并配置,该元件可以在保持低电流密度的同时实现高亮度发光,并且能够实现寿命长的元件。另外,可以实现能够进行低电压驱动且低功耗的发光装置。
另外,通过使各发光单元的发光颜色不同,可以以整个发光器件得到所希望的颜色的发光。例如,通过在具有两个发光单元的发光器件中获得来自第一发光单元的红色和绿色的发光颜色以及来自第二发光单元的蓝色的发光颜色,可以得到在整个发光器件中进行白色发光的发光器件。另外,作为层叠三个以上的发光单元的发光器件的结构,例如,可以采用第一发光单元包括第一蓝色发光层,第二发光单元包括黄色或黄绿色发光层及红色发光层,第三发光单元包括第二蓝色发光层的串联型装置。该串联型装置与上述发光器件同样可以得到白色发光。
另外,上述EL层103、第一发光单元511、第二发光单元512及电荷产生层等各层及电极例如可以利用蒸镀法(包括真空蒸镀法)、液滴喷射法(也称为喷墨法)、涂敷法、凹版印刷法等方法形成。此外,其也可以包含低分子材料、中分子材料(包括低聚物、树枝状聚合物)或者高分子材料。
实施方式3
在本实施方式中,对使用实施方式1及实施方式2所示的发光器件的发光装置进行说明。
在本实施方式中,参照图2A和图2B对使用实施方式1及实施方式2所示的发光器件而制造的发光装置进行说明。注意,图2A是示出发光装置的俯视图,并且图2B是沿图2A中的线A-B及线C-D切断的截面图。该发光装置作为用来控制发光器件的发光的单元包括由虚线表示的驱动电路部(源极线驱动电路)601、像素部602、驱动电路部(栅极线驱动电路)603。另外,附图标记604是密封衬底,附图标记605是密封材料,由密封材料605围绕的内侧是空间607。
注意,引导布线608是用来传送输入到源极线驱动电路601及栅极线驱动电路603的信号的布线,并且从用作外部输入端子的FPC(柔性印刷电路)609接收视频信号、时钟信号、起始信号、复位信号等。注意,虽然在此只图示出FPC,但是该FPC还可以安装有印刷线路板(PWB)。本说明书中的发光装置不仅包括发光装置主体,而且还包括安装有FPC或PWB的发光装置。
下面,参照图2B说明截面结构。虽然在元件衬底610上形成有驱动电路部及像素部,但是在此示出作为驱动电路部的源极线驱动电路601和像素部602中的一个像素。
除了可以使用由玻璃、石英、有机树脂、金属、合金、半导体等构成的衬底以外,还可以使用由FRP(Fiber Reinforced Plastics:纤维增强塑料)、PVF(聚氟乙烯)、聚酯或丙烯酸树脂等构成的塑料衬底,而制造元件衬底610。
对用于像素或驱动电路的晶体管的结构没有特别的限制。例如,可以采用反交错型晶体管或交错型晶体管。另外,顶栅型晶体管或底栅型晶体管都可以被使用。对用于晶体管的半导体材料没有特别的限制,例如可以使用硅、锗、碳化硅、氮化镓等。或者可以使用In-Ga-Zn类金属氧化物等的包含铟、镓、锌中的至少一个的氧化物半导体。
对用于晶体管的半导体材料的结晶性也没有特别的限制,可以使用非晶半导体或结晶半导体(微晶半导体、多晶半导体、单晶半导体或其一部分具有结晶区域的半导体)。当使用结晶半导体时可以抑制晶体管的特性劣化,所以是优选的。
在此,氧化物半导体优选用于设置在上述像素或驱动电路中的晶体管和用于在后面说明的触摸传感器等的晶体管等半导体装置。尤其优选使用其带隙比硅宽的氧化物半导体。通过使用带隙比硅宽的氧化物半导体,可以降低晶体管的关态电流(off-statecurrent)。
上述氧化物半导体优选至少包含铟(In)或锌(Zn)。另外,上述氧化物半导体更优选为包含以In-M-Zn类氧化物(M为Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce或Hf等金属)表示的氧化物的氧化物半导体。
在此,以下对能够用于本发明的一个方式的氧化物半导体进行说明。
氧化物半导体被分为单晶氧化物半导体和非单晶氧化物半导体。作为非单晶氧化物半导体,例如可以举出CAAC-OS(c-axisalignedcrystallineoxidesemiconductor)、多晶氧化物半导体、nc-OS(nano crystallineoxidesemiconductor)、a-like OS(amorphous-likeoxidesemiconductor)及非晶氧化物半导体等。
CAAC-OS具有c轴取向性,其多个纳米晶在a-b面方向上连结而结晶结构具有畸变。畸变是指在多个纳米晶连结的区域中晶格排列一致的区域与其他晶格排列一致的区域之间的晶格排列的方向变化的部分。
纳米晶基本上为六角形,但是不局限于正六角形,有时为非正六角形。另外,纳米晶有时在畸变中具有五角形或七角形等晶格排列。另外,在CAAC-OS中,即使在畸变附近也观察不到明确的晶界(也称为grain boundary)。即,可知由于晶格排列畸变,可抑制晶界的形成。这是由于CAAC-OS因为a-b面方向上的氧原子排列的低密度或因金属元素被取代而使原子间的键合距离产生变化等而能够包容畸变。
CAAC-OS有具有层状结晶结构(也称为层状结构)的倾向,在该层状结晶结构中层叠有包含铟及氧的层(下面称为In层)和包含元素M、锌及氧的层(下面称为(M,Zn)层)。另外,铟和元素M彼此可以取代,在用铟取代(M,Zn)层中的元素M的情况下,也可以将该层表示为(In,M,Zn)层。另外,在用元素M取代In层中的铟的情况下,也可以将该层表示为(In,M)层。
CAAC-OS是结晶性高的氧化物半导体。另一方面,在CAAC-OS中不容易观察明确的晶界,因此不容易发生起因于晶界的电子迁移率的下降。另外,氧化物半导体的结晶性有时因杂质的进入或缺陷的生成等而降低,因此可以说CAAC-OS是杂质或缺陷(氧空位(也称为VO(oxygen vacancy))等)少的氧化物半导体。因此,具有CAAC-OS的氧化物半导体的物理性质稳定。因此,包含CAAC-OS的氧化物半导体具有高耐热性及高可靠性。
在nc-OS中,微小的区域(例如1nm以上且10nm以下的区域,特别是1nm以上且3nm以下的区域)中的原子排列具有周期性。另外,nc-OS在不同的纳米晶之间观察不到结晶取向的规律性。因此,在膜整体中观察不到取向性。所以,有时nc-OS在某些分析方法中与a-likeOS或非晶氧化物半导体没有差别。
另外,在包含铟、镓和锌的氧化物半导体的一种的铟-镓-锌氧化物(以下,IGZO)有时在由上述纳米晶构成时具有稳定的结构。尤其是,IGZO有在大气中不容易进行晶体生长的倾向,所以有时与由大结晶(在此,几mm的结晶或者几cm的结晶)形成时相比由小结晶(例如,上述纳米结晶)形成时在结构上稳定。
a-likeOS是具有介于nc-OS与非晶氧化物半导体之间的结构的氧化物半导体。a-like OS包含空洞或低密度区域。也就是说,a-like OS的结晶性比nc-OS及CAAC-OS的结晶性低。
氧化物半导体具有各种结构及各种特性。本发明的一个方式的氧化物半导体也可以包括非晶氧化物半导体、多晶氧化物半导体、a-like OS、nc-OS、CAAC-OS中的两种以上。
另外,除了上述氧化物半导体之外还可以使用CAC(Cloud-AlignedComposite)-OS。
另外,CAC-OS在材料的一部分中具有导电性的功能,在材料的另一部分中具有绝缘性的功能,作为材料的整体具有半导体的功能。此外,在将CAC-OS用于晶体管的活性层的情况下,导电性的功能是使被用作载流子的电子(或空穴)流过的功能,绝缘性的功能是不使被用作载流子的电子流过的功能。通过导电性的功能和绝缘性的功能的互补作用,可以使CAC-OS具有开关功能(开启/关闭的功能)。通过在CAC-OS中使各功能分离,可以最大限度地提高各功能。
另外,CAC-OS具有导电性区域及绝缘性区域。导电性区域具有上述导电性的功能,绝缘性区域具有上述绝缘性的功能。此外,在材料中,导电性区域和绝缘性区域有时以纳米粒子级分离。另外,导电性区域和绝缘性区域有时在材料中不均匀地分布。此外,有时观察到其边缘模糊而以云状连接的导电性区域。
此外,在CAC-OS中,导电性区域和绝缘性区域有时以0.5nm以上且10nm以下,优选为0.5nm以上且3nm以下的尺寸分散在材料中。
此外,CAC-OS由具有不同带隙的成分构成。例如,CAC-OS由具有起因于绝缘性区域的宽隙的成分及具有起因于导电性区域的窄隙的成分构成。在该结构中,当使载流子流过时,载流子主要在具有窄隙的成分中流过。此外,具有窄隙的成分与具有宽隙的成分互补作用,与具有窄隙的成分联动地在具有宽隙的成分中载流子流过。因此,在将上述CAC-OS用于晶体管的沟道形成区域时,在晶体管的导通状态中可以得到高电流驱动力,即大通态电流及高场效应迁移率。
也就是说,也可以将CAC-OS称为基质复合材料(matrix composite)或金属基质复合材料(metal matrix composite)。
通过作为半导体层使用上述氧化物半导体材料,可以实现电特性的变动被抑制的可靠性高的晶体管。
另外,由于具有上述半导体层的晶体管的关态电流较低,因此能够长期间保持经过晶体管而储存于电容器中的电荷。通过将这种晶体管用于像素,能够在保持各显示区域所显示的图像的灰度的状态下,停止驱动电路。其结果是,可以实现功耗极低的电子设备。
为了实现晶体管的特性稳定化等,优选设置基底膜。作为基底膜,可以使用氧化硅膜、氮化硅膜、氧氮化硅膜、氮氧化硅膜等无机绝缘膜并以单层或叠层制造。基底膜可以通过溅射法、CVD(Chemical Vapor Deposition:化学气相沉积)法(等离子体CVD法、热CVD法、MOCVD(Metal Organic Chemical Vapor Deposition:有机金属化学气相沉积)法等)或ALD(Atomic Layer Deposition:原子层沉积)法、涂敷法、印刷法等形成。注意,基底膜若不需要则也可以不设置。
注意,FET623示出形成在驱动电路部601中的晶体管的一个。另外,驱动电路也可以利用各种CMOS电路、PMOS电路或NMOS电路形成。另外,虽然在本实施方式中示出在衬底上形成有驱动电路的驱动器一体型,但是不一定必须采用该结构,驱动电路也可以形成在外部,而不形成在衬底上。
另外,像素部602由多个像素形成,该多个像素都包括开关FET611、电流控制FET612以及与该电流控制FET612的漏极电连接的阳极613,但是并不局限于此,也可以采用组合三个以上的FET和电容器的像素部。
注意,形成绝缘物614来覆盖阳极613的端部。在此,可以使用正型感光丙烯酸形成绝缘物614。
另外,将绝缘物614的上端部或下端部形成为具有曲率的曲面,以获得后面形成的EL层等的良好的覆盖性。例如,在使用正型感光丙烯酸树脂作为绝缘物614的材料的情况下,优选只使绝缘物614的上端部包括具有曲率半径(0.2μm至3μm)的曲面。另外,作为绝缘物614,可以使用负型感光树脂或者正型感光树脂。
在阳极613上形成有EL层616及阴极617。在此,优选使用具有高功函数的材料作为用于阳极613的材料。例如,除了可以使用诸如ITO膜、包含硅的铟锡氧化物膜、包含2wt%至20wt%的氧化锌的氧化铟膜、氮化钛膜、铬膜、钨膜、Zn膜、Pt膜等的单层膜以外,还可以使用由氮化钛膜和以铝为主要成分的膜构成的叠层膜以及由氮化钛膜、以铝为主要成分的膜和氮化钛膜构成的三层结构等。注意,如果这里采用叠层结构,由于布线的电阻值较低,因此可以得到良好的欧姆接触,另外,其可用作阳极。
另外,EL层616通过使用蒸镀掩模的蒸镀法、喷墨法、旋涂法等各种方法形成。EL层616包括实施方式1及实施方式2所示的结构。另外,作为构成EL层616的其他材料,也可以使用低分子化合物或高分子化合物(包含低聚物、树枝状聚合物)。
另外,作为用于形成在EL层616上的阴极617的材料,优选使用具有功函数小的材料(Al、Mg、Li、Ca、或它们的合金或化合物(MgAg、MgIn、AlLi等)等)。注意,当使产生在EL层616中的光透过阴极617时,优选使用由膜厚度减薄了的金属薄膜和透明导电膜(ITO、包含2wt%至20wt%的氧化锌的氧化铟、包含硅的铟锡氧化物、氧化锌(ZnO)等)构成的叠层作为阴极617。
另外,发光器件由阳极613、EL层616、阴极617形成。该发光器件是实施方式1及实施方式2所示的发光器件。另外,像素部由多个发光器件构成,本实施方式的发光装置也可以包括实施方式1及实施方式2所示的发光器件和具有其他结构的发光器件的双方。
另外,通过使用密封材料605将密封衬底604贴合到元件衬底610,将发光器件618设置在由元件衬底610、密封衬底604以及密封材料605围绕的空间607中。注意,空间607中填充有填料,作为该填料,可以使用惰性气体(氮或氩等),还可以使用密封剂。通过在密封衬底中形成凹部且在其中设置干燥剂,可以抑制水分所导致的劣化,所以是优选的。
另外,优选使用环氧类树脂或玻璃粉作为密封材料605。另外,这些材料优选为尽可能地不使水或氧透过的材料。另外,作为用于密封衬底604的材料,除了可以使用玻璃衬底或石英衬底以外,还可以使用由FRP(Fiber Reinforced Plastics;玻璃纤维增强塑料)、PVF(聚氟乙烯)、聚酯、丙烯酸树脂等构成的塑料衬底。
虽然在图2B中没有示出,但是也可以在阴极上设置保护膜。保护膜可以由有机树脂膜或无机绝缘膜形成。另外,也可以以覆盖密封材料605的露出部分的方式形成保护膜。另外,保护膜可以覆盖一对衬底的表面及侧面、密封层、绝缘层等的露出侧面而设置。
作为保护膜可以使用不容易透过水等杂质的材料。因此,可以能够高效地抑制水等杂质从外部扩散到内部。
作为构成保护膜的材料,可以使用氧化物、氮化物、氟化物、硫化物、三元化合物、金属或聚合物等。例如,该材料可以含有氧化铝、氧化铪、硅酸铪、氧化镧、氧化硅、钛酸锶、氧化钽、氧化钛、氧化锌、氧化铌、氧化锆、氧化锡、氧化钇、氧化铈、氧化钪、氧化铒、氧化钒、氧化铟、氮化铝、氮化铪、氮化硅、氮化钽、氮化钛、氮化铌、氮化钼、氮化锆、氮化镓、含有钛及铝的氮化物、含有钛及铝的氧化物、含有铝及锌的氧化物、含有锰及锌的硫化物、含有铈及锶的硫化物、含有铒及铝的氧化物、含有钇及锆的氧化物等。
保护膜优选通过台阶覆盖性(step coverage)良好的成膜方法来形成。这种方法中之一个是原子层沉积(ALD:Atomic Layer Deposition)法。优选将可以通过ALD法形成的材料用于保护膜。通过ALD法可以形成致密且裂缝或针孔等缺陷被减少或具备均匀的厚度的保护膜。另外,可以减少当形成保护膜时加工部材受到的损伤。
例如,通过ALD法可以将均匀且缺陷少的保护膜形成在具有复杂的凹凸形状的表面或触摸屏的顶面、侧面以及背面上。
如上所述,可以得到使用实施方式1及实施方式2所示的发光器件制造的发光装置。
因为本实施方式中的发光装置使用实施方式1及实施方式2所示的发光器件,所以可以得到具有优良特性的发光装置。具体而言,实施方式1及实施方式2所示的发光器件是寿命长的发光器件,从而可以实现可靠性良好的发光装置。另外,使用实施方式1及实施方式2所示的发光器件的发光装置的发光效率良好,由此可以实现低功耗的发光装置。
图3A和图3B示出通过形成呈现白色发光的发光器件设置着色层(滤色片)等来实现全彩色化的发光装置的例子。图3A示出衬底1001、基底绝缘膜1002、栅极绝缘膜1003、栅电极1006、1007、1008、第一层间绝缘膜1020、第二层间绝缘膜1021、周边部1042、像素部1040、驱动电路部1041、发光器件的阳极1024W、1024R、1024G、1024B、分隔壁1025、EL层1028、发光器件的阴极1029、密封衬底1031、密封材料1032等。
另外,在图3A中,将着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)设置在透明基材1033上。另外,还可以设置黑矩阵1035。对设置有着色层及黑矩阵的透明基材1033进行对准而将其固定到衬底1001上。另外,着色层及黑矩阵1035被保护层1036覆盖。另外,图3A示出具有光不透过着色层而透射到外部的发光层及光透过各颜色的着色层而透射到外部的发光层,不透过着色层的光成为白色光且透过着色层的光成为红色光、绿色光、蓝色光,因此能够以四个颜色的像素呈现图像。
图3B示出将着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)形成在栅极绝缘膜1003和第一层间绝缘膜1020之间的例子。如上述那样,也可以将着色层设置在衬底1001和密封衬底1031之间。
另外,在以上说明的发光装置中,虽然说明了具有从形成有FET的衬底1001一侧取出光的结构(底部发射型)的发光装置,但是也可以采用具有从密封衬底1031一侧取出发光的结构(顶部发射型)的发光装置。图4示出顶部发射型发光装置的截面图。在此情况下,衬底1001可以使用不使光透过的衬底。到制造用来使FET与发光器件的阳极连接的连接电极为止的工序与底部发射型发光装置同样地进行。然后,以覆盖电极1022的方式形成第三层间绝缘膜1037。该绝缘膜也可以具有平坦化的功能。第三层间绝缘膜1037可以使用与第二层间绝缘膜相同的材料或其他公知材料形成。
虽然在此发光器件的阳极1024W、1024R、1024G、1024B都是阳极,但是也可以形成为阴极。另外,在采用如图4所示那样的顶部发射型发光装置的情况下,阳极优选为反射电极。EL层1028的结构采用实施方式1及实施方式2所示的EL层103的结构,并且采用能够获得白色发光的元件结构。
在采用图4所示的顶部发射结构的情况下,可以使用设置有着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)的密封衬底1031进行密封。密封衬底1031也可以设置有位于像素和像素之间的黑矩阵1035。着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)、黑矩阵1035也可以被保护层1036覆盖。另外,作为密封衬底1031,使用具有透光性的衬底。另外,虽然在此示出了以红色、绿色、蓝色、白色的四个颜色进行全彩色显示的例子,但是并不局限于此,也可以以红色、黄色、绿色、蓝色的四个颜色或红色、绿色、蓝色的三个颜色进行全彩色显示。
在顶部发射型的发光装置中,可以优选地适用微腔结构。将反射电极用作阳极且将透反式电极用作阴极,由此可以得到具有微腔结构的发光器件。在反射电极与透反式电极之间至少含有EL层,并且至少含有成为发光区域的发光层。
注意,反射电极是其可见光反射率为40%至100%,优选为70%至100%,并且其电阻率为1×10-2Ωcm以下的膜。另外,透反式电极是其可见光反射率为20%至80%,优选为40%至70%,并且其电阻率为1×10-2Ωcm以下的膜。
从EL层所包含的发光层射出的光被反射电极和透反式电极反射,并且谐振。
在该发光器件中,通过改变透明导电膜、上述复合材料或载流子传输材料等的厚度而可以改变反射电极与透反式电极之间的光程。由此,可以在反射电极与透反式电极之间加强谐振的波长的光且使不谐振的波长的光衰减。
注意,被反射电极反射回来的光(第一反射光)会给从发光层直接入射到透反式电极的光(第一入射光)带来很大的干涉,因此优选将反射电极与发光层的光程调节为(2n-1)λ/4(注意,n为1以上的自然数,λ为要放大的光的波长)。通过调节该光程,可以使第一反射光与第一入射光的相位一致,由此可以进一步放大从发光层发射的光。
另外,在上述结构中,EL层可以含有多个发光层,也可以只含有一个发光层。例如,也可以采用如下结构:组合上述串联型发光器件的结构,在一个发光器件中夹着电荷产生层设置多个EL层,在每个EL层中形成一个或多个发光层。
通过采用微腔结构,可以加强指定波长的正面方向上的发光强度,由此可以实现低功耗化。注意,在为使用红色、黄色、绿色以及蓝色的四个颜色的子像素显示图像的发光装置的情况下,因为可以获得由于黄色发光的亮度提高效果,而且可以在所有的子像素中采用适合各颜色的波长的微腔结构,所以能够实现具有良好的特性的发光装置。
因为本实施方式中的发光装置使用实施方式1及实施方式2所示的发光器件,所以可以得到具有优良特性的发光装置。具体而言,实施方式1及实施方式2所示的发光器件是寿命长的发光器件,从而可以实现可靠性良好的发光装置。另外,使用实施方式1及实施方式2所示的发光器件的发光装置的发光效率良好,由此可以实现低功耗的发光装置。
实施方式4
在本实施方式中,参照图5A和图5B对将实施方式1及实施方式2所示的发光器件用于照明装置的例子进行说明。图5B是照明装置的俯视图,图5A是沿着图5B中的线e-f切断的截面图。
在本实施方式的照明装置中,在用作支撑体的具有透光性的衬底400上形成有阳极401。阳极401相当于实施方式2中的阳极101。当从阳极401一侧取出光时,阳极401使用具有透光性的材料形成。
在衬底400上形成用来对阴极404供应电压的焊盘412。
在阳极401上形成有EL层403。EL层403相当于实施方式1及实施方式2中的EL层103的结构或组合发光单元511、发光单元512以及电荷产生层513的结构等。注意,作为它们的结构,参照各记载。
以覆盖EL层403的方式形成阴极404。阴极404相当于实施方式2中的阴极102。当从阳极401一侧取出光时,阴极404使用反射率高的材料形成。通过使阴极404与焊盘412连接,将电压供应到阴极404。
如上所述,本实施方式所示的照明装置具备包括阳极401、EL层403以及阴极404的发光器件。由于该发光器件是发光效率高的发光器件,所以本实施方式的照明装置可以提供低功耗的照明装置。
使用密封材料405、406将形成有具有上述结构的发光器件的衬底400和密封衬底407固定来进行密封,由此制造照明装置。可以仅使用密封材料405和406中的一个。另外,也可以使内侧的密封材料406(在图5B中未图示)与干燥剂混合,由此可以吸收水分而提高可靠性。
另外,通过以延伸到密封材料405、406的外部的方式设置焊盘412和阳极401的一部分,可以将其用作外部输入端子。另外,也可以在外部输入端子上设置安装有转换器等的IC芯片420等。
以上,本实施方式所记载的照明装置在EL元件中使用实施方式1及实施方式2所示的发光器件,可以实现可靠性良好的发光装置。另外,可以实现低功耗的发光装置。
实施方式5
在本实施方式中,对在其一部分包括实施方式1及实施方式2所示的发光器件的电子设备的例子进行说明。实施方式1及实施方式2所示的发光器件是寿命良好且可靠性良好的发光器件。其结果是,本实施方式所记载的电子设备可以实现包括可靠性良好的发光部的电子设备。
作为采用上述发光器件的电子设备,例如可以举出电视装置(也称为电视机或电视接收机)、用于计算机等的显示器、数码相机、数码摄像机、数码相框、移动电话机(也称为移动电话、移动电话装置)、便携式游戏机、便携式信息终端、声音再现装置、弹珠机等大型游戏机等。以下,示出这些电子设备的具体例子。
图6A示出电视装置的一个例子。在电视装置中,外壳7101中组装有显示部7103。另外,在此示出利用支架7105支撑外壳7101的结构。可以利用显示部7103显示图像,并且将实施方式1及实施方式2所示的发光器件排列为矩阵状而构成显示部7103。
可以通过利用外壳7101所具备的操作开关或另行提供的遥控操作机7110进行电视装置的操作。通过利用遥控操作机7110所具备的操作键7109,可以控制频道及音量,由此可以控制显示在显示部7103中的图像。另外,也可以采用在遥控操作机7110中设置用来显示从该遥控操作机7110输出的信息的显示部7107的结构。
另外,电视装置采用具备接收机、调制解调器等的结构。可以通过接收机接收一般的电视广播。再者,通过调制解调器连接到有线或无线方式的通信网络,能够进行单向(从发送者到接收者)或双向(发送者和接收者之间或接收者之间等)的信息通信。
图6B1示出计算机,该计算机包括主体7201、外壳7202、显示部7203、键盘7204、外部连接端口7205、指向装置7206等。另外,该计算机通过将实施方式1及实施方式2所示的发光器件排列为矩阵状并用于显示部7203而制造。图6B1中的计算机也可以为如图6B2所示的方式。图6B2所示的计算机设置有第二显示部7210代替键盘7204及指向装置7206。第二显示部7210是触摸屏,通过利用指头或专用笔操作显示在第二显示部7210上的输入用显示,能够进行输入。另外,第二显示部7210不仅能够显示输入用显示,而且可以显示其他图像。另外,显示部7203也可以是触摸屏。因为两个屏面通过铰链部连接,所以可以防止当收纳或搬运时发生问题如屏面受伤、损坏等。
图6C示出便携式终端的一个例子。便携式终端具备组装在外壳7401中的显示部7402、操作按钮7403、外部连接端口7404、扬声器7405、麦克风7406等。另外,便携式终端包括将实施方式1及实施方式2所示的发光器件排列为矩阵状而制造的显示部7402。
图6C所示的便携式终端也可以具有用指头等触摸显示部7402来输入信息的结构。在此情况下,能够用指头等触摸显示部7402来进行打电话或编写电子邮件等的操作。
显示部7402主要有三种屏面模式。第一是以图像的显示为主的显示模式,第二是以文字等的信息的输入为主的输入模式,第三是混合显示模式和输入模式的两个模式的显示输入模式。
例如,在打电话或编写电子邮件的情况下,可以采用将显示部7402主要用于输入文字的文字输入模式而输入在屏面上显示的文字。在此情况下,优选在显示部7402的屏面的大多部分中显示键盘或号码按钮。
另外,通过在便携式终端内部设置具有陀螺仪和加速度传感器等检测倾斜度的传感器的检测装置,可以判断便携式终端的方向(纵或横)而自动进行显示部7402的屏面显示的切换。
另外,通过触摸显示部7402或对外壳7401的操作按钮7403进行操作,来进行屏面模式的切换。此外,也可以根据显示在显示部7402上的图像的种类切换屏面模式。例如,当显示在显示部上的图像信号为动态图像的数据时,将屏面模式切换成显示模式,而当该图像信号为文字数据时,将屏面模式切换成输入模式。
另外,当在输入模式下通过检测出显示部7402的光传感器所检测的信号而得知在一定期间内没有显示部7402的触摸操作输入时,也可以进行控制以将屏面模式从输入模式切换成显示模式。
此外,也可以将显示部7402用作图像传感器。例如,通过用手掌或指头触摸显示部7402,来拍摄掌纹、指纹等,能够进行个人识别。另外,通过在显示部中使用发射近红外光的背光源或发射近红外光的感测用光源,也能够拍摄指静脉、手掌静脉等。
另外,本实施方式所示的结构可以与实施方式1至实施方式4所示的结构适当地组合来使用。
如上所述,具备实施方式1及实施方式2所示的发光器件的发光装置的应用范围极为广泛,而能够将该发光装置用于各种领域的电子设备。通过使用实施方式1及实施方式2所示的发光器件,可以得到可靠性高的电子设备。
图7A为示出扫地机器人的一个例子的示意图。
扫地机器人5100包括顶面上的显示器5101及侧面上的多个照相机5102、刷子5103及操作按钮5104。虽然未图示,但是扫地机器人5100的底面设置有轮胎和吸入口等。此外,扫地机器人5100还包括红外线传感器、超音波传感器、加速度传感器、压电传感器、光传感器、陀螺仪传感器等各种传感器。另外,扫地机器人5100包括无线通信单元。
扫地机器人5100可以自动行走,检测垃圾5120,可以从底面的吸入口吸引垃圾。
另外,扫地机器人5100对照相机5102所拍摄的图像进行分析,可以判断墙壁、家具或台阶等障碍物的有无。另外,在通过图像分析检测布线等可能会绕在刷子5103上的物体的情况下,可以停止刷子5103的旋转。
可以在显示器5101上显示电池的剩余电量和所吸引的垃圾的量等。可以在显示器5101上显示扫地机器人5100的行走路径。另外,显示器5101可以是触摸面板,可以将操作按钮5104显示在显示器5101上。
扫地机器人5100可以与智能手机等便携式电子设备5140互相通信。照相机5102所拍摄的图像可以显示在便携式电子设备5140上。因此,扫地机器人5100的拥有者在出门时也可以知道房间的情况。另外,可以使用智能手机等便携式电子设备确认显示器5101的显示内容。
可以将本发明的一个方式的发光装置用于显示器5101。
图7B所示的机器人2100包括运算装置2110、照度传感器2101、麦克风2102、上部照相机2103、扬声器2104、显示器2105、下部照相机2106、障碍物传感器2107及移动机构2108。
麦克风2102具有检测使用者的声音及周围的声音等的功能。另外,扬声器2104具有发出声音的功能。机器人2100可以使用麦克风2102及扬声器2104与使用者交流。
显示器2105具有显示各种信息的功能。机器人2100可以将使用者所希望的信息显示在显示器2105上。显示器2105可以安装有触摸面板。显示器2105可以是可拆卸的信息终端,通过将该信息终端设置在机器人2100的所定位置,可以进行充电及数据的收发。
上部照相机2103及下部照相机2106具有对机器人2100的周围环境进行摄像的功能。另外,障碍物传感器2107可以检测机器人2100使用移动机构2108移动时的前方的障碍物的有无。机器人2100可以使用上部照相机2103、下部照相机2106及障碍物传感器2107认知周囲环境而安全地移动。可以将本发明的一个方式的发光装置用于显示器2105。
图7C是示出护目镜型显示器的一个例子的图。护目镜型显示器例如包括外壳5000、显示部5001、扬声器5003、LED灯5004、连接端子5006、传感器5007(它具有测定如下因素的功能:力、位移、位置、速度、加速度、角速度、转速、距离、光、液、磁、温度、化学物质、声音、时间、硬度、电场、电流、电压、电力、辐射线、流量、湿度、倾斜度、振动、气味或红外线)、麦克风5008、显示部5002、支撑部5012、耳机5013等。
可以将本发明的一个方式的发光装置用于显示部5001及显示部5002。
图8示出将实施方式1及实施方式2所示的发光器件用于作为照明装置的台灯的例子。图8所示的台灯包括外壳2001和光源2002,并且作为光源2002使用实施方式3所记载的照明装置。
图9示出将实施方式1及实施方式2所示的发光器件用于室内的照明装置3001的例子。实施方式1及实施方式2所示的发光器件是可靠性高的发光器件,从而可以实现可靠性良好的照明装置。另外,因为实施方式1及实施方式2所示的发光器件能够实现大面积化,所以能够用于大面积的照明装置。另外,因为实施方式1及实施方式2所示的发光器件的厚度薄,所以能够制造实现薄型化的照明装置。
还可以将实施方式1及实施方式2所示的发光器件安装在汽车的挡风玻璃或仪表盘上。图10示出将实施方式1及实施方式2所示的发光器件用于汽车的挡风玻璃或仪表盘的一个方式。显示区域5200至显示区域5203是使用实施方式1及实施方式2所示的发光器件设置的显示区域。
显示区域5200和显示区域5201是设置在汽车的挡风玻璃上的安装有实施方式1及实施方式2所示的发光器件的显示装置。通过使用具有透光性的电极制造实施方式1及实施方式2所示的阳极和阴极,可以得到能看到对面的景色的所谓的透视式显示装置。若采用透视式显示,即使设置在汽车的挡风玻璃上,也不妨碍视界。另外,在设置用来驱动的晶体管等的情况下,优选使用具有透光性的晶体管,诸如使用有机半导体材料的有机晶体管或使用氧化物半导体的晶体管等。
显示区域5202是设置在立柱部分的安装有实施方式1及实施方式2所示的发光器件的显示装置。通过在显示区域5202上显示来自设置在车厢上的成像单元的图像,可以补充被立柱遮挡的视界。另外,同样地,设置在仪表盘部分上的显示区域5203通过显示来自设置在汽车外侧的成像单元的图像,能够补充被车厢遮挡的视界的死角,而提高安全性。通过显示图像以补充不看到的部分,更自然且简单地确认安全。
显示区域5203还可以通过显示导航信息、速度表、转速表、行车距离、加油量、排档状态、空调的设定等提供各种信息。使用者可以适当地改变显示内容及布置。另外,这些信息也可以显示在显示区域5200至显示区域5202上。另外,也可以将显示区域5200至显示区域5203用作照明装置。
此外,图11A至图11C示出能够折叠的便携式信息终端9310。图11A示出展开状态的便携式信息终端9310。图11B示出从展开状态和折叠状态中的一个状态变为另一个状态的中途的状态的便携式信息终端9310。图11C示出折叠状态的便携式信息终端9310。便携式信息终端9310在折叠状态下可携带性好,在展开状态下因为具有无缝拼接的较大的显示区域所以显示一览性强。
显示面板9311由铰链部9313所连接的三个外壳9315支撑。注意,显示面板9311也可以为安装有触摸传感器(输入装置)的触控面板(输入输出装置)。另外,通过在两个外壳9315之间的铰链部9313处弯折显示面板9311,可以使便携式信息终端9310从展开状态可逆性地变为折叠状态。可以将本发明的一个方式的发光装置用于显示面板9311。
图12A和图12B示出可折叠的便携式信息终端5150。可折叠的便携式信息终端5150包括外壳5151、显示区域5152及弯曲部5153。图12A示出展开状态的便携式信息终端5150。图12B示出折叠状态的便携式信息终端5150。虽然便携式信息终端5150具有较大的显示区域5152,但是通过将便携式信息终端5150折叠,便携式信息终端5150变小而可便携性好。
可以由弯曲部5153将显示区域5152折叠成一半。弯曲部5153由可伸缩的构件和多个支撑构件构成,在折叠时,可伸缩的构件被拉伸,以弯曲部5153具有2mm以上,优选为3mm以上的曲率半径的方式进行折叠。
另外,显示区域5152也可以为安装有触摸传感器(输入装置)的触摸面板(输入/输出装置)。可以将本发明的一个方式的发光装置用于显示区域5152。
实施例1
本实施例示出本发明的一个方式的发光器件的发光器件1及比较用发光器件的对比发光器件1的制造方法及特性。发光器件1在电子传输层中作为包括具有电子传输性的第一骨架、接收空穴的第二骨架、单环的缺π电子型杂芳环的第三骨架的电子传输材料具有2-苯基-3-{4-[10-(3-吡啶基)-9-蒽基]苯基}喹喔啉(简称:PyA1PQ)。另外,对比发光器件使用2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(简称:ZADN)代替PyA1PQ。下面示出在本实施例中使用的材料的结构式。
[化学式3]
Figure BDA0002587108980000611
《发光器件1的制造方法》
首先,在玻璃衬底上通过溅射法形成含氧化硅的氧化锡铟(ITSO)来形成阳极101。注意,其厚度为70nm,电极面积为4mm2(2mm×2mm)。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,以170℃进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,以使形成有阳极101的面朝下的方式将形成有阳极101的衬底固定在设置于真空蒸镀装置内的衬底支架上,并且在阳极101上通过利用电阻加热的蒸镀法以由上述结构式(i)表示的N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)与ALD-MP001Q(分析工房株式会社(Analysis Atelier Corporation),材料序列号:1S20180314)的重量比为1:0.1(=BBABnf:ALD-MP001Q)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层111。注意,ALD-MP001Q是具有受体性的有机化合物。
接着,在空穴注入层111上作为第一空穴传输层112-1以厚度为20nm的方式蒸镀BBABnf,然后作为第二空穴传输层112-2以厚度为10nm的方式蒸镀由上述结构式(ii)表示的3,3’-(萘-1,4-二基)双(9-苯基-9H-咔唑)(简称:PCzN2),由此形成空穴传输层112。注意,第二空穴传输层112-2也被用作电子阻挡层。
接着,以由上述结构式(iii)表示的9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:αN-βNPAnth)与由上述结构式(iv)表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=αN-βNPAnth:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层113。
然后,在发光层113上以由上述结构式(v)表示的2-苯基-3-{4-[10-(3-吡啶基)-9-蒽基]苯基}喹喔啉(简称:PyA1PQ)与由上述结构式(vi)表示的8-羟基喹啉锂(简称:Liq)的重量比为1:2(=PyA1PQ:Liq)且厚度为12.5nm的方式进行共蒸镀,然后重量比为2:1(=PyA1PQ:Liq)且厚度为12.5nm的方式进行共蒸镀,来形成电子传输层114。
在形成电子传输层114之后,以200nm的厚度蒸镀铝来形成阴极102,由此制造本实施例的发光器件1。
《对比发光器件1的制造方法》
在对比发光器件1中,使用由上述结构式(vii)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(简称:ZADN)代替发光器件1中的PyA1PQ,而其他结构与发光器件1相同。
发光器件1及对比发光器件1的器件结构如下表所示。
[表1]
Figure BDA0002587108980000631
在氮气氛的手套箱中,以不暴露于大气的方式使用玻璃衬底对这些发光器件进行密封处理(将密封材料涂敷在器件的周围,在密封时进行UV处理并以80℃进行1小时的热处理),然后对发光器件1及对比发光器件1的初始特性及可靠性进行测定。注意,测定在室温下进行。
图13示出发光器件1及对比发光器件1的亮度-电流密度特性,图14示出电流效率-亮度特性,图15示出亮度-电压特性,图16示出电流-电压特性,图17示出外量子效率-亮度特性,图18示出发射光谱。另外,表2示出发光器件1及对比发光器件1的1000cd/m2附近的主要特性。
[表2]
Figure BDA0002587108980000641
由图13至图18及表2可知,本发明的一个方式的发光器件1是具有良好的初始特性的蓝色发光器件。
此外,图19是示出电流密度为50mA/cm2时的相对于驱动时间的亮度变化的图表。由图19可知,在本发明的一个方式的发光器件的发光器件1中,与对比发光器件1相比,初始变化结束后的长期的倾斜小,长期劣化少,且寿命良好。
此外,在发光器件1及对比发光器件1中,空穴注入层具有空穴传输性并包括具有-5.7eV以上且-5.4eV以下的HOMO能级的BBABnf及对BBABnf呈现电子接收性的ALD-MP001Q,并且电子传输层包括金属、金属盐、金属氧化物或有机金属盐的Liq。
由此,在发光器件1及对比发光器件1中,在驱动后亮度上升而变得高于初始亮度,然后缓慢地降低。由此,尤其可以大幅度地延长到以初始亮度为基准劣化2%至5%为止的时间(初始的驱动寿命)。
如上所述,发光器件1的长期劣化也小,由此可知发光器件1的寿命非常良好。
实施例2
《合成例1》
在本合成例中说明可用作本发明的一个方式的发光器件的电子传输材料的化合物的4-{4-[10-(3-吡啶基)-9-蒽基]苯基}[1]苯并呋喃并[3,2-d]嘧啶(简称:BfpmPPyA)的合成方法。下面示出BfpmPPyA的结构。
[化学式4]
Figure BDA0002587108980000651
<步骤1:4-(4-氯苯基)[1]苯并呋喃并[3,2-d]嘧啶的合成>
将4-氯[1]苯并呋喃并[3,2-d]嘧啶2.0g(9.7mmol)、4-氯苯基硼酸1.8g(12mmol)、三(邻甲苯基)膦0.30g(0.97mmol)、碳酸钾2.7g(19mmol)放入三口烧瓶中。对这混合物添加甲苯100mL、乙醇20mL、水10mL,在减压下搅拌来进行脱气。然后,对混合物添加醋酸钯(II)0.044g(0.19mmol),以80℃搅拌6小时。再者,添加醋酸钯(II)0.027g(0.097mmol)、三(邻甲苯基)膦0.20g(0.44mmol),并以80℃搅拌2小时。
在搅拌后,对该混合物添加水,抽出水层,对有机层进行过滤。再者,利用甲苯对水层进行萃取。用水洗涤所得到的萃取溶液和上述滤液,用硫酸镁对有机层进行干燥。通过重力过滤将该混合物过滤出来,浓缩滤液。通过硅胶柱层析法对所得到的固体(展开溶剂:甲苯:乙酸乙酯=9:1)进行精炼,由此以收率92%得到2.5g的目的物的淡黄色固体。下面示出步骤1的反应方案。
[化学式5]
Figure BDA0002587108980000661
<步骤2:4-[4-(4,4,5,5-四甲基-[1,3,2]二氧硼戊环-2-基)苯基][1]苯并呋喃并[3,2-d]嘧啶的合成>
将4-(4-氯苯基)[1]苯并呋喃并[3,2-d]嘧啶2.5g(8.9mmol)、双戊酰二硼2.7g(11mmol)、醋酸钾2.6g(27mmol)、二甲苯45mL放入三口烧瓶中,将气氛置换为氮气。对这混合物添加[1,1’-双(二苯基膦基)二茂铁]二氯化钯(II)二氯甲烷加成物(简称:Pd(dppf)Cl2·CH2Cl2)0.36g(0.44mmol),以120℃搅拌17小时。
在搅拌后,对混合物添加甲苯和水,对溶液进行过滤。抽出所得到的滤液的有机层,用甲苯萃取水层。用水对所得到的萃取溶液和有机层进行洗涤,用硫酸镁对有机层进行干燥。通过重力过滤将该混合物过滤出来,浓缩滤液。将所得到的固体溶解于甲苯,通过硅藻土、硅酸镁、矾土对该固体进行过滤(溶剂:甲苯:乙酸乙酯=4:1)。浓缩滤液,通过硅胶柱层析法对所得到的固体(展开溶剂甲苯:乙酸乙酯=3:1)进行精炼,由此以收率79%得到2.6g的目的物的黄色固体。下面示出步骤2的合成方案。
[化学式6]
Figure BDA0002587108980000671
<步骤3:4-{4-[10-(3-吡啶基)-9-蒽基]苯基}[1]苯并呋喃并[3,2-d]嘧啶(简称:BfpmPPyA)的合成>
将3-(10-溴-9-蒽基)吡啶1.6g(4.8mmol)、4-[4-(4,4,5,5-四甲基-[1,3,2]二氧硼戊环-2-基)-苯基]-[1]苯并呋喃并[3,2-d]嘧啶2.0g(5.3mmol)、三(邻甲苯基)膦0.15g(0.48mmol)、碳酸钾1.3g(9.6mmol)添加到200mL三口烧瓶内,并将烧瓶内气氛置换为氮气。对这混合物添加甲苯50mL、乙醇10mL及水5mL,在减压下搅拌来进行脱气。对该混合物添加醋酸钯(II)22mg(0.096mmol),在氮气流下以80℃搅拌11小时。在经过指定时间之后,对该混合物添加水,通过抽滤回收所析出的固体,用水及甲醇对所析出的固体进行洗涤。通过硅胶柱层析法(展开溶剂甲苯:乙酸乙酯=9:1)对所得到的固体进行精炼,然后用甲苯进行再结晶,由此以57%收率得到1.4g(2.8mmol)的目的物的固体。下面示出步骤3的合成方案。
[化学式7]
Figure BDA0002587108980000681
通过梯度升华方法对所得到的固体1.3g进行升华精炼。在压力为3.0Pa、氩流量为5mL/min、275℃的条件下进行升华精炼。在升华精炼后,以91%的回收率得到1.2g的BfpmPPyA的粉末。
图25A、图25B示出所得到的化合物的利用核磁共振光谱法(1H-NMR)的测定结果,下面示出其数值数据。1H NMR(CDCl3,300MHz):δ=7.36-7.44(m,4H)、7.54-7.69(m,4H)、7.73-7.89(m,7H)、8.37(d,J=7.7Hz,1H)、8.77(dd,J=2.2Hz,0.7Hz,1H)、8.83-8.91(m,3H)、9.36(s,1H)。由此可知,在本合成例中得到BfpmPPyA。
实施例3
《合成例2》
在本合成例中说明可用作本发明的一个方式的发光器件的电子传输材料的化合物的2-{4-[10-(3-吡啶基)-9-蒽基]苯基}二苯并[f,h]喹喔啉(简称:DBqPPyA)的合成方法。下面示出DBqPPyA的结构。
[化学式8]
Figure BDA0002587108980000691
<步骤1:2-{4-[10-(3-吡啶基)-9-蒽基]苯基}二苯并[f,h]喹喔啉(简称:DBqPPyA)的合成>
将3-(10-溴-9-蒽基)吡啶1.1g(3.2mmol)、2-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)二苯并[f,h]喹喔啉1.5g(3.5mmol)、三(邻甲苯基)膦96mg(0.32mmol)、碳酸钾0.87g(6.3mmol)添加到150mL三口烧瓶内,并将烧瓶内气氛置换为氮气。对这混合物添加甲苯30mL、乙醇6.0mL、水3.0mL,在减压下搅拌来进行脱气。对该混合物添加醋酸钯(II)14mg(0.063mmol),在氮气流下以80℃搅拌21小时。在经过指定时间之后,对该混合物添加水,通过抽滤回收固体。对所得到的固体添加甲苯,在照射超声波后回收固体。
通过硅胶柱层析法(展开溶剂:氯仿)对所得到的固体进行精炼,然后用甲苯和乙醇的混合溶剂进行再结晶,由此以55%的收率得到0.96g的目的物的固体。下面示出步骤1的合成方案。
[化学式9]
Figure BDA0002587108980000701
通过梯度升华方法对所得到的固体0.96g进行升华精炼。在压力为2.9Pa、氩流量为5mL/min、305℃的条件下进行升华精炼。在升华精炼后,以82%的回收率得到0.80g的DBqPPyA的粉末。
图26A、图26B示出所得到的化合物的利用核磁共振光谱法(1H-NMR)的测定结果,下面示出其数值数据。1H NMR(CDCl3,300MHz):δ=7.38-7.45(m,4H)、7.57-7.69(m,3H)、7.72-7.91(m,9H)、8.63(d,J=8.1Hz,2H)、8.70(d,J=7.7Hz,2H)、8.77-8.80(m,1H)、8.85(dd,J=1.5Hz,4.8Hz,1H)、9.28-9.32(m,1H)、9.49-9.54(m,1H)、9.57(s,1H)。由此可知,在本合成例中得到DBqPPyA。
实施例4
《合成例3》
在本合成例中说明可用作本发明的一个方式的发光器件的电子传输材料的化合物的(9-{4-[10-(3-吡啶基)-9-蒽基]苯基}萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪)(简称:NfprPPyA)的合成方法。下面示出NfprPPyA的结构。
[化学式10]
Figure BDA0002587108980000711
<步骤1:9-[4-(4,4,5,5-四甲基-[1,3,2]二氧硼戊环-2-基)-苯基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪的合成>
将9-(4-氯苯基)-萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪3.2g(9.7mmol)、双戊酰二硼3.0g(12mmol)、醋酸钾2.9g(29mmol)、二甲苯50mL放入三口烧瓶中,并在减压下搅拌来进行脱气。对这混合物添加[1,1’-双(二苯基膦基)二茂铁]二氯化钯(II)二氯甲烷加成物(简称:Pd(dppf)Cl2)0.40g(0.49mmol),以120℃搅拌19小时。
在经过指定时间之后,对该混合物添加甲苯。通过硅藻土、硅酸镁、矾土过滤其溶液(溶剂甲苯:乙酸乙酯=1:1)来浓缩滤液。通过硅胶柱层析法(展开溶剂甲苯:乙酸乙酯=3:1)对所得到的固体进行精炼,得到黄色固体。对所得到的固体添加己烷,照射超声波,通过抽滤回收固体,由此以89%的收率得到3.7g的目的物的黄色固体。下面示出步骤1的合成方案。
[化学式11]
Figure BDA0002587108980000721
<步骤2:(9-{4-[10-(3-吡啶基)-9-蒽基]苯基}萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪)(简称:NfprPPyA)的合成>
将3-(10-溴-9-蒽基)吡啶1.4g(4.1mmol)、3-[4-(4,4,5,5-四甲基-[1,3,2]二氧硼戊环-2-基)-苯基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪1.9g(4.5mmol)、三(邻甲苯基)膦0.13g(0.41mmol)、碳酸钾1.1g(8.3mmol)添加到200mL三口烧瓶内,并将烧瓶内气氛置换为氮气。对这混合物添加甲苯40mL、乙醇8mL及水4mL,在减压下搅拌来进行脱气。对该混合物添加醋酸钯(II)19mg(0.083mmol),在氮气流下以80℃搅拌10小时。在经过指定时间之后,对该混合物添加水,通过抽滤回收所析出的固体。用水及甲醇对所得到的固体进行洗涤。通过硅胶柱层析法(展开溶剂甲苯:乙酸乙酯=9:1)对所得到的固体进行精炼,然后用甲苯进行再结晶,由此以58%收率得到1.3g(2.4mmol)的目的物的固体。下面示出步骤2的合成方案。
[化学式12]
Figure BDA0002587108980000731
通过梯度升华方法对所得到的固体1.3g进行升华精炼。在压力为3.3Pa、氩流量为15mL/min、320℃的条件下进行升华精炼。在升华精炼后,以73%的回收率得到0.94g的NfprPPyA的粉末。
图27A、图27B示出所得到的化合物的利用核磁共振光谱法(1H-NMR)的测定结果,下面示出其数值数据。1H NMR(CDCl3,300MHz):δ=7.36-7.45(m,4H)、7.56-7.74(m,6H)、7.78-7.91(m,5H)、8.08(d,J=8.1Hz,1H)、8.13(d,J=8.8Hz,1H)、8.45(d,J=8.4Hz,2H)、8.76-8.78(m,1H)、8.85(dd,J=4.4Hz,1.5Hz,1H)、9.21(d,J=8.4Hz,1H)、9.42(s,1H)。由此可知,在本合成例中得到NfprPPyA。
实施例5
本实施例示出本发明的一个方式的发光器件的发光器件2至发光器件4的制造方法及特性。发光器件2至发光器件4包含具有对电子传输层呈现电子传输性的第一骨架、接收空穴的第二骨架、单环的缺π电子型杂芳环的第三骨架的电子传输材料。具体而言,作为该电子传输材料,发光器件2具有4-{4-[10-(3-吡啶基)-9-蒽基]苯基}[1]苯并呋喃并[3,2-d]嘧啶(简称:BfpmPPyA),发光器件3具有2-{4-[10-(3-吡啶基)-9-蒽基]苯基}二苯并[f,h]喹喔啉(简称:DBqPPyA),发光器件4具有(9-{4-[10-(3-吡啶基)-9-蒽基]苯基}萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪)(简称:NfprPPyA)。下面示出本实施例中使用的材料的结构式。
[化学式13]
Figure BDA0002587108980000751
《发光器件2的制造方法》
首先,在玻璃衬底上通过溅射法形成含氧化硅的氧化锡铟(ITSO)来形成阳极101。注意,其厚度为70nm,电极面积为4mm2(2mm×2mm)。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,在170℃的温度下进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,以使形成有阳极101的面朝下的方式将形成有阳极101的衬底固定在设置于真空蒸镀装置内的衬底支架上,并且在阳极101上通过利用电阻加热的蒸镀法以由上述结构式(i)表示的N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)与ALD-MP001Q(分析工房株式会社(Analysis Atelier Corporation),材料序列号:1S20180314)的重量比为1:0.1(=BBABnf:ALD-MP001Q)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层111。注意,ALD-MP001Q是具有受体性的有机化合物。
接着,在空穴注入层111上作为第一空穴传输层112-1以厚度为20nm的方式蒸镀BBABnf,然后作为第二空穴传输层112-2以厚度为10nm的方式蒸镀由上述结构式(ii)表示的3,3’-(萘-1,4-二基)双(9-苯基-9H-咔唑)(简称:PCzN2),由此形成空穴传输层112。注意,第二空穴传输层112-2也被用作电子阻挡层。
接着,以由上述结构式(iii)表示的9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:αN-βNPAnth)与由上述结构式(iv)表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=αN-βNPAnth:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层113。
然后,在发光层113上以由上述结构式(viii)表示的4-{4-[10-(3-吡啶基)-9-蒽基]苯基}[1]苯并呋喃并[3,2-d]嘧啶(简称:BfpmPPyA)与上述结构式(vi)所示的8-羟基喹啉锂(简称:Liq)的重量比为1:2(=BfpmPPyA:Liq)且厚度为25nm的方式进行共蒸镀,来形成电子传输层114。
在形成电子传输层114之后,以200nm的厚度蒸镀铝来形成阴极102,由此制造本实施例的发光器件2。
《发光器件3的制造方法》
在发光器件3中,使用由上述结构式(ix)表示的2-{4-[10-(3-吡啶基)-9-蒽基]苯基}二苯并[f,h]喹喔啉(简称:DBqPPyA)代替发光器件2中的BfpmPPyA,而其他结构与发光器件2相同。
《发光器件4的制造方法》
发光器件4与发光器件2的不同之处在于以由上述结构式(x)表示的(9-{4-[10-(3-吡啶基)-9-蒽基]苯基}萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪)(简称:NfprPPyA)和Liq的重量比为1:2(=NfprPPyA:Liq)且厚度为12.5nm的方式进行共蒸镀,然后以重量比为2:1(=NfprPPyA:Liq)且厚度为12.5nm的方式进行共蒸镀来形成发光器件2中的电子传输层114。
发光器件2至对比发光器件4的器件结构如下表所示。
[表3]
Figure BDA0002587108980000781
在氮气氛的手套箱中,以不暴露于大气的方式使用玻璃衬底对这些发光器件进行密封处理(将密封材料涂敷在器件的周围,在密封时进行UV处理并以80℃进行1小时的热处理),然后对发光器件2至发光器件4的初始特性及可靠性进行测定。注意,测定在室温下进行。
图28示出发光器件2至发光器件4的亮度-电流密度特性,图29示出电流效率-亮度特性,图30示出亮度-电压特性,图31示出电流-电压特性,图32示出外量子效率-亮度特性,图33示出发射光谱。另外,表4示出发光器件2至发光器件4的1000cd/m2附近的主要特性。
[表4]
Figure BDA0002587108980000782
由图28至图33及表4可知,本发明的一个方式的发光器件2至发光器件4是具有良好的初始特性的蓝色发光器件。
此外,图34示出电流密度为50mA/cm2时的相对于驱动时间的亮度变化的图表。由图34可知,在本发明的一个方式的发光器件的发光器件2至发光器件4中,对比发光器件初始变化结束后的长期的倾斜小,长期劣化少,且寿命良好。
此外,在发光器件2至对比发光器件4中,空穴注入层具有空穴传输性并包括具有-5.7eV以上且-5.4eV以下的HOMO能级的BBABnf及对BBABnf呈现电子接收性的ALD-MP001Q,并且电子传输层包括金属、金属盐、金属氧化物或有机金属盐的Liq。
由此,在发光器件对比发光器件3中,在驱动后亮度上升,然后缓慢地降低。由此,尤其可以大幅度地延长到以初始亮度为基准劣化2%至5%为止的时间(初始的驱动寿命)。
(参考例1)
在本参考例中,对在各实施例中使用的有机化合物的HOMO能级、LUMO能级以及电子迁移率的算出方法进行说明。
HOMO能级及LUMO能级可以根据循环伏安法(CV)测定算出。
作为测定装置,使用电化学分析仪(BAS株式会社(BAS Inc.)制造的ALS型号600A或600C)。以如下方法调制用于CV测定的溶液:作为溶剂,使用脱水二甲基甲酰胺(DMF)(株式会社Aldrich制造,99.8%,目录号码:22705-6),使作为支持电解质的高氯酸四正丁铵(n-Bu4NClO4)(东京化成工业株式会社(Tokyo Chemical Industry Co.,Ltd.)制造,目录号码:T0836)以100mmol/L的浓度溶解,且使测定对象以2mmol/L的浓度溶解。另外,作为工作电极使用铂电极(BAS株式会社制,PTE铂电极),作为辅助电极使用铂电极(BAS株式会社制,VC-3用Pt对电极(5cm)),作为参比电极使用Ag/Ag+电极(BAS株式会社制,RE7非水溶剂型参比电极)。注意,在室温下(20℃至25℃)进行测定。将CV测定时的扫描速度统一为0.1V/sec,测定出相对于参比电极的氧化电位Ea[V]及还原电位Ec[V]。Ea为氧化-还原波之间的中间电位,Ec为还原-氧化波之间的中间电位。在此,已知在本实施例中使用的参比电极的相对于真空能级的势能为-4.94[eV],因此利用HOMO能级[eV]=-4.94-Ea、LUMO能级[eV]=-4.94-Ec这两个算式分别求得HOMO能级及LUMO能级。
电子迁移率可以通过阻抗谱法(Impedance Spectroscopy:IS法)测定。
作为EL材料的载流子迁移率的测定方法,已知有飞行时间法(Time-of-flight:TOF法)或从空间电荷限制电流(Space-charge-limited current:SCLC)的I-V特性来求出的方法(SCLC法)等。TOF法与实际上的有机EL元件相比需要膜厚度更厚的样品。SCLC法具有不能得到载流子迁移率的电场强度依赖性等的缺点。在IS法中,由于测定所需要的有机膜的厚度薄,即几百nm左右,所以可以使用较少量的EL材料形成膜,可以在采用近于实际上的EL元件的膜厚度的情况下测定迁移率,可以得到载流子迁移率的电场强度依赖性。
在IS法中,对EL元件施加微小正弦波电压信号(V=V0[exp(jωt)]),从其响应电流信号(I=I0exp[j(ωt+φ)])的电流振幅与输入信号的相位差求出EL元件的阻抗(Z=V/I)。通过从高频电压变化到低频电压而将其施加到元件,可以使具有有助于阻抗的各种弛豫时间的成分分离并进行测定。
这里,阻抗的倒数的导纳Y(=1/Z)如下述算式(1)那样可以由导电G及电纳B表示。
[算式1]
Figure BDA0002587108980000811
再者,通过单一电荷注入(single injection)模型,可以算出下述算式(2)及(3)。这里,g(算式(4))为微分电导。注意,在算式中,C表示静电电容(电容),θ表示渡越角(ωt),ω表示角频率。t为渡越时间。作为分析使用电流方程、泊松方程、电流连续方程,并忽略扩散电流及陷阱态的存在。
[算式2]
Figure BDA0002587108980000812
Figure BDA0002587108980000813
Figure BDA0002587108980000821
从静电电容的频率特性算出迁移率的方法为-△B法。此外,从导电的频率特性算出迁移率的方法为ω△G法。
实际上,首先,制造想要算出电子迁移率的材料的测定用元件。测定用元件以作为载流子只流过电子的方式设计。在本说明书中,对从静电电容的频率特性算出迁移率的方法(-△B法)进行说明。图20示出所使用的测定用元件的示意图。
这次为了用于测定制造的测定用元件如图20所示那样在阳极201与阴极202之间包括第一层210、第二层211及第三层212。将要求出其电子迁移率的材料用作第二层211的材料。这次以ZADN与Liq为1:1(重量比)的共蒸镀膜的电子迁移率的测定为例进行说明。具体的结构例子如下表所示。
[表5]
Figure BDA0002587108980000822
图21示出了使用ZADN和Liq的共蒸镀膜作为第二层211形成的测定用元件的电流密度-电压特性。
阻抗测定在5.0V至9.0V的范围内施加直流电压的同时在交流电压为70mV、频率为1Hz至3MHz的条件下进行测定。从这里得到的阻抗的倒数的导纳(上述(1)算式)算出电容。图22示出施加电压为7.0V时算出的电容C的频率特性。
电容C的频率特性是从电流的相位差得到的,该相位差由于由微小电压信号注入的载流子所产生的空间电荷不能完全跟上微小交流电压而产生。这里,膜中的载流子的走行时间被所注入的载流子到达对置电极的时间T定义,由以下算式(5)表示。
[算式3]
Figure BDA0002587108980000831
负电纳变化(-△B)对应于静电电容变化-△C乘以角频率ω的值(-ω△C)。由算式(3)导出最低频率一侧的峰频率f’max(=ωmax/2π)与走行时间T之间满足以下算式(6)的关系。
[算式4]
Figure BDA0002587108980000832
图23示出从上述测定算出的(即直流电压为7.0V时的)-△B的频率特性。在附图中以箭头示出从图23求出的最低频率一侧的峰频率f’max
由于从由上述测定及分析得到的f’max求出走行时间T(参照上述算式(6)),所以可以从上述算式(5)求出这里的电压为7.0V时的电子迁移率。通过在直流电压为5.0V至9.0V范围内进行同样的测定,可以算出各电压(电场强度)的电子迁移率,因此也可以测定迁移率的电场强度依赖性。
图24示出通过上述算出法获得的各有机化合物的电子迁移率的最终电场强度依赖性,表6示出从图24读出的电场强度[V/cm]的平方根为600[V/cm]1/2时的电子迁移率的值。
[表6]
Figure BDA0002587108980000841
如上所述可以算出电子迁移率。注意,关于详细的测定方法,参照TakayukiOkachi等人的“Japanese Journal of Applied Physics”Vol.47,No.12,2008,pp.8965-8972。
(参考例2)
《合成例4》
在本参考例中说明实施例1中使用的2-苯基-3-{4-[10-(3-吡啶基)-9-蒽基]苯基}喹喔啉(简称:PyA1PQ)的合成方法。下面示出PyA1PQ的结构。
[化学式14]
Figure BDA0002587108980000851
将3-(10-溴-9-蒽基)吡啶0.74g(2.2mmol)、三(邻甲苯基)膦0.26g(0.85mmol)、4-(3-苯基喹喔啉-2-基)苯基硼酸0.73g(2.3mmol)、碳酸钾水溶液1.3g(9.0mmol)、乙二醇二甲醚(DME)40mL、水4.4mL添加到50mL三口烧瓶。通过在减压下搅拌这混合物来进行脱气,将烧瓶内气氛置换为氮气。
对该烧瓶内的混合物添加醋酸钯(II)65mg(0.29mmol),在氮气流下以80℃搅拌11小时。在搅拌后对烧瓶内的混合物添加水,用甲苯进行萃取。用饱和食盐水对所得到的萃取溶液进行洗涤,用硫酸镁进行干燥。对其进行重力过滤,并浓缩滤液来得到油状物。通过依次使用氯仿及5:1的甲苯和乙酸乙酯的硅胶柱层析法对所得到的油状物进行精炼两次,用甲苯/己烷进行再结晶,以36%的收率得到0.43g的目的物的黄色固体。下面示出合成方案。
[化学式15]
Figure BDA0002587108980000861
通过梯度升华方法对所得到的黄色固体0.44g进行升华精炼。在压力为10Pa、氩流量为5.0mL/min、260℃、18小时的加热条件进行升华精炼。在升华精炼后,以79%的回收率得到0.35g的目的物的黄色固体。
另外,下面示出由上述反应得到的黄色固体的利用核磁共振光谱法(1H-NMR)的分析结果。由此可知,在本实施例中得到由上述结构式表示的PyA1PQ。
1H NMR(CDCl3,300MHz):δ=7.37-7.50(m,9H)、7.56-7.78(m,9H)、7.82-7.86(m,3H)、8.24-8.30(m,2H)、8.75(dd,J=1.8Hz,0.9Hz,1H)、8.84(dd,J=4.8Hz,1.8Hz,1H)。
符号说明
101 阳极
102 阴极
103 EL层
111 空穴注入层
112 空穴传输层
112-1 第一空穴传输层
112-2 第二空穴传输层
113 发光层
114 电子传输层
114-1 第一电子传输层
114-2 第二电子传输层
115 电子注入层
201 阳极
202 阴极
210 第一层
211 第二层
212 第三层
400 衬底
401 阳极
403 EL层
404 阴极
405 密封剂
406 密封剂
407 密封衬底
412 焊盘
420 IC芯片
501 阳极
502 阴极
511 第一发光单元
512 第二发光单元
513 电荷产生层
601 驱动电路部(源极线驱动电路)
602 像素部
603 驱动电路部(栅极线驱动电路)
604 密封衬底
605 密封剂
607 空间
608 布线
609 FPC(柔性印刷电路)
610 元件衬底
611 开关用FET
612 电流控制用FET
613 阳极
614 绝缘物
616 EL层
617 阴极
618 发光器件
1001 衬底
1002 基底绝缘膜
1003 栅极绝缘膜
1006 栅电极
1007 栅电极
1008 栅电极
1020 第一层间绝缘膜
1021 第二层间绝缘膜
1022 电极
1024W 阳极
1024R 阳极
1024G 阳极
1024B 阳极
1025 分隔壁
1028 EL层
1029 阴极
1031 密封衬底
1032 密封剂
1033 透明基材
1034R 红色着色层
1034G 绿色着色层
1034B 蓝色着色层
1035 黑矩阵
1036 被保护层
1037 第三层间绝缘膜
1040 像素部
1041 驱动电路部
1042 周边部
2001 外壳
2002 光源
2100 机器人
2110 运算装置
2101 照度传感器
2102 麦克风
2103 上部照相机
2104 扬声器
2105 显示器
2106 下部照相机
2107 障碍物传感器
2108 移动机构
3001 照明装置
5000 外壳
5001 显示部
5002 显示部
5003 扬声器
5004 LED灯
5006 连接端子
5007 传感器
5008 麦克风
5012 支撑部
5013 耳机
5100 扫地机器人
5101 显示器
5102 照相机
5103 刷子
5104 操作按钮
5150 便携式信息终端
5151 外壳
5152 显示区域
5153 弯曲部
5120 垃圾
5200 显示区域
5201 显示区域
5202 显示区域
5203 显示区域
7101 外壳
7103 显示部
7105 支架
7107 显示部
7109 操作键
7110 遥控操作机
7201 主体
7202 外壳
7203 显示部
7204 键盘
7205 外部连接端口
7206 指向装置
7210 第二显示部
7401 外壳
7402 显示部
7403 操作按钮
7404 外部连接端口
7405 扬声器
7406 麦克风
9310 便携式信息终端
9311 显示面板
9313 铰链
9315 外壳

Claims (33)

1.一种发光器件,包括:
阳极;
阴极;以及
位于所述阳极和所述阴极之间的EL层,
其中,所述EL层包括发光层及电子传输层,
所述电子传输层位于所述发光层和所述阴极之间,
所述电子传输层包括电子传输材料,
所述电子传输材料是包括第一骨架、第二骨架及第三骨架的有机化合物,
所述第一骨架传输电子,
所述第二骨架接收空穴,
并且,所述第三骨架包括单环的缺π电子型杂芳环。
2.一种的发光器件,包括:
阳极;
阴极;以及
位于所述阳极和所述阴极之间的EL层,
其中,所述EL层包括发光层及电子传输层,
所述电子传输层包括电子传输材料,
所述电子传输材料是包括第一骨架、第二骨架及第三骨架的有机化合物,
所述第一骨架传输电子,
所述第二骨架接收空穴,
所述第二骨架包括二环以上的稠合芳香烃环,
并且,所述第三骨架包括单环的缺π电子型杂芳环。
3.根据权利要求2所述的发光器件,
其中所述第二骨架包括三环以上的稠合芳香烃环。
4.根据权利要求1或2所述的发光器件,
其中所述第二骨架中的形成所述环的碳原子数为14以上。
5.根据权利要求1或2所述的发光器件,
其中所述稠合芳香烃环由六元环构成。
6.根据权利要求2所述的发光器件,
其中所述第二骨架包括蒽环、菲环、苯并芴环、四苯环、
Figure FDA0002587108970000021
环、三亚苯环及芘环中的任一个。
7.根据权利要求2所述的发光器件,
其中所述第二骨架是蒽环。
8.根据权利要求1或2所述的发光器件,
其中所述电子传输层还包括金属、金属盐、金属氧化物或有机金属盐。
9.一种发光器件,包括:
阳极;
阴极;以及
位于所述阳极和所述阴极之间的EL层,
其中,所述EL层包括空穴注入层、发光层及电子传输层,
所述空穴注入层位于所述阳极和所述发光层之间,
所述电子传输层位于所述发光层和所述阴极之间,
所述空穴注入层包括空穴传输材料和受体材料,
所述电子传输层包括电子传输材料和金属、金属盐、金属氧化物或有机金属盐,
所述空穴传输材料是具有空穴传输性及-5.7eV以上且-5.4eV以下的HOMO能级的有机化合物,
所述受体材料对所述空穴传输材料呈现电子接收性,
所述电子传输材料是包括第一骨架、第二骨架及第三骨架的有机化合物,
所述第一骨架传输电子,
所述第二骨架接收空穴,
并且,所述第三骨架包括单环的缺π电子型杂芳环。
10.根据权利要求9所述的发光器件,
其中所述第二骨架是包括二环以上且四环以下的芳香环的稠合芳香烃环。
11.根据权利要求9所述的发光器件,
其中所述第二骨架包括萘环、芴环、蒽环、菲环、四苯环、
Figure FDA0002587108970000031
环、三亚苯环及芘环中的任一个。
12.根据权利要求9所述的发光器件,
其中所述第二骨架中的形成所述环的碳原子数为14以上。
13.根据权利要求9所述的发光器件,
其中所述稠合芳香烃环由六元环构成。
14.根据权利要求9所述的发光器件,
其中所述第二骨架是蒽环。
15.根据权利要求9所述的发光器件,
其中所述受体材料是有机化合物。
16.根据权利要求9所述的发光器件,
其中所述金属、所述金属盐、所述金属氧化物或所述有机金属盐是包含碱金属或碱土金属的金属配合物。
17.根据权利要求9所述的发光器件,
其中所述金属、所述金属盐、所述金属氧化物或所述有机金属盐是具有包含氮及氧的配体和碱金属或碱土金属的金属配合物。
18.根据权利要求9所述的发光器件,
其中所述金属、所述金属盐、所述金属氧化物或所述有机金属盐是包括一价金属离子和具有8-羟基喹啉结构的配体的金属配合物。
19.根据权利要求9所述的发光器件,
其中所述金属、所述金属盐、所述金属氧化物或所述有机金属盐是包括具有8-羟基喹啉结构的配体的锂配合物。
20.根据权利要求1、2及9中任一项所述的发光器件,
其中所述电子传输材料的所述第一骨架和所述第三骨架通过所述第二骨架键合。
21.根据权利要求1、2及9中任一项所述的发光器件,
其中所述电子传输材料的LUMO主要分布在所述第一骨架中。
22.根据权利要求1、2及9中任一项所述的发光器件,
其中所述第一骨架包括含氮的稠合芳香环或三嗪环。
23.根据权利要求1、2及9中任一项所述的发光器件,
其中所述第一骨架包含两个以上的氮原子。
24.根据权利要求1、2及9中任一项所述的发光器件,
其中所述第一骨架包括喹喔啉环、二苯并[h,g]喹喔啉环、三嗪环及苯并呋喃并嘧啶环中的任一个。
25.根据权利要求1、2及9中任一项所述的发光器件,
其中所述第一骨架包括喹喔啉环。
26.根据权利要求1、2及9中任一项所述的发光器件,
其中所述电子传输材料的HOMO主要分布在所述第二骨架中。
27.根据权利要求1、2及9中任一项所述的发光器件,
其中所述第三骨架包括包含氮原子的六元环的杂芳环。
28.根据权利要求1、2及9中任一项所述的发光器件,
其中所述第三骨架是吡啶环、嘧啶环、吡嗪环及三嗪环中的任一个。
29.根据权利要求28所述的发光器件,
其中所述第三骨架以氮位于与所述第二骨架键合的碳的β位的方式键合于所述第二骨架。
30.根据权利要求28所述的发光器件,
其中所述第三骨架是在三位取代的吡啶环、在五位取代的嘧啶环或吡嗪环。
31.根据权利要求1、2及9中任一项所述的发光器件,
其中所述电子传输层与所述阴极接触。
32.根据权利要求1、2及9中任一项所述的发光器件,
其中所述发光层包含主体材料及发光材料,
并且所述发光材料发射蓝色荧光。
33.一种被用于电子传输层的化合物,包括:
第一骨架;
第二骨架;以及
第三骨架,
其中,所述第一骨架传输电子,
所述第二骨架接收空穴,
并且,所述第三骨架包括单环的缺π电子型杂芳环。
CN202010684691.7A 2019-07-26 2020-07-16 发光器件、发光装置、电子设备、照明装置及化合物 Pending CN112310294A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019137657 2019-07-26
JP2019-137657 2019-07-26
JP2020-023785 2020-02-14
JP2020023785 2020-02-14

Publications (1)

Publication Number Publication Date
CN112310294A true CN112310294A (zh) 2021-02-02

Family

ID=74098740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010684691.7A Pending CN112310294A (zh) 2019-07-26 2020-07-16 发光器件、发光装置、电子设备、照明装置及化合物

Country Status (6)

Country Link
US (1) US20210028371A1 (zh)
JP (1) JP2021122042A (zh)
KR (1) KR20210012965A (zh)
CN (1) CN112310294A (zh)
DE (1) DE102020119439A1 (zh)
TW (1) TW202110821A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199125A1 (en) * 2021-12-14 2023-06-21 Novaled GmbH Organic light emitting diode, method for preparing the same and device comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505067B2 (ja) * 1998-12-16 2010-07-14 淳二 城戸 有機エレクトロルミネッセント素子
EP1437395B2 (en) * 2002-12-24 2015-08-26 LG Display Co., Ltd. Organic electroluminescent device
US8314101B2 (en) * 2007-11-30 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
KR20160140393A (ko) * 2015-05-29 2016-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
CN105461685B (zh) * 2016-02-03 2018-12-18 上海道亦化工科技有限公司 含有喹喔啉基团的化合物及其有机电致发光器件
CN107954942B (zh) * 2017-12-08 2019-04-09 北京鼎材科技有限公司 苯并吡嗪取代蒽衍生物及有机电致发光器件
CN109180567B (zh) * 2018-09-25 2022-05-20 武汉天马微电子有限公司 氮杂环化合物、显示面板以及显示装置

Also Published As

Publication number Publication date
US20210028371A1 (en) 2021-01-28
JP2021122042A (ja) 2021-08-26
DE102020119439A1 (de) 2021-01-28
TW202110821A (zh) 2021-03-16
KR20210012965A (ko) 2021-02-03

Similar Documents

Publication Publication Date Title
CN107925009B (zh) 发光元件、发光装置、电子设备及照明装置
CN113299841B (zh) 发光器件、发光装置、电子设备及照明装置
TWI813784B (zh) 發光器件、發光裝置、電子裝置及照明設備
US20210028371A1 (en) Light-emitting device, light-emitting apparatus, electronic device, lighting device, and compound
US11943944B2 (en) Light-emitting device, light-emitting apparatus, electronic device, and lighting device
CN112086567A (zh) 发光器件、发光装置、电子设备及照明装置
US20220077397A1 (en) Light-emitting device, light-emitting apparatus, electronic device, and lighting device
CN113785410A (zh) 发光器件、发光装置、电子设备及照明装置
JP2020167411A (ja) 発光デバイス、発光装置、電子機器および照明装置
TWI844456B (zh) 發光器件、發光裝置、電子裝置及照明設備
US20230138085A1 (en) Light-emitting device, light-emitting apparatus, electronic device and lighting device
CN113748529A (zh) 发光器件、发光装置、电子设备及照明装置
CN113228329A (zh) 发光器件、发光装置、电子设备及照明装置
TW202416813A (zh) 發光器件、發光裝置、電子裝置及照明設備

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination