CN112301049B - Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme - Google Patents

Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme Download PDF

Info

Publication number
CN112301049B
CN112301049B CN202011204558.3A CN202011204558A CN112301049B CN 112301049 B CN112301049 B CN 112301049B CN 202011204558 A CN202011204558 A CN 202011204558A CN 112301049 B CN112301049 B CN 112301049B
Authority
CN
China
Prior art keywords
plasmid
heme
high yield
recombinant plasmid
recombinant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011204558.3A
Other languages
Chinese (zh)
Other versions
CN112301049A (en
Inventor
俞汉青
李洋
汤强
刘东风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202011204558.3A priority Critical patent/CN112301049B/en
Publication of CN112301049A publication Critical patent/CN112301049A/en
Application granted granted Critical
Publication of CN112301049B publication Critical patent/CN112301049B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/0107Glutamyl-tRNA reductase (1.2.1.70)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/03Oxidoreductases acting on the CH-CH group of donors (1.3) with oxygen as acceptor (1.3.3)
    • C12Y103/03004Protoporphyrinogen oxidase (1.3.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01061Hydroxymethylbilane synthase (2.5.1.61)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01037Uroporphyrinogen decarboxylase (4.1.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01075Uroporphyrinogen-III synthase (4.2.1.75)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y499/00Other lyases (4.99)
    • C12Y499/01Other lyases (4.99.1)
    • C12Y499/01001Ferrochelatase (4.99.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • C12N2830/003Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor tet inducible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

The invention relates to the field of metabolic engineering, in particular to a recombinant plasmid and a genetic engineering strain for high yield of heme, a construction method thereof and a method for high yield of heme. The recombinant plasmid comprises the following genes: hemA, hemL, hemB1, hemB2, hemC, hemD, hemE, hemN, hemG1, hemG2, hemG3, hemH1, hemH2, and ccmf. The invention utilizes metabolic engineering and synthetic biology means to reform S.oneidensis MR-1, thereby efficiently synthesizing the heme. Engineering of such a method for electroactive bacteria would facilitate the use of such bacteria in the production of fine chemicals.

Description

Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme
Technical Field
The invention relates to the field of metabolic engineering, in particular to a recombinant plasmid and a genetic engineering strain for high yield of heme, a construction method thereof and a method for high yield of heme.
Background
The current production of heme mainly consists in the separation of free heme from biological samples (for example plant tissues and animal blood) by organic extraction or enzymatic hydrolysis, which is not only complex, low in yield, time-consuming but also causes pollution problems. The development of metabolic engineering technology provides a chance for producing heme by utilizing microbial cell engineering.
The electrically active bacteria have evolved unique extracellular electron transfer modes for completing the respiratory metabolic process of cells by utilizing various electron acceptors in an anaerobic environment. The microorganisms also have important roles in energy recovery, chemical production, environmental remediation and the like. To date, a variety of dissimilatory metal-reducing bacteria, such as Shewanella spp, geobactor spp, pseudomonas spp, listeria spp, have been isolated from the environment and characterized for their extracellular electron transport pathways. Shewanella oneidensis MR-1 is widely concerned as a model dissimilatory metal-reducing bacterium. It utilizes a complex extracellular electron transport network to transport electrons produced by intracellular metabolism to an extracellular electron acceptor. The method comprises the following specific steps: the bacterium first converges electrons generated by the oxidative decomposition of intracellular L-lactic acid into an NADH pool, and then the electrons reach various redox terminal enzymes in the inner membrane and the periplasm or a porin-cytochrome complex (OmcA-mtrCAB) on the outer membrane through a quinone pool and are finally transmitted to an extracellular electron acceptor in a direct and indirect manner. The unique extracellular electron transport properties of electroactive bacteria provide the potential for the electrosynthesis of hemoglobin using Microbial Electrochemical Systems (MES).
Disclosure of Invention
In view of the above, the invention provides a recombinant plasmid and a genetic engineering strain for high yield of heme, and a construction method and a method for high yield of heme thereof. The plasmid system and the host system for high yield of heme provided by the invention are used for realizing high-efficiency and amplified production of heme.
In order to achieve the above object, the present invention provides the following technical solutions:
the invention provides a recombinant plasmid for high yield of heme, which comprises the following genes: hemA, hemL, hemB1, hemB2, hemC, hemD, hemE, hemN, hemG1, hemG2, hemG3, hemH1, hemH2, and ccmf.
Preferably, the gene source of hemA, hemL, hemB1, hemB2, hemC, hemD, hemE, hemN, hemG1, hemG2, hemG3, hemH1, hemH2 and ccmf is E.coli MG1655.
Preferably, the plasmid vector of the recombinant plasmid is pBF-PTeto.
Preferably, the sequence of the plasmid vector is as set forth in SEQ ID NO:1 is shown.
Preferably, the sequence of the recombinant plasmid is as shown in SEQ ID NO:2, respectively.
The invention also provides a construction method of the recombinant plasmid, which comprises the following steps:
taking a plasmid vector as a template, and amplifying to obtain a plasmid skeleton;
assembling DNA fragments of genes hemA, hemL, hemB1 and hemB2 with a plasmid framework to obtain a plasmid-HE 1;
assembling DNA fragments of genes hemC, hemD, hemE and hemN with a plasmid framework to obtain a plasmid-HE 2;
assembling DNA fragments of genes hemG1, hemG2, hemG3, hemH1 and hemH2 with a plasmid framework to obtain a plasmid-HE 3;
assembling the gene ccmF with a plasmid framework to obtain a plasmid-HE 4;
on the basis of obtaining the plasmid-HE 1, the plasmid-HE 2, the plasmid-HE 3 and the plasmid-HE 4, assembling HE1, HE2, HE3 and HE4DNA fragments to obtain recombinant plasmids.
The invention also provides a genetic engineering strain for high yield of heme, which comprises the recombinant plasmid.
Preferably, the host strain of the genetically engineered strain is S.oneidensis MR-1.
Preferably, the promoter of the genetically engineered strain is a tetracycline-inducible promoter system.
The invention also provides a construction method of the genetic engineering strain, which comprises the following steps: preparing competent cells by using host bacteria; and mixing the recombinant plasmid with the competent cell, and performing electrotransformation to obtain the genetic engineering strain.
The invention also provides a method for producing heme with high yield, which comprises the following steps:
culturing the above genetic engineering strain, and culturing the OD of the strain solution 600 Adding inducer for fermentation culture when the concentration is 0.15-0.25, and collecting supernatant.
The invention provides a recombinant plasmid and a genetic engineering strain for high yield of heme, a construction method thereof and a method for high yield of heme. The recombinant plasmid comprises the following genes: hemA, hemL, hemB1, hemB2, hemC, hemD, hemE, hemN, hemG1, hemG2, hemG3, hemH1, hemH2, and ccmf.
The invention has the technical effects that:
the invention utilizes metabolic engineering and synthetic biology means to reform S.oneidensis MR-1, thereby efficiently synthesizing heme. Engineering of such a method for electroactive bacteria would facilitate the use of such bacteria in the production of fine chemicals.
Drawings
FIG. 1 is a pBF-PTeto map of the plasmid platform for heme synthesis;
FIG. 2 is the measurement of the growth state and heme yield of the engineering bacteria.
Detailed Description
The invention discloses a recombinant plasmid and a genetic engineering strain for high yield of heme, a construction method thereof and a method for high yield of heme. It is expressly intended that all such similar substitutes and modifications which would be obvious to one skilled in the art are deemed to be included in the invention. While the methods and applications of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations and modifications, or appropriate variations and combinations of the methods and applications described herein may be made to implement and use the techniques of this invention without departing from the spirit and scope of the invention.
The invention provides a plasmid system and a host system for high yield of heme, which are used for realizing high-efficiency and scalable production of heme.
In one embodiment of the invention, high levels of extracellular heme are produced by multicopy, incremental expression of genes involved in their heme metabolic pathways. The technology carries out remodeling on related genes endogenous to Shewanella, including hemA, hemL, hemB1, hemB2, hemC, hemD, hemE, hemN, hemG1, hemG2, hemG3, hemH1, hemH2 and ccmf), and the genes are modularly placed in a tetracycline inducible promoter system TetTR-P TET Control ofThe following steps. The engineered bacteria were cultured in Lysogeny Broth (LB) at 30 ℃ with shaking at 200 rpm. At OD 600 When the concentration is about 0.2, 20 μ g/L Anhydrotetracycline (Anhydrotetracycline) is added as an inducer to induce the synthesis of heme. Heme synthetic gene sequences were obtained from the public database of Pubmed (http:// www.pubmed.com /).
The recombinant plasmid and the genetic engineering strain for high yield of heme provided by the invention, the construction method thereof, and biological materials, reagents, instruments and the like used in the method for high yield of heme are all available on the market.
The invention is further illustrated by the following examples:
example 1
1. Strain, plasmid and culture method
All strains and plasmids used in this example are listed in Table 1. Among them, escherichia coli NEB 10. Beta. Was used as a clone strain and for phenotypic verification of gene lines. Coli WM3604 for binding transfer. Coli and s.oneidensis were all cultured in LB medium, and escherichia coli WM3604 required the additional addition of 2-Diaminopimelic Acid (DAP) at a final concentration of 50 μ M. Coli and s. Oneidensis were cultured at 37 ℃ and 30 ℃ respectively. The composition of the 2YT medium was: 10g/L Tryptone (Tryptone), 5g/L Yeast powder (Yeast extract) and 10g/L NaCl. 15g/L Agar powder (Agar) was added to the solid medium.
The above strains are added with antibiotics according to the requirements: chloramphenicol 30. Mu.g/mL (E.coli), 10. Mu.g/mL (S.oneidensis); tetracycline: 10. Mu.g/mL (E. Coli), 5. Mu.g/mL (S. Oneidenesis). Anhydrotetracycline was added to the medium as an inducer at the concentrations noted herein.
The strain is placed in an incubator for static culture or in a shaking table for 200rpm for shaking culture. Bacterial growth was characterized by measuring the light absorption value (OD 600) at a wavelength of 600nm using a BioSpec-1601 ultraviolet spectrophotometer (Shimadzu corporation, japan).
TABLE 1 strains and plasmids used in the invention
Figure BDA0002756556890000041
Figure BDA0002756556890000051
2. Sequence analysis
The complete sequence data of the Escherichia coli MG1655 genome was obtained from GenBank (accession number: NC-000913.3).
3. DNA manipulation
The whole genome was extracted by e.z.n.a whole genome DNA extraction kit (OMEGA, beijing, china). Plasmids were extracted by e.z.n.a plasmid miniprep kit (OMEGA, beijing, china). All DNA fragments used for plasmid construction were purified by gel cutting using e.z.n.a gel recovery kit (OMEGA, beijing, china). The enzyme used for PCR amplification, the enzyme used for preparation of Gibson reaction solution, and the restriction enzyme were purchased from NEB corporation (NEB, beijing, china). Q5 High-Fidelity DNA polymerase is used for amplifying the fragment used for plasmid construction, and OneTaq 2X Master Mix is used for PCR verification. The above experimental procedures were all used according to the product specifications.
4. DNA sequencing
The constructed plasmid and the PCR-verified amplified product were both subjected to sequencing verification to determine their correctness. Sequencing was done by general biology, inc. (Anhui, china).
5. Preparation of E.coli electrotransformation competence
1) Coli growth 2YT plate picking single colony, transfer to containing 100mL 2YT liquid medium triangle bottle, shaking table 150rpm to OD 600 To reach 0.6, the flask was then taken out of the ice bath for 25min, during which it was gently shaken every 5 min.
2) And subpackaging the bacterial liquid into 50mL centrifuge tubes on an ultraclean workbench, balancing, and centrifuging at 4000rpm at 4 ℃ for 15min to collect thalli.
3) Removing supernatant, suspending the cells with 10% glycerol precooled by an ice bath, gently blowing the suspended cells with a pipette gun, completely suspending and dispersing the precipitated cells, and centrifuging to collect the bacteria.
4) Repeating the step 3) once.
5) Centrifuge, discard the supernatant, resuspend the cells with 1mL of 10% glycerol. Competent cells were dispensed into pre-cooled Eppendorf tube (EP) tubes at 100. Mu.L per tube and frozen at-80 ℃ until use.
6. DNA ligation
The method for constructing the plasmid is mainly by means of Gibson ligation.
1) 6mL of 5X ISO Buffer was prepared, with the following composition:
3mL 1M Tris-HCL(pH 7.5)
+150μL 2M MgCl 2
+240μL 2M 100mM dNTP mix(25mM each:dGTP,dCTP,dATP,dTTP)
+300μL 1M DTT
+1.5g PEG-8000
+ 300. Mu.L of 100mM NAD
+ddH 2 O to 6mL, and storing in 160 μ L at-20 deg.C for use.
2) A600. Mu.L Gibson ligation mix system was prepared with the following composition:
160μL 5X ISO Buffer
+0.32μL 10U/μL T5 exonuclease
+10μL 2U/μL Q5 DNA polymerase
+80μL 40U/μL Taq DNA ligase
+ddH 2 o to 1.2mL, and the mixture was dispensed into 15. Mu.L PCR tubes and stored at-20 ℃ until use.
3) When in use, a 15. Mu.L of Gibson was taken out and mixed with MIX, and dissolved on ice for further use.
4) Plasmid-constructed fragments were prepared and DNA concentration (ng/. Mu.L) was determined using NanoDrop (Thermo).
5) Mixing 100ng of plasmid vector backbone with equimolar amounts of other fragments, pipetting many times with a pipette gun, mixing well with Gibson's ligation MIX to a final volume of 20. Mu.L, and double distilled water (ddH) for the deficient fraction 2 O) make up.
6) The temperature is kept at 50 ℃ for at least 60 minutes.
7) The MIX reaction was removed, and 1-5. Mu.L of the reaction solution was pipetted into E.coli competence and electroporated.
7. Step of electrotransformation
1) The plasmid or Gibson reaction solution was mixed with competence, transferred to a 2mm cuvette and allowed to stand on ice for 5 minutes.
2) The electric rotator (Bio-rad) was set to 2.5KV for electric shock, and then 1mL of 2YT medium was immediately added, and the mixture was inverted and mixed.
3) Cells suspended in 2YT medium were transferred to 1mL EP tubes, recovered for 1 hour, plated on correspondingly resistant plates, and placed in an incubator for inverted culture.
8. Plasmid construction
The primers used for plasmid construction are listed in Table 2. The different genes in the heme metabolic pathway are divided into four modules, each using P TET The promoters respectively construct plasmids PTetO-HE1, PTetO-HE2, PTetO-HE3 and PTetO-HE4, and then all modules are assembled in one plasmid PTetO-HEAss.
TABLE 2 primers used in this study
Figure BDA0002756556890000071
Figure BDA0002756556890000081
The test steps are as follows:
the starting plasmid pBF-PTeto has the sequence (SEQ ID NO: 1)
CACCTCGCTAACGGATTCACCGTTTTTATCAGGCTCTGGGAGGCAGAATAAATGATCATATCGTCAATTATTACCTCCACGGGGAGAGCCTGAGCAAACTGGCCTCAGGCATTTGAGAAGCACACGGTCACACTGCTTCCGGTAGTCAATAAACCGGTCAGAATTTCAGATAAAAAAAATCCTTAGCTTTCGCTAAGGATGATTTCTGTGGTACCTCTCAGACGCAGAGTTGCCAACCAGATATCGACGTCTTAAGACCCACTTTCACATTTAAGTTGTTTTTCTAATCCGCATATGATCAATTCAAGGCCGAATAAGAAGGCTGGCTCTGCACCTTGGTGATCAAATAATTCGATAGCTTGTCGTAATAATGGCGGCATACTATCAGTAGTAGGTGTTTCCCTTTCTTCTTTAGCGACTTGATGCTCTTGATCTTCCAATACGCAACCTAAAGTAAAATGCCCCACAGCGCTGAGTGCATATAATGCATTCTCTAGTGAAAAACCTTGTTGGCATAAAAAGGCTAATTGATTTTCGAGAGTTTCATACTGTTTTTCTGTAGGCCGTGTACCTAAATGTACTTTTGCTCCATCGCGATGACTTAGTAAAGCACATCTAAAACTTTTAGCGTTATTACGTAAAAAATCTTGCCAGCTTTCCCCTTCTAAAGGGCAAAAGTGAGTATGGTGCCTATCTAACATCTCAATGGCTAAGGCGTCGAGCAAAGCCCGCTTATTTTTTACATGCCAATACAATGTAGGCTGCTCTACACCTAGCTTCTGGGCGAGTTTACGGGTTGTTAAACCTTCGATTCCGACCTCATTAAGCAGCTCTAATGCGCTGTTAATCACTTTACTTTTATCTAATCTAGACATCATTAATTCCTAATTTTTGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTCCCTATCAGTGATAGAGAAAAGAATTCAAAACTCGACCACTCGAGGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACCGGTAAACCAGCAATAGACATAAGCGGCTATTTAACGACCCTGCCCTGAACCGACGACCGGGTCGAATTTGCTTTCGAACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGATCTTGATCCCCTGCGCCATCAGATCCTTGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCCCAGCTGGCAATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCACTGCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTGACATTCATCCCAGGTGGCACTTTTCGGGGAAATGTGCGCGCCCGCGTTCCTGCTGGCGCTGGGCCTGTTTCTGGCGCTGGACTTCCCGCTGTTCCGTCAGCAGCTTTTCGCCCACGGCCTTGATGATCGCGGCGGCCTTGGCCTGCATATCCCGATTCAACGGCCCCAGGGCGTCCAGAACGGGCTTCAGGCGCTCCCGAAGATCTCGGGCCGTCTCTTGGGCTTGATCGGCCTTCTTGCGCATCTCACGCGCTCCTGCGGCGGCCTGTAGGGCAGGCTCATACCCCTGCCGAACCGCTTTTGTCAGCCGGTCGGCCACGGCTTCCGGCGTCTCAACGCGCTTTGAGATTCCCAGCTTTTCGGCCAATCCCTGCGGTGCATAGGCGCGTGGCTCGACCGCTTGCGGGCTGATGGTGACGTGGCCCACTGGTGGCCGCTCCAGGGCCTCGTAGAACGCCTGAATGCGCGTGTGACGTGCCTTGCTGCCCTCGATGCCCCGTTGCAGCCCTAGATCGGCCACAGCGGCCGCAAACGTGGTCTGGTCGCGGGTCATCTGCGCTTTGTTGCCGATGAACTCCTTGGCCGACAGCCTGCCGTCCTGCGTCAGCGGCACCACGAACGCGGTCATGTGCGGGCTGGTTTCGTCACGGTGGATGCTGGCCGTCACGATGCGATCCGCCCCGTACTTGTCCGCCAGCCACTTGTGCGCCTTCTCGAAGAACGCCGCCTGCTGTTCTTGGCTGGCCGACTTCCACCATTCCGGGCTGGCCGTCATGACGTACTCGACCGCCAACACAGCGTCCTTGCGCCGCTTCTCTGGCAGCAACTCGCGCAGTCGGCCCATCGCTTCATCGGTGCTGCTGGCCGCCCAGTGCTCGTTCTCTGGCGTCCTGCTGGCGTCAGCGTTGGGCGTCTCGCGCTCGCGGTAGGCGTGCTTGAGACTGGCCGCCACGTTGCCCATTTTCGCCAGCTTCTTGCATCGCATGATCGCGTATGCCGCCATGCCTGCCCCTCCCTTTTGGTGTCCAACCGGCTCGACGGGGGCAGCGCAAGGCGGTGCCTCCGGCGGGCCACTCAATGCTTGAGTATACTCACTAGACTTTGCTTCGCAAAGTCGTGACCGCCTACGGCGGCTGCGGCGCCCTACGGGCTTGCTCTCCGGGCTTCGCCCTGCGCGGTCGCTGCGCTCCCTTGCCAGCCCGTGGATATGTGGACGATGGCCGCGAGCGGCCACCGGCTGGCTCGCTTCGCTCGGCCCGTGGACAACCCTGCTGGACAAGCTGATGGACAGGCTGCGCCTGCCCACGAGCTTGACCACAGGGATTGCCCACCGGCTACCCAGCCTTCGACCACATACCCACCGGCTCCAACTGCGCGGCCTGCGGCCTTGCCCCATCAATTTTTTTAATTTTCTCTGGGGAAAAGCCTCCGGCCTGCGGCCTGCGCGCTTCGCTTGCCGGTTGGACACCAAGTGGAAGGCGGGTCAAGGCTCGCGCAGCGACCGCGCAGCGGCTTGGCCTTGACGCGCCTGGAACGACCCAAGCCTATGCGAGTGGGGGCAGTCGAAGGCGAAGCCCGCCCGCCTGCCCCCCGAGCCTCACGGCGGCGAGTGCGGGGGTTCCAAGGGGGCAGCGCCACCTTGGGCAAGGCCGAAGGCCGCGCAGTCGATCAACAAGCCCCGGAGGGGCCACTTTTTGCCGGAGGGGGAGCCGCGCCGAAGGCGTGGGGGAACCCCGCAGGGGTGCCCTTCTTTGGGCACCAAAGAACTAGATATAGGGCGAAATGCGAAAGACTTAAAAATCAACAACTTAAAAAAGGGGGGTACGCAACAGCTCATTGCGGCACCCCCCGCAATAGCTCATTGCGTAGGTTAAAGAAAATCTGTAATTGACTGCCACTTTTACGCAACGCATAATTGTTGTCGCGCTGCCGAAAAGTTGCAGCTGATTGCGCATGGTGCCGCAACCGTGCGGCACCCTACCGCATGGAGATAAGCATGGCCACGCAGTCCAGAGAAATCGGCATTCAAGCCAAGAACAAGCCCGGTCACTGGGTGCAAACGGAACGCAAAGCGCATGAGGCGTGGGCCGGGCTTATTGCGAGGAAACCCACGGCGGCAATGCTGCTGCATCACCTCGTGGCGCAGATGGGCCACCAGAACGCCGTGGTGGTCAGCCAGAAGACACTTTCCAAGCTCATCGGACGTTCTTTGCGGACGGTCCAATACGCAGTCAAGGACTTGGTGGCCGAGCGCTGGATCTCCGTCGTGAAGCTCAACGGCCCCGGCACCGTGTCGGCCTACGTGGTCAATGACCGCGTGGCGTGGGGCCAGCCCCGCGACCAGTTGCGCCTGTCGGTGTTCAGTGCCGCCGTGGTGGTTGATCACGACGACCAGGACGAATCGCTGTTGGGGCATGGCGACCTGCGCCGCATCCCGACCCTGTATCCGGGCGAGCAGCAACTACCGACCGGCCCCGGCGAGGAGCCGCCCAGCCAGCCCGGCATTCCGGGCATGGAACCAGACCTGCCAGCCTTGACCGAAACGGAGGAATGGGAACGGCGCGGGCAGCAGCGCCTGCCGATGCCCGATGAGCCGTGTTTTCTGGACGATGGCGAGCCGTTGGAGCCGCCGACACGGGTCACGCTGCCGCGCCGGTAGCACTTGGGTTGCGCAGCAACCCGTAAGTGCGCTGTTCCAGACTATCGGCTGTAGCCGCCTCGCCGCCCTATACCTTGTCTGCCTCCCCGCGTTGCGTCGCGGTGCATGGAGCCGGGCCACCTCGACCTGAATGGAAGCCGGCGG
pBF-PTeto plasmid (SEQ ID NO: 1) is used as a template, and BLT-PTeto F/BLT-PTeto R is used as a primer for amplifying a skeleton. Coli MG1655 genome as template amplification hemA, hemmL, hemB, primer for PTET-HeA F/heL-HeA R, heA-HeL F/HeB1-HeL R, heL-heB F/heB2-heB R. The DNA fragments were assembled to obtain plasmid PTeto-HE1.
Coli MG1655 genome as template to amplify hemC, hemD, hemE, hemN. The primers are PTET-HeCD F/HeE-HeCD R, heD-HeE F/HeN-HeE R and HeE-HeN F/PTET-HeN R respectively. And assembling the DNA fragment and the previously amplified pBF-PTeO plasmid skeleton to obtain a plasmid PTeO-HE 2.
Coli MG1655 genome as template to amplify hemG1, hemG2, hemG3, hemH1, hemH2. The primers are PTET-HeG F/HeG-HeG R, heG1-HeG F/HeG3-HeG R, heG-HeG F/HeH1-HeG R, heG-HeH 1F/HeH 2-HeH 1R, heH1-HeH 2F/T-HeH 2R. And assembling the DNA fragment and the previously amplified pBF-PTeO plasmid skeleton to obtain a plasmid PTeO-HE 3.
And (3) amplifying ccmF by using the S.oneidensis MR-1 genome as a template, using PTET-cmf/PTET-cmf R as a primer, and assembling the primer and the previously amplified pBF-PTeto plasmid skeleton to obtain a plasmid PTeto-HE4.
On the basis of obtaining the plasmid, the PTeto-HE1 is linearized by using a primer L _ D-PTETE 1F/L _ A-PTETE 1R, a corresponding module in the PTeto-HE2 is amplified by using the primer L _ A-HE 2F/L _ B-HE 2R, a corresponding module in the PTeto-HE3 is amplified by using the primer L _ B-HE 3F/L _ C-HE 3R, a corresponding module in the PTeto-HE4 is amplified by using the primer L _ C-HE 4F/L _ D-HE 4R, and the 4DNA fragments are assembled to obtain the PTeto-HEAss (SEQ ID NO: 2).
The sequence of PTeto-HEAss is shown in SEQ ID NO: 2:
CACCTCGCTAACGGATTCACCGTTTTTATCAGGCTCTGGGAGGCAGAATAAATGATCATATCGTCAATTATTACCTCCACGGGGAGAGCCTGAGCAAACTGGCCTCAGGCATTTGAGAAGCACACGGTCACACTGCTTCCGGTAGTCAATAAACCGGTCAGAATTTCAGATAAAAAAAATCCTTAGCTTTCGCTAAGGATGATTTCTGTGGTACCTCTCAGACGCAGAGTTGCCAACCAGATATCGACGTCTTAAGACCCACTTTCACATTTAAGTTGTTTTTCTAATCCGCATATGATCAATTCAAGGCCGAATAAGAAGGCTGGCTCTGCACCTTGGTGATCAAATAATTCGATAGCTTGTCGTAATAATGGCGGCATACTATCAGTAGTAGGTGTTTCCCTTTCTTCTTTAGCGACTTGATGCTCTTGATCTTCCAATACGCAACCTAAAGTAAAATGCCCCACAGCGCTGAGTGCATATAATGCATTCTCTAGTGAAAAACCTTGTTGGCATAAAAAGGCTAATTGATTTTCGAGAGTTTCATACTGTTTTTCTGTAGGCCGTGTACCTAAATGTACTTTTGCTCCATCGCGATGACTTAGTAAAGCACATCTAAAACTTTTAGCGTTATTACGTAAAAAATCTTGCCAGCTTTCCCCTTCTAAAGGGCAAAAGTGAGTATGGTGCCTATCTAACATCTCAATGGCTAAGGCGTCGAGCAAAGCCCGCTTATTTTTTACATGCCAATACAATGTAGGCTGCTCTACACCTAGCTTCTGGGCGAGTTTACGGGTTGTTAAACCTTCGATTCCGACCTCATTAAGCAGCTCTAATGCGCTGTTAATCACTTTACTTTTATCTAATCTAGACATCATTAATTCCTAATTTTTGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTCCCTATCAGTGATAGAGAAAAGAATTCAAAACGCCAAGAATCTAGAAAAGAGTCAGATGAGCCTTGTAGCAATCGGTATTAACCATAAAACAGCCACGGTAGACCTGCGTGAGAAAGTCGCCTTCTCTCCGGACAAAATTCATGATGCCATGAAGAGTCTGGCCAGTCGTACACGCTCGGGTGAAGCCGTTATCGTCTCGACCTGCAATCGCACTGAATTGTATTGTAACAATGGCGATGAGACCGATATCATTGAATGGCTTGAAGAATATCATGGCCTAGAACATCAAGATGTCGCGCCTTGCCTCTACAATTATCACGGGCAAGAGGCGGTAAGGCATTTGATGCGCGTCGCTTCAGGTCTTGACTCGTTGATCCTTGGTGAGCCGCAGATTCTTGGTCAAGTTAAACAAGCCTTTGTCAAAGCCAAAGAAGCCGGCACAGTTGCCTTAACCATTGACCGCTTGTTCCAAAATACCTTCTCAGTTGCTAAAAAAGTGCGTACCGAAACCGAAATCGGTGCCGCTGCTGTATCGGTCGCCTTTGCGGCTGTCAGCATGGCAAAACATATCTTCTCTTCACTGTCGACAACCAAGGTGCTGTTAATTGGTGCTGGTGAAACGATTGAGCTAGTGGCAAAGCATCTAAAAGATAACGGCGTCGCCTCAATGGTGGTGGCAAACCGTACTTTAGAGCGTGCCCAAAGCATGTGTGAGGAATTTAATGCCACGGCAATTACACTGGCACAGATACCAGATTTTCTCCCTAAAGCCGATATCGTGATATCCTCTACCGCCAGCCCGCTGCCAATCCTTGGTAAAGGCATGGTAGAAAAAGCGCTAAAGCAGCGTCGCCATCAACCTATGTTATTGGTTGATATAGCAGTTCCTCGGGATATTGAGCCAGAAGTCGCCGATTTGGACGATGCGTTTCTGTATACAGTGGACGACCTGCATAGCATTATTGAACAGAATAAGGCTTCCCGTAAGGAGGCCGCCGAGCAAGCTGAATTAATTACTGAAGAACAATCTCATCTATTTATGGAGTGGGTGCGTTCTTTAGAGTCGGTCGATAGTATTCGCGAGTATCGCAGCCAGAGCATGGCGATAAAGGATGAGTTGGTGGAACGCGCCCTGAATAAATTAGCGCAGGGGGGCGACACTGAGCAGGTATTGGTTGAATTAGCCAATCGTCTGACCAATAGACTCATTCACGCACCTACCCAAGCCCTCACGGTGGCCAGCCGTCAGGGGGATTTGAATACATTAGGTCAGTTAAGAACAGCGCTCGGATTAGATAAAAACTAATGGCTTCAAACTTTAAGGACTTAACATGACCCGTTCCGAAGCGCTATTTGAACAGGCTAAAAAAACCATCCCCGGCGGTGTTAACTCTCCGGTTCGTGCTTTTAATGGTGTAGGTGGTTCCCCCCTGTTTATTGAAAAAGCCGATGGCGCTTATATCTACGATGCCGATGGCAAAGCCTATATCGACTATGTCGGTTCTTGGGGCCCGATGATCCTCGGCCACAATCATCCGAAGATCCGTGAAGCAGTGCTGGCTGCAGTACACAATGGCCTGTCTTTTGGCGCGCCAACTGAGCTTGAAGTGCAAATGGCCGAAAAAGTGATTGCGATGGTGCCCTCGATTGAGCAAGTCCGTATGGTCAGCTCTGGTACTGAAGCGACCATGAGTGCGATTCGCTTAGCGCGCGGTTTTACTAATCGTGACAAGATCTTAAAGTTTGAAGGTTGCTACCATGGCCACGCTGACTGCCTATTAGTTAAGGCGGGGTCTGGTGCATTAACCTTAGGCCAACCCAGCTCACCCGGCATCCCTGAAGATTTCGCAAAGCACACCTTAACTGCCGTGTATAACGATCTGGATTCTGTTCGTAGCCTATTCGAGCAATATCCAACTGAGATTTCTTGCATCATCATCGAGCCCGTTGCTGGCAACATGAACTGCATCCCACCTATTCCAGGCTTCCTCGAAGGTCTGCGTAGCCTGTGTGATGAGTTTGGTGCGCTGCTGATTATCGACGAAGTGATGACAGGGTTCCGAGTTTCAAAAAGCGGTGCTCAAGGTCACTATGGCGTTACGCCAGACTTAACCACTCTCGGTAAAGTCATCGGTGGCGGTATGCCAGTAGGTGCATTTGGTGGTCGTAAAGATGTGATGCAGTTTATCGCACCAACAGGTCCTGTATACCAAGCAGGTACGCTTTCAGGTAACCCAATTGCGATGTCAGCGGGTCTAGCGCAAATGGAAGCATTGTGTGAAGAAGGACTGTACGAAGCCCTAAGCGCTAAAACCAAGCGCATCGCCGAAGGCTTTAAAGCGGCGGCGGATAAGCACGGCATCCCAATGGCAATCAACTATGTTGGCGGTATGTTCGGCTTCTTTTTTACCGAGCAAGAGCACATCACACGCTTCGACCAAGTGACTAAGTGCAATATTGAGCACTTCCGTACTTTCTACCATGGCATGTTAGATGAAGGCGTTTACTTAGCACCAAGTGCCTATGAAGCAGGCTTCCTGTCGATGGCCCATGGTGAAGAAGAGCTGCGCCTCACACTTGAAGCTGCCGACCGTGTCTTAGCTCGCATGAAAGCGGCAAACTAATGCAAAGTATTAATAAGGAAATTCAATGAGCAGCACACGAGAAAATACCATCGCCCCCCTTCGCCGTTTAAGACGCCTGCGCCGCACCGAGGCCATGCGTGATCTGGTACGTGAAACCCATGTCTCACTCTCCGACTTGATCCACCCACTCTTTATTGAAGAACACATTAACCAAGCTGTGCCAATTTCAACCCTGCCGGGGATTTGCCGTCTGCCCGAAAGCGCACTTGCCGATGAGATCCAAAGGCTCTATGCCTTAGGGATCCGCTATGTGATGCCCTTTGGGATTTCCCATACCAAAGATCCACAGGGCAGCGACACTTGGAATGACAATGGATTGCTCGCACGGATGATCCGTACCATAAAAGCCACCGCGCCAGAGATGATGGTGATCCCCGATATTTGTTTTTGTGAATATACCGACCATGGACACTGCGGCGTGTTGCACCAAGACGAAGTCTGTAACGACCAAACCGTGGCTAACTTAGTCAAACAATCCGTCACCGCCGCTAAAGCGGGAGCTGATATGTTGGCGCCATCAGCAATGATGGATGGTCAAATTAAAGCGATACGACAAGGGCTGGATGAAGCAGGCTTTGAACACGTAGCCATTTTGGCCCACGCAGCCAAGTTCGCCTCCTCTTTCTACGGGCCTTTTAGGGCCGCTGTAGATTGTGAACTCAGTGGTAACCGCAAAGGCTATCAGCTCGATTACGCCAATGGCCGCCAAGCATTGCTCGAAGCACTGCTCGATGAGGAAGAAGGCGCAGATATTTTGATGGTAAAACCCGGCACGCCATATTTGGATGTATTAAGTCGCCTAAGACAAGAAACCCACCTCCCCTTAGCGGCCTATCAAGTGGGTGGCGAATATGCAGGTATTAAATTTGCTGCGCTGGCGGGCGCCCTCGATGAGCGCGCCGTTGTCACTGAAACCTTTATCGGTTTAAAACGGGCTGGTGCCGATTTAATTGTCAGTTATTACACTAAACAATATGCCGAGTGGTTAGCAGAGTTACGCGAATAAAACAGAACCTAATTAGGAGTCTAATGTGAATATCATTACCAGTGCCTTCCCACAGCGCAGAATGCGCCGCATGCGTAAACATGATTTTAGTCGTCGCCTGATGGCTGAGAATCACCTAACAGTGAATGACTTAATCTATCCAATGTTTGTGCTCGAAGGCAGCAATCGCAGCGAAAAAGTGGCTTCAATGCCAGGTGTAGAGCGCTACTCTATCGACCTACTGCTAAAAGAAGCAGAAGAGCTAGTTGAATTAGGTATCCCCTTAATAGCCCTCTTTCCTGTTACGCCTTCCGAGAAAAAGTCGCTTATGGCAGAAGAGGCATACAATGCTGATGCGCTAGTGCAACGCGCAGTGCGTGAACTCAAAAAAGCTTTCCCGCAACTTGGCATTATGACCGACGTAGCTCTAGATCCTTTCACGACCCATGGTCAAGACGGCATTATTGATGAAACAGGCTATATCCTGAATGACATCACCACAGAGATCTTAGTGAAACAAGCACTCTCCCATGCTGAAGCGGGCGCAGACATTGTCGCTCCATCGGATATGATGGACGGCCGCATTGGCGCCATTCGCCAAGCGCTAGAAGCTGCTGGCCATGTTAACACTCAAATCATGGCCTACTCTGCCAAATACTCTTCAAGCTACTACGGCCCATTCCGCGATGCGGTTGGCTCAGCAGGCAACCTAAAAGGTGGCAATAAACATAGCTATCAAATGGACCCAGCAAATAGCGATGAAGCGCTGCACGAAGTCGCACTGGATATCCAAGAGGGCGCAGATATGGTGATGGTAAAACCTGGCATGCCATACCTCGATATCGTTCACCGTGTAAAGACTGAATTAGCAGTCCCCACCTTCGCCTACCAAGTGAGTGGTGAATATGCCATGCACATGGCTGCAATCCAAAATGGCTGGTTAGCAGAAAAGGCAATCGTCATGGAATCGCTACTATGCTTTAAACGCGCTGGCGCCGATGGCATCCTTACCTACTTCGCAAAACGTGCCGCACAGTGGTTAAAAGAAGCTAAATAACTCGACCACTCGAGGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACCGGTAAACCAGCAATAGACATAGCGGTAGACACCAGTAGTTTATCTTACAATTTTTGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTCCCTATCAGTGATAGAGAAAAGAATTCAAAACTAAGATCTCGGATGGAAACTAGGCATGTCTGAAAACCGCATACGTATCGCTACCCGCAAGAGTCCGCTGGCCATGTGGCAAGCAGAATTTGTTAAAGCAGAATTAGAACGCATTCACCCTGGTATTGTGGTGGAGCTATTGCCAATGAGCACTAAGGGCGATGTTATCTTAGACACGCCATTAGCTAAAGTCGGTGGCAAAGGCTTGTTCGTTAAAGAACTCGAAGTCGCCATGCTGGAAGATCAAGCCGACATCGCGGTGCACTCAATGAAAGACGTGCCTGTAGATTTCCCCGAAGGATTAGGACTGGAAGTCATTTGTGAGCGTGAAGATCCTCGCGATGCTTTTGTCTCCAATATTTATAAGTCGATCAGTGAGTTGCCACTTGGTGCCACGGTTGGTACTTCTAGCCTGCGCCGTCAGTGCCAACTGCGTGCTTCCCGTCCCGATCTTATCATCAAAGATCTGCGTGGCAACGTAGGTACTCGCCTCGCGAAACTCGATAACGGTGAATACGATGCGATTATTCTTGCCGCGGCAGGCTTAATCCGCCTGAAGTTATCTGAGCGTATCGCCAGCTTTATCTCTGCCGAAGAGTCCTTACCCGCAAACGGTCAAGGTGCTGTCGGTATCGAATGTCGCACCAATGATGAGCGCGTTAAAGCATTATTAGCGCCATTAGAACACTTAGAGACACGCTACCGCGTGATCGCCGAGCGCGCGATGAATACTCGCCTTGAAGGTGGTTGCCAAGTCCCTATTGGCGCCTTTGCCGAAATTGATGGTGATGAGATGACACTGCGCGGATTAGTGGGTAACCCAGATGGCAGTGAAATCATCGAAGGCGTGATCACCGGTCCTAAGACCGAAGCCACGCAATTAGGTGTTGCCCTTGCGGAAGAACTACTCAGCAAAGGCGCCAAAAGCATCCTCGATGCTGTTTACGCCAAAGCCTAAGTCGATGAAAGTCTTACTGACGCGCCCCGAGGGGCGCAATCAGTCCATGGTCGATGCCTTGAATGAAAGAGGCATCGAACACTGCGTTACGCCACTACTTTGTGTTGAGGCGACACCGGCTCTACCTCCTGAAACCTCACATCCACTCGCTAATGTCGATATGGTTGTCTGTATCAGCGCCAATGCGGTTAGCTTTGCTGACGATACGTTTAAAGCCAATGATGCCAACGTTAAAGGCTGGCCAAAAGTGCCTTATTTCGCTGTAGGGCATGCCACTTGGGAAGCACTACAACAAATCGACATCGATGCCCTTGAGGCGCCCGATGATTGCCAGCAGACTGAAGGGTTACTAACTCTACCTACGCTGCAACACATCCAAGGCAAAAAGATTACCATTATTCGCGGTGTTGGTGGCCGTGAAGCGCTCGCTGAACAACTGACATCTAGAGGCGCACAGGTGCGCTATTGGGAAGTCTATCAACGTGCTTGTCCGCCGCTGGATGGCACTATTATCACCCAACAGTGGATAGACTTAGGGATAGATACTGTCGTGGTGACAAGCGGAGAAGTACTGGATAATCTGATTAATCTAGTGCCAAAAGAGTTATTTGCATGGCTGCGCTCATGTCATATCATAGTCCCCAGTAACCGAGTAGAAGCTCAAGCTCATGCCTTTGGTATAACCCAAGTCACCAATGCCAATGCCGCCAACAGCAAAGCCGTGCTAAACGCCCTTAAACTCTAATCAATAAGTCTAGGAATCAAGCCAAATGGCAGAATTAAAGAATGATCGTTATTTACGCGCCCTACTAAAACAGCCTGTTGATATGACCCCTGTGTGGATGATGCGTCAAGCGGGCCGTTATCTCCCTGAATATAAAGCAACTCGCGCCCAGGCGGGTGATTTTATGTCTTTATGTAAAAACCACGAATTGGCCTGTGAAGTGACGCTACAACCGCTGCGTCGTTACGAGCTAGATGCGGCGATTCTGTTTTCCGACATTCTGACGGTTCCCGATGCTATGGGATTAGGTCTGTATTTTGAGGCGGGTGAAGGCCCACGTTTTGAGCGCCCGACAGACACTATTGATGCCATCAAAAAATTATCAATTCCTGATCCAGAAGATGAGCTGGGTTATGTGATGAAGGCGGTGAGTACAATTCGTCGTGAATTGAATGGTCAAGTGCCATTAATCGGCTTCTCAGGTTCACCTTGGACGCTGGCCACTTATATGGTTGAAGGCGGTTCGAGCAAAACCTTCGAAAAAATCAAAAAAATGGCCTATGCCGAGCCTGCTGCACTGCATATGTTACTCGACAAGTTAGCTGACTCAGTGACTTTATACCTGAATGCGCAGGTCGCTAATGGTGCTCAATCTTTAATGATTTTCGACTCTTGGGGCGGTGCATTGTCGCATACAGCTTACCGTGAGTTTTCACTGCGTTATATGCAGAAGATTGTCGATGGTCTGACTCGCTTTGCCGATGGTCGCCAAGTACCAGTAACCCTATTCACTAAAGGTGGTGGCTTATGGTTAGAAGCCATGGCGGAAACCGGTTGTGACGCCTTAGGTTTAGACTGGACGGTGGATATTGCCGATGCTCGTCGCCGTGTAGGCCATAAAGTTGCGCTACAAGGCAACATGGACCCATCTATGTTATATGCACCTATCCCACGCATTGAAGAGGAAGTTGGTCAAATCCTTGCGGGATACGGTGAAGGTACAGGCCACGTATTTAACTTAGGCCATGGTATTCACCAGCATGTCGATCCAGAGCATGCAGGCGCCTTTATTAAGGCGGTCCACGCTCAATCTAAGCAATACCATAAGTAACTAATTTACCCTCGGAGGACACGCCTTGAAGCAGCCCACTCAGATAAGCTGGGATCAGTCGATGATCGAAAAATATAACTACAGCGGTCCCCGTTATACTTCTTATCCAACGGCGCTAGAGTTCGATGATTCATTCACTGAACAAAACCTGTTAACTGCGATTGAAAACAGCAAGAGTGACAAACTGTCGCTGTATATTCACATCCCCTTCTGCGCCAAACTTTGCTATTACTGTGGCTGCAATAAAGTCATCACTCGTCACGCCCATAAGGCCGACCAATACATTGAGTATTTAAGCCACGAAATTATTAAGCGCGCCCCACTGTTTAAGCATTACTCGGTCACCCAAATGCACTGGGGCGGCGGCACACCAACCTTCTTAAATCCTGAGCAAATTATTAAACTTACCGCATTAATTAAGGCTAACTTTAACTTTGCCGATGAAGGTGAGTTCTCTATCGAAGTTGACCCGCGTGAAATTGAACTTTCCATGCTCGACACCCTTAAAGAAGCCGGCTTTAACCGTATTTCGATTGGTGTTCAGGACTTCAACAAAGAAGTACAAGTCGCGGTTAACCGTGAGCAGGACGAGCAATTTATTTTCGATTTAATGGCCAAAGCCAAGGCTATGGGATTCGTCTCAACCAATATCGATTTAATCTACGGCTTGCCACACCAGACTCCAGAGACATTCGCCGCCACCATGCAGCGCGTGTTAGATCTGTCGCCCGATCGTCTATCTGTATTCAACTATGCTCACTTACCCGCGCGTTTTGCCGCGCAGCGTAAAATTAAAGATGAGCATTTACCTTCGCCAAAACAAAAGCTTGAGATGCTGCATCAAACTATCGAGACCTTAACTGGCGCGGGTTATCAATACATTGGTATGGACCACTTCGCGAAGCCTGACGATGAGCTGGCTAAGTTACAACGCGAAGGCAAACTGCACCGCAACTTCCAGGGTTATACCACCCAAGAAGAATGCGATTTGCTTGGTCTTGGCGTGTCGTCTATCAGCCAAATTGGCGATTGCTATGCGCAAAACCAAAAGGACATTCGCCCTTACTACGAAGCCATCGATAAAGATGGCCATGCGCTCTGGAAAGGCTGCAGCTTGAATCGTGACGACGAAATCCGCCGCGTAGTGATCAAACAATTGATCTGCCACTTCGACTTAGATATGGCCAAAATAGATGAAAAACTGGGAATTAAGTTTGAGGAATACTTCGCCGAAGACTTAAAACTACTGCAAACCTTTATCGATGATAAATTAGTTGAAGTCGCCGACAGAAAGATCACCATCAGCCCCACTGGCCGCCTGTTGATCCGCAATATCTGTATGTGCTTCGACCTTTACTACCGTCAAAAAGCGCGTCAACAACAGTTCTCTCGTGTGATCTAACTCGACCACTCGAGGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACCGGTAAACCAGCAATAGACGGCGAACAGAACTCTATTGAGATTTTATCCAATTTTTGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTCCCTATCAGTGATAGAGAAAAGAATTCAAAAACGCCAACTTTCTGGAAAGATTAATATGCAAACATTAATAATCTACTCAACCATCGACGGTCAAACGCTAGAAATTTGTCGTAAGATTAAAGCATTTGCTGAGCGGGCGGGTGAAAAGGTCTCCCTCTTTAGCTTAGAACAGGCTGAAGCTATAAACCTTGCAGATGTTGATAAGGTATTGATTGGTGCGAGTATCCGCTATGGTAAACATAGACCTGAGCTTTACCAATTTGTGAATCGCAACCATGCGGTGTTAAGCGCGAAAGTTAATGGTTTTTTTACGGTAAATGTGGTGGCGCGGAAGCCGTTAAAGAACACCCCAGAAACCAATCCTTATATGCAGAAATTCCTCAAATTATCCCTTTGGCAACCACAACACTTGGCGGTATTTGCTGGTAAGATTGATTACCCTAAATATGGCTTATTCGACCGCACAATGATCTGTTTTATCATGTGGATGACTAAGGGGCCAACGGATCTTAAGGGCACGTTTGAGTTTACCGATTGGGCTAAAGTCGAAGCTTTTGGCACTCATTTTAGTAAGCTATAATACTTTTACTGAACGAGAATACCCCATGACACGCATCCTGGTGCTTTATTTTACCCGAGGAGGCCATACGGCCAAGATTGCCAATGCAATAGCGGAGCAATTAACCCTGCGTGGCGCAAAGGTTGACTTAGTCGATATCAATAGTGCGGCTGCAACACGAATCAACTGGTCCGATTATCAGCTGGTGGCTTTGGGTGCCTGTGTACTCTATGGCACTTATGATAAGAGTGTATTTCAATTTATTGAGCAACATGTGCAGGCTTTGAGTTTTTTGCCAAACAGTTTTTTCTGCGTCAACGTGGTCGCACGTAATCCGGAGAAACGTATTCCTGAAAACAATAAATACCTGCAAAAGTTTATCACTCTATCTCCTTGGACTCCCGCAGATTTGAAGATTATTGCTGGTAAAGTCGATTATCCATCTTGGCCTTGGTACGACAGATTAATGATCCAGTTAATTATGAAAATCACTAAAGGCCCAACGGATCCAAAAGCAGTTATTGATTATACCGATTGGGAAGATGTGAAAGTCTATGCCGACCATCTGCTGACCTTGGTCGAGGTTGCTGAACCTGCCTAATTTTATTGAGATAATCGAGGCTTAAGTGAAAAAAATTCTGATCATCTTTTCCAGTGTTCATGGCCACACTCGTAAAATCACCAATCAGTTAGCTCAGCAACTCAAAGAGTTGGGTAATTCGGTGGTGATTGCGGATATTAAGGCTGTCCCTGCGATGGAGTCTTTCGATAAGATCATTATTGGCGCGAGTATTCGTCACGGAAAACATAATCCTGCGTTGTACGAATTTATCCAAAAGCATCAACAGATCCTCACGCAAAAGGTCAGTGGCTTTTTCTCCGTCAGTTTAGTGGCTCGTAAACCCGAGAAAAATACTCCAGAAACCAACCCATACATGCAAGCATTTTTAAGCAAAACGACTTGGCGCCCTAAGTTGCTACAAGTGTTTGGCGGTAATCTGAATTACCAAGGTTATAATGCTTTCGATAGAAATATTATTCGTTTTATCATGTGGTTAACTAAGGGGCCAACGGATCCTGTCACCAATGTTGAATACACAGACTGGCAAAAAGTGCAAGAGTTTGGTTTACAAATCCATCAAGCCTAACTAGGTTTTCAGGATTATCAAAAGAAATGGGTCACGCTGCGCGTGGCAAAGTTGGAGTGCTGTTATTAAACCTTGGCACTCCTGATGCGCCAACAGCATCGGCAGTAAGGCGTTATCTTGCCGAGTTTTTATCTGATCCACGGGTGGTGGAAATCCCAAAACTCCTCTGGATGCTGATTTTGTATGGCATAGTACTTAGGGTACGCCCTGCAAAGTCTGCAGCACTTTATCAAAAGGTGTGGACTGAGGCGGGGTCGCCACTGATGGATATCAGTTTGCGACAAACGGCTAAGCTATCCGATAAATTAACCGCGGATGGTCATCAAGTTTCGGTTCACTTAGCTATGCGTTATGGTAATCCTTCTGTTGCCAGCACTTTACGAGAGATGCACAAACAAGGGATTGATAAGCTGGTGGTTTTACCGCTCTATCCGCAATATGCTGCGCCGACAACTGGCTCGGCTTTTGACGCTATCGCTAAAGAGTTATCCCAATGGCGCTACCTGCCATCGCTGCATTTTATTAATACTTATCACGATAACCCTGATTTTATTGCTGCATTAGTCAATTCGATTCGTGACGATTTTGATAAACATGGCAAGCCGCAAAAGTTAGTGCTGTCTTACCATGGAATGCCTGAGCGCAATCTTCATCTGGGTGATCCATATTATTGTTTTTGCATGAAGACTACTCGTCTTGTGGCTGAGCAATTAGGTTTGAGCAAAGATGAATTTGCGATCACATTCCAATCTCGCTTTGGTAAGGCCAAGTGGTTGCAACCCTATACGGATGCAACGATGGCGGCTCTACCGAGTCAAGGTGTGCGTGATGTAGCGATTGTGTGCCCAGCATTTAGCGCCGATTGTTTAGAGACGCTAGAAGAGATTGTCGGCGAAAATGGCCATATCTTTACTCATGCGGGGGGAGAGAAGTTCCGATATATTCCTGCGCTCAATGATAATGATGACCACATCGCCATGATGGCGAATTTGGTGAAGCCGTATCTGTAATATTTGGCTGATAAAAGGTAGCACATTGACTTCTCCCTCTCCTGCGTTTGGCGTGTTATTAGTAAATCTTGGTACGCCTGATGAACCCACTCCGAAAGCGGTTAAGCGATTTCTCAAGCAGTTTTTAAGTGATCCTCGGGTCGTCGATTTATCCCCTTGGTTGTGGCAACCCATTTTGCAGGGGATTATCCTGAACACCCGTCCTAAGAAAGTCGCTAAACTTTATCAAAGTGTGTGGACGGAGCAAGGTTCGCCGTTAATGGTGATTAGTCAGTGCCAAGCCCAAAAGTTGGCAACGGATTTAAGCGCCACCTTTAATCAGACCATTCCGGTGGAACTGGGTATGAGCTATGGCAATCCTTCGATTGAGAGTGGCTTTGCCAAACTCAAAGCCCAAGGCGCCGAACGTATCGTGGTGCTGCCGCTGTATCCGCAGTATTCCTGCTCAACCGTCGCCAGTGTGTTTGATGCGGTAGCGCATTATTTGACTCGCGTGCGTGATATACCTGAGCTGCGTTTTAACAAGCAGTATTTCGCCCATGAAGCCTATATTGCGGCGCTGGCGCATTCGGTAAAGCGCCATTGGAAAACCCATGGTCAGGCCGAGAAGCTGATTTTATCTTTCCACGGGATCCCGCTGCGCTACGCGACCGAAGGCGACCCATACCCAGAGCAGTGCCGCACCACCGCCAAGTTATTAGCGCAGGCCTTAGGCTTGACCGACGGACAATGGCAAGTATGTTTCCAATCCCGCTTCGGTAAAGAAGAGTGGTTGACGCCCTATGCCGATGAGTTGCTGGCGGATTTACCCCGCCAAGGCGTGAAAAGTGTCGATGTGATTTGCCCTGCCTTTGCTACCGATTGCCTTGAAACCCTAGAAGAAATCTCGATTGGCGCGAAAGAGACCTTCCTCCATGCAGGTGGCGAAGCCTATCATTTTATTCCTTGTTTGAATGATGATGAGCTACATATAGAGCTACTCAGGTTATTAGTACAAGAACAAACGCAGTCTTGGATAAGTGCAGAATAACTCGACCACTCGAGGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACCGGTAAACCAGCAATAGACTGTCAGGAAAATACTGCGTTTACTATCAGCAATTTTTGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTCCCTATCAGTGATAGAGAAAAGAATTCAAAATATTATTAGAGACTGAGGAAAACCCATGATCCCAGAACTTGGACACTTTTCGCTGATAATAGGAGTGGCTTTTGCCTTCTTATTAACCAGCGTTCCCCTTATAGGTGTTGCCCGTAAAGACCAATATCTAGTGAGGTATGCTTGGCCGTTAGCCTACGGAATGTTCTTTTTTATCGCTTTATCCGTAGTATCACTTGGTTACAGCTTCGCCGTTGATGATTTCTCCGTGGCCTATGTGGCACATCACTCTAATTCTCAGTTACCTATCTTCTTTAAGATTGCGGCCGTATGGGGCGGTCATGAAGGGTCGCTGCTATTCTGGGTGTTCGCGCTATCCACTTGGGCTGCCTCTGTTGCTTTATTCAGTAAAGGCTTAGAAGAAGTCTTCACCGCTCGCGTGTTAGCGGTATTGGCATTGATTGTGATTGGCTTCAGCTTGTTTATGTTACTCACTTCTAGCCCATTTGAACGTATATTCCCAATGCCTGCTGAAGGCCGCGACTTAAATCCAATGCTGCAGGATGTGGGCTTAATCTTCCACCCTCCGATGTTATATTTGGGTTATGTGGGTTTCTCAGTCAGTTTTGCATTTGCGATTGCAGCTTTGATGAGTGGTCACCTTGATTCTGCTTGGGCTCGTTGGTCGCGTCCTTGGACCTTAGCCGCTTGGGTTTTCCTCACTGGTGGTATTGCATTAGGTTCTTGGTGGGCGTATTACGAATTAGGCTGGGGTGGATGGTGGTTCTGGGATCCAGTAGAAAACGCTTCATTTATGCCTTGGCTAGTGGGTACGGCTTTAGTGCATTCACTGATCGTGACGGAAAAGCGCGGTGCATTCCGTAACTGGACGGTATTGCTGTCTATCTTCGCATTCTCGCTAAGTTTACTCGGTACCTTTATCGTACGCTCTGGTGTGTTGACTTCAGTGCATTCATTTGCAGCCGATCCAAGCCGCGGTATGTTTATTCTATTATTGCTTGGTCTCGCTATCGGTGGTTCGCTCACTTTGTTTGCCTTCCGTGCAAGTGAAATGAGCAGCCCTGCACGCTTCGAGCTGAAATCAAAAGAAACCATGCTGTTAGTTTGTAACGTGTTACTGACGGTTGCAGCGGGTACTGTTCTGTTAGGCACTTTATACCCACTGCTGATCGATGCGTTAGGCATGGGTAAGATTTCTGTTGGACCTCCATACTTTAACGCTGTGTTTGTACCCATAGTACTTGTACTGTTTGCCTTTATGGGCGTCGGTCCAATCATTCGTTGGAAAAAATCGAAAGCTGGTGAATTGAAGCGACAGTTACTCGTACCTGCATTAGTATCTCTGGTGATTGGTATTGTCACGCCGTTTATCGTCGATGGGGCCTTTAACGCTTGGGTTGCTTGCGGTATCGCCGCTGCAGCTTGGATTATTTTGGCAACCGCAAAAGCAGCTTACAGCATCGTTAAGCCTAAAGATGGTGAAGTAAGCATCGCACGTATGGGCCGTAGCCAACTCGGTATGATCATCGCGCACTTAGGTATTGCTGTGTCTGTTATTGGTGCCACTATGGTGTCTAACTACTCAGTGGAGAAAAGTGTGCGTATGGGGCCTGGCGTAAGCCAAGAGCTAGCGGGTTACACCTTTAAATATCTCGAAACTAAAAACGTTGTTGGTCCTAATTACACTGCGCAGCAAGGTCAAATTGAGATTTACAAAGGCGATAAGTTACTGACACTGCTCAAACCCGATCGTCGCCAATACAATGTGCGTACTATGGATATGACCGAAGCCGGTATCGATTGGGGTCTGTTCCGCGATCTGTATGTGACGATGGGCGATCCGATTAGTAGTACTGAATTTGCTGTGCGTTTGAACTACAAGCCGTTTGTGCGTTGGTTATGGTTCGGAGCAATATTCATGATGGTCGGCGGTTTCTTTGCCGCATCGGATAAACGCTATCGCTCAAAAGTCGCGGCTACCGTTAAACCGCAAGCTGAAAAAGCGAAATTAGCTACCGCTCAATAACTCGACCACTCGAGGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACCGGTAAACCAGCAATAGACACTATCGGAATAAAGGAGTTCGCTTACTTCCTATTTAACGACCCTGCCCTGAACCGACGACCGGGTCGAATTTGCTTTCGAACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGATCTTGATCCCCTGCGCCATCAGATCCTTGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCCCAGCTGGCAATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCACTGCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTGACATTCATCCCAGGTGGCACTTTTCGGGGAAATGTGCGCGCCCGCGTTCCTGCTGGCGCTGGGCCTGTTTCTGGCGCTGGACTTCCCGCTGTTCCGTCAGCAGCTTTTCGCCCACGGCCTTGATGATCGCGGCGGCCTTGGCCTGCATATCCCGATTCAACGGCCCCAGGGCGTCCAGAACGGGCTTCAGGCGCTCCCGAAGATCTCGGGCCGTCTCTTGGGCTTGATCGGCCTTCTTGCGCATCTCACGCGCTCCTGCGGCGGCCTGTAGGGCAGGCTCATACCCCTGCCGAACCGCTTTTGTCAGCCGGTCGGCCACGGCTTCCGGCGTCTCAACGCGCTTTGAGATTCCCAGCTTTTCGGCCAATCCCTGCGGTGCATAGGCGCGTGGCTCGACCGCTTGCGGGCTGATGGTGACGTGGCCCACTGGTGGCCGCTCCAGGGCCTCGTAGAACGCCTGAATGCGCGTGTGACGTGCCTTGCTGCCCTCGATGCCCCGTTGCAGCCCTAGATCGGCCACAGCGGCCGCAAACGTGGTCTGGTCGCGGGTCATCTGCGCTTTGTTGCCGATGAACTCCTTGGCCGACAGCCTGCCGTCCTGCGTCAGCGGCACCACGAACGCGGTCATGTGCGGGCTGGTTTCGTCACGGTGGATGCTGGCCGTCACGATGCGATCCGCCCCGTACTTGTCCGCCAGCCACTTGTGCGCCTTCTCGAAGAACGCCGCCTGCTGTTCTTGGCTGGCCGACTTCCACCATTCCGGGCTGGCCGTCATGACGTACTCGACCGCCAACACAGCGTCCTTGCGCCGCTTCTCTGGCAGCAACTCGCGCAGTCGGCCCATCGCTTCATCGGTGCTGCTGGCCGCCCAGTGCTCGTTCTCTGGCGTCCTGCTGGCGTCAGCGTTGGGCGTCTCGCGCTCGCGGTAGGCGTGCTTGAGACTGGCCGCCACGTTGCCCATTTTCGCCAGCTTCTTGCATCGCATGATCGCGTATGCCGCCATGCCTGCCCCTCCCTTTTGGTGTCCAACCGGCTCGACGGGGGCAGCGCAAGGCGGTGCCTCCGGCGGGCCACTCAATGCTTGAGTATACTCACTAGACTTTGCTTCGCAAAGTCGTGACCGCCTACGGCGGCTGCGGCGCCCTACGGGCTTGCTCTCCGGGCTTCGCCCTGCGCGGTCGCTGCGCTCCCTTGCCAGCCCGTGGATATGTGGACGATGGCCGCGAGCGGCCACCGGCTGGCTCGCTTCGCTCGGCCCGTGGACAACCCTGCTGGACAAGCTGATGGACAGGCTGCGCCTGCCCACGAGCTTGACCACAGGGATTGCCCACCGGCTACCCAGCCTTCGACCACATACCCACCGGCTCCAACTGCGCGGCCTGCGGCCTTGCCCCATCAATTTTTTTAATTTTCTCTGGGGAAAAGCCTCCGGCCTGCGGCCTGCGCGCTTCGCTTGCCGGTTGGACACCAAGTGGAAGGCGGGTCAAGGCTCGCGCAGCGACCGCGCAGCGGCTTGGCCTTGACGCGCCTGGAACGACCCAAGCCTATGCGAGTGGGGGCAGTCGAAGGCGAAGCCCGCCCGCCTGCCCCCCGAGCCTCACGGCGGCGAGTGCGGGGGTTCCAAGGGGGCAGCGCCACCTTGGGCAAGGCCGAAGGCCGCGCAGTCGATCAACAAGCCCCGGAGGGGCCACTTTTTGCCGGAGGGGGAGCCGCGCCGAAGGCGTGGGGGAACCCCGCAGGGGTGCCCTTCTTTGGGCACCAAAGAACTAGATATAGGGCGAAATGCGAAAGACTTAAAAATCAACAACTTAAAAAAGGGGGGTACGCAACAGCTCATTGCGGCACCCCCCGCAATAGCTCATTGCGTAGGTTAAAGAAAATCTGTAATTGACTGCCACTTTTACGCAACGCATAATTGTTGTCGCGCTGCCGAAAAGTTGCAGCTGATTGCGCATGGTGCCGCAACCGTGCGGCACCCTACCGCATGGAGATAAGCATGGCCACGCAGTCCAGAGAAATCGGCATTCAAGCCAAGAACAAGCCCGGTCACTGGGTGCAAACGGAACGCAAAGCGCATGAGGCGTGGGCCGGGCTTATTGCGAGGAAACCCACGGCGGCAATGCTGCTGCATCACCTCGTGGCGCAGATGGGCCACCAGAACGCCGTGGTGGTCAGCCAGAAGACACTTTCCAAGCTCATCGGACGTTCTTTGCGGACGGTCCAATACGCAGTCAAGGACTTGGTGGCCGAGCGCTGGATCTCCGTCGTGAAGCTCAACGGCCCCGGCACCGTGTCGGCCTACGTGGTCAATGACCGCGTGGCGTGGGGCCAGCCCCGCGACCAGTTGCGCCTGTCGGTGTTCAGTGCCGCCGTGGTGGTTGATCACGACGACCAGGACGAATCGCTGTTGGGGCATGGCGACCTGCGCCGCATCCCGACCCTGTATCCGGGCGAGCAGCAACTACCGACCGGCCCCGGCGAGGAGCCGCCCAGCCAGCCCGGCATTCCGGGCATGGAACCAGACCTGCCAGCCTTGACCGAAACGGAGGAATGGGAACGGCGCGGGCAGCAGCGCCTGCCGATGCCCGATGAGCCGTGTTTTCTGGACGATGGCGAGCCGTTGGAGCCGCCGACACGGGTCACGCTGCCGCGCCGGTAGCACTTGGGTTGCGCAGCAACCCGTAAGTGCGCTGTTCCAGACTATCGGCTGTAGCCGCCTCGCCGCCCTATACCTTGTCTGCCTCCCCGCGTTGCGTCGCGGTGCATGGAGCCGGGCCACCTCGACCTGAATGGAAGCCGGCGG
9. induction of heme production
The engineering strain is inoculated into LB liquid culture medium (5 mL) from a-80 ℃ bacteria-preserving tube according to 1% (v/v), and is used as seed liquid for standby after shaking culture overnight. Then, the seed solution was inoculated at 1% into LB liquid medium for scale-up culture (500 mL). To be OD 600 When the concentration was about 0.2, 20. Mu.g/L of aTc inducer was added thereto, and the fermentation was continued for 3 days. The supernatant was collected for measurement of hemoglobin.
10. Measurement of hemoglobin
The hemoglobin was measured by High Performance Liquid Chromatography (HPLC) using an Agilent 1290 II HPLC column (2.1x 150mm,1.8 um), an Extend-C18 liquid chromatography column (2.1X 150mm,1.8 um) with a mobile phase of methanol: 0.1% formic acid =80, a flow rate of 0.5mL/min, and a photodiode array detector (DAD) at 399 nM.
11. Results of the experiment
The engineering bacteria constructed by the technology have higher heme yield, cell breaking extraction is not needed, and extracellular free heme can reach 250mg/L after 3 days of culture.
The method can produce large amount of heme in short time, save cost for cell disruption, simplify extraction process, and reduce loss. Thus, this strategy provides a sustainable method for high yield of heme.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.
Sequence listing
<110> university of science and technology in China
<120> recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme
<130> MP2007875
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5051
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
cacctcgcta acggattcac cgtttttatc aggctctggg aggcagaata aatgatcata 60
tcgtcaatta ttacctccac ggggagagcc tgagcaaact ggcctcaggc atttgagaag 120
cacacggtca cactgcttcc ggtagtcaat aaaccggtca gaatttcaga taaaaaaaat 180
ccttagcttt cgctaaggat gatttctgtg gtacctctca gacgcagagt tgccaaccag 240
atatcgacgt cttaagaccc actttcacat ttaagttgtt tttctaatcc gcatatgatc 300
aattcaaggc cgaataagaa ggctggctct gcaccttggt gatcaaataa ttcgatagct 360
tgtcgtaata atggcggcat actatcagta gtaggtgttt ccctttcttc tttagcgact 420
tgatgctctt gatcttccaa tacgcaacct aaagtaaaat gccccacagc gctgagtgca 480
tataatgcat tctctagtga aaaaccttgt tggcataaaa aggctaattg attttcgaga 540
gtttcatact gtttttctgt aggccgtgta cctaaatgta cttttgctcc atcgcgatga 600
cttagtaaag cacatctaaa acttttagcg ttattacgta aaaaatcttg ccagctttcc 660
ccttctaaag ggcaaaagtg agtatggtgc ctatctaaca tctcaatggc taaggcgtcg 720
agcaaagccc gcttattttt tacatgccaa tacaatgtag gctgctctac acctagcttc 780
tgggcgagtt tacgggttgt taaaccttcg attccgacct cattaagcag ctctaatgcg 840
ctgttaatca ctttactttt atctaatcta gacatcatta attcctaatt tttgttgaca 900
ctctatcgtt gatagagtta ttttaccact ccctatcagt gatagagaaa agaattcaaa 960
actcgaccac tcgaggccag gcatcaaata aaacgaaagg ctcagtcgaa agactgggcc 1020
tttcgtttta tctgttgttt gtcggtgaac gctctctact agagtcacac tggctcacct 1080
tcgggtgggc ctttctgcgt ttataaccgg taaaccagca atagacataa gcggctattt 1140
aacgaccctg ccctgaaccg acgaccgggt cgaatttgct ttcgaacccc agagtcccgc 1200
tcagaagaac tcgtcaagaa ggcgatagaa ggcgatgcgc tgcgaatcgg gagcggcgat 1260
accgtaaagc acgaggaagc ggtcagccca ttcgccgcca agctcttcag caatatcacg 1320
ggtagccaac gctatgtcct gatagcggtc cgccacaccc agccggccac agtcgatgaa 1380
tccagaaaag cggccatttt ccaccatgat attcggcaag caggcatcgc catgggtcac 1440
gacgagatcc tcgccgtcgg gcatgcgcgc cttgagcctg gcgaacagtt cggctggcgc 1500
gagcccctga tgctcttcgt ccagatcatc ctgatcgaca agaccggctt ccatccgagt 1560
acgtgctcgc tcgatgcgat gtttcgcttg gtggtcgaat gggcaggtag ccggatcaag 1620
cgtatgcagc cgccgcattg catcagccat gatggatact ttctcggcag gagcaaggtg 1680
agatgacagg agatcctgcc ccggcacttc gcccaatagc agccagtccc ttcccgcttc 1740
agtgacaacg tcgagcacag ctgcgcaagg aacgcccgtc gtggccagcc acgatagccg 1800
cgctgcctcg tcctgcagtt cattcagggc accggacagg tcggtcttga caaaaagaac 1860
cgggcgcccc tgcgctgaca gccggaacac ggcggcatca gagcagccga ttgtctgttg 1920
tgcccagtca tagccgaata gcctctccac ccaagcggcc ggagaacctg cgtgcaatcc 1980
atcttgttca atcatgcgaa acgatcctca tcctgtctct tgatcagatc ttgatcccct 2040
gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 2100
cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 2160
gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 2220
ttcccttgtc cagatagccc agtagctgac attcatccca ggtggcactt ttcggggaaa 2280
tgtgcgcgcc cgcgttcctg ctggcgctgg gcctgtttct ggcgctggac ttcccgctgt 2340
tccgtcagca gcttttcgcc cacggccttg atgatcgcgg cggccttggc ctgcatatcc 2400
cgattcaacg gccccagggc gtccagaacg ggcttcaggc gctcccgaag atctcgggcc 2460
gtctcttggg cttgatcggc cttcttgcgc atctcacgcg ctcctgcggc ggcctgtagg 2520
gcaggctcat acccctgccg aaccgctttt gtcagccggt cggccacggc ttccggcgtc 2580
tcaacgcgct ttgagattcc cagcttttcg gccaatccct gcggtgcata ggcgcgtggc 2640
tcgaccgctt gcgggctgat ggtgacgtgg cccactggtg gccgctccag ggcctcgtag 2700
aacgcctgaa tgcgcgtgtg acgtgccttg ctgccctcga tgccccgttg cagccctaga 2760
tcggccacag cggccgcaaa cgtggtctgg tcgcgggtca tctgcgcttt gttgccgatg 2820
aactccttgg ccgacagcct gccgtcctgc gtcagcggca ccacgaacgc ggtcatgtgc 2880
gggctggttt cgtcacggtg gatgctggcc gtcacgatgc gatccgcccc gtacttgtcc 2940
gccagccact tgtgcgcctt ctcgaagaac gccgcctgct gttcttggct ggccgacttc 3000
caccattccg ggctggccgt catgacgtac tcgaccgcca acacagcgtc cttgcgccgc 3060
ttctctggca gcaactcgcg cagtcggccc atcgcttcat cggtgctgct ggccgcccag 3120
tgctcgttct ctggcgtcct gctggcgtca gcgttgggcg tctcgcgctc gcggtaggcg 3180
tgcttgagac tggccgccac gttgcccatt ttcgccagct tcttgcatcg catgatcgcg 3240
tatgccgcca tgcctgcccc tcccttttgg tgtccaaccg gctcgacggg ggcagcgcaa 3300
ggcggtgcct ccggcgggcc actcaatgct tgagtatact cactagactt tgcttcgcaa 3360
agtcgtgacc gcctacggcg gctgcggcgc cctacgggct tgctctccgg gcttcgccct 3420
gcgcggtcgc tgcgctccct tgccagcccg tggatatgtg gacgatggcc gcgagcggcc 3480
accggctggc tcgcttcgct cggcccgtgg acaaccctgc tggacaagct gatggacagg 3540
ctgcgcctgc ccacgagctt gaccacaggg attgcccacc ggctacccag ccttcgacca 3600
catacccacc ggctccaact gcgcggcctg cggccttgcc ccatcaattt ttttaatttt 3660
ctctggggaa aagcctccgg cctgcggcct gcgcgcttcg cttgccggtt ggacaccaag 3720
tggaaggcgg gtcaaggctc gcgcagcgac cgcgcagcgg cttggccttg acgcgcctgg 3780
aacgacccaa gcctatgcga gtgggggcag tcgaaggcga agcccgcccg cctgcccccc 3840
gagcctcacg gcggcgagtg cgggggttcc aagggggcag cgccaccttg ggcaaggccg 3900
aaggccgcgc agtcgatcaa caagccccgg aggggccact ttttgccgga gggggagccg 3960
cgccgaaggc gtgggggaac cccgcagggg tgcccttctt tgggcaccaa agaactagat 4020
atagggcgaa atgcgaaaga cttaaaaatc aacaacttaa aaaagggggg tacgcaacag 4080
ctcattgcgg caccccccgc aatagctcat tgcgtaggtt aaagaaaatc tgtaattgac 4140
tgccactttt acgcaacgca taattgttgt cgcgctgccg aaaagttgca gctgattgcg 4200
catggtgccg caaccgtgcg gcaccctacc gcatggagat aagcatggcc acgcagtcca 4260
gagaaatcgg cattcaagcc aagaacaagc ccggtcactg ggtgcaaacg gaacgcaaag 4320
cgcatgaggc gtgggccggg cttattgcga ggaaacccac ggcggcaatg ctgctgcatc 4380
acctcgtggc gcagatgggc caccagaacg ccgtggtggt cagccagaag acactttcca 4440
agctcatcgg acgttctttg cggacggtcc aatacgcagt caaggacttg gtggccgagc 4500
gctggatctc cgtcgtgaag ctcaacggcc ccggcaccgt gtcggcctac gtggtcaatg 4560
accgcgtggc gtggggccag ccccgcgacc agttgcgcct gtcggtgttc agtgccgccg 4620
tggtggttga tcacgacgac caggacgaat cgctgttggg gcatggcgac ctgcgccgca 4680
tcccgaccct gtatccgggc gagcagcaac taccgaccgg ccccggcgag gagccgccca 4740
gccagcccgg cattccgggc atggaaccag acctgccagc cttgaccgaa acggaggaat 4800
gggaacggcg cgggcagcag cgcctgccga tgcccgatga gccgtgtttt ctggacgatg 4860
gcgagccgtt ggagccgccg acacgggtca cgctgccgcg ccggtagcac ttgggttgcg 4920
cagcaacccg taagtgcgct gttccagact atcggctgta gccgcctcgc cgccctatac 4980
cttgtctgcc tccccgcgtt gcgtcgcggt gcatggagcc gggccacctc gacctgaatg 5040
gaagccggcg g 5051
<210> 2
<211> 20457
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
cacctcgcta acggattcac cgtttttatc aggctctggg aggcagaata aatgatcata 60
tcgtcaatta ttacctccac ggggagagcc tgagcaaact ggcctcaggc atttgagaag 120
cacacggtca cactgcttcc ggtagtcaat aaaccggtca gaatttcaga taaaaaaaat 180
ccttagcttt cgctaaggat gatttctgtg gtacctctca gacgcagagt tgccaaccag 240
atatcgacgt cttaagaccc actttcacat ttaagttgtt tttctaatcc gcatatgatc 300
aattcaaggc cgaataagaa ggctggctct gcaccttggt gatcaaataa ttcgatagct 360
tgtcgtaata atggcggcat actatcagta gtaggtgttt ccctttcttc tttagcgact 420
tgatgctctt gatcttccaa tacgcaacct aaagtaaaat gccccacagc gctgagtgca 480
tataatgcat tctctagtga aaaaccttgt tggcataaaa aggctaattg attttcgaga 540
gtttcatact gtttttctgt aggccgtgta cctaaatgta cttttgctcc atcgcgatga 600
cttagtaaag cacatctaaa acttttagcg ttattacgta aaaaatcttg ccagctttcc 660
ccttctaaag ggcaaaagtg agtatggtgc ctatctaaca tctcaatggc taaggcgtcg 720
agcaaagccc gcttattttt tacatgccaa tacaatgtag gctgctctac acctagcttc 780
tgggcgagtt tacgggttgt taaaccttcg attccgacct cattaagcag ctctaatgcg 840
ctgttaatca ctttactttt atctaatcta gacatcatta attcctaatt tttgttgaca 900
ctctatcgtt gatagagtta ttttaccact ccctatcagt gatagagaaa agaattcaaa 960
acgccaagaa tctagaaaag agtcagatga gccttgtagc aatcggtatt aaccataaaa 1020
cagccacggt agacctgcgt gagaaagtcg ccttctctcc ggacaaaatt catgatgcca 1080
tgaagagtct ggccagtcgt acacgctcgg gtgaagccgt tatcgtctcg acctgcaatc 1140
gcactgaatt gtattgtaac aatggcgatg agaccgatat cattgaatgg cttgaagaat 1200
atcatggcct agaacatcaa gatgtcgcgc cttgcctcta caattatcac gggcaagagg 1260
cggtaaggca tttgatgcgc gtcgcttcag gtcttgactc gttgatcctt ggtgagccgc 1320
agattcttgg tcaagttaaa caagcctttg tcaaagccaa agaagccggc acagttgcct 1380
taaccattga ccgcttgttc caaaatacct tctcagttgc taaaaaagtg cgtaccgaaa 1440
ccgaaatcgg tgccgctgct gtatcggtcg cctttgcggc tgtcagcatg gcaaaacata 1500
tcttctcttc actgtcgaca accaaggtgc tgttaattgg tgctggtgaa acgattgagc 1560
tagtggcaaa gcatctaaaa gataacggcg tcgcctcaat ggtggtggca aaccgtactt 1620
tagagcgtgc ccaaagcatg tgtgaggaat ttaatgccac ggcaattaca ctggcacaga 1680
taccagattt tctccctaaa gccgatatcg tgatatcctc taccgccagc ccgctgccaa 1740
tccttggtaa aggcatggta gaaaaagcgc taaagcagcg tcgccatcaa cctatgttat 1800
tggttgatat agcagttcct cgggatattg agccagaagt cgccgatttg gacgatgcgt 1860
ttctgtatac agtggacgac ctgcatagca ttattgaaca gaataaggct tcccgtaagg 1920
aggccgccga gcaagctgaa ttaattactg aagaacaatc tcatctattt atggagtggg 1980
tgcgttcttt agagtcggtc gatagtattc gcgagtatcg cagccagagc atggcgataa 2040
aggatgagtt ggtggaacgc gccctgaata aattagcgca ggggggcgac actgagcagg 2100
tattggttga attagccaat cgtctgacca atagactcat tcacgcacct acccaagccc 2160
tcacggtggc cagccgtcag ggggatttga atacattagg tcagttaaga acagcgctcg 2220
gattagataa aaactaatgg cttcaaactt taaggactta acatgacccg ttccgaagcg 2280
ctatttgaac aggctaaaaa aaccatcccc ggcggtgtta actctccggt tcgtgctttt 2340
aatggtgtag gtggttcccc cctgtttatt gaaaaagccg atggcgctta tatctacgat 2400
gccgatggca aagcctatat cgactatgtc ggttcttggg gcccgatgat cctcggccac 2460
aatcatccga agatccgtga agcagtgctg gctgcagtac acaatggcct gtcttttggc 2520
gcgccaactg agcttgaagt gcaaatggcc gaaaaagtga ttgcgatggt gccctcgatt 2580
gagcaagtcc gtatggtcag ctctggtact gaagcgacca tgagtgcgat tcgcttagcg 2640
cgcggtttta ctaatcgtga caagatctta aagtttgaag gttgctacca tggccacgct 2700
gactgcctat tagttaaggc ggggtctggt gcattaacct taggccaacc cagctcaccc 2760
ggcatccctg aagatttcgc aaagcacacc ttaactgccg tgtataacga tctggattct 2820
gttcgtagcc tattcgagca atatccaact gagatttctt gcatcatcat cgagcccgtt 2880
gctggcaaca tgaactgcat cccacctatt ccaggcttcc tcgaaggtct gcgtagcctg 2940
tgtgatgagt ttggtgcgct gctgattatc gacgaagtga tgacagggtt ccgagtttca 3000
aaaagcggtg ctcaaggtca ctatggcgtt acgccagact taaccactct cggtaaagtc 3060
atcggtggcg gtatgccagt aggtgcattt ggtggtcgta aagatgtgat gcagtttatc 3120
gcaccaacag gtcctgtata ccaagcaggt acgctttcag gtaacccaat tgcgatgtca 3180
gcgggtctag cgcaaatgga agcattgtgt gaagaaggac tgtacgaagc cctaagcgct 3240
aaaaccaagc gcatcgccga aggctttaaa gcggcggcgg ataagcacgg catcccaatg 3300
gcaatcaact atgttggcgg tatgttcggc ttctttttta ccgagcaaga gcacatcaca 3360
cgcttcgacc aagtgactaa gtgcaatatt gagcacttcc gtactttcta ccatggcatg 3420
ttagatgaag gcgtttactt agcaccaagt gcctatgaag caggcttcct gtcgatggcc 3480
catggtgaag aagagctgcg cctcacactt gaagctgccg accgtgtctt agctcgcatg 3540
aaagcggcaa actaatgcaa agtattaata aggaaattca atgagcagca cacgagaaaa 3600
taccatcgcc ccccttcgcc gtttaagacg cctgcgccgc accgaggcca tgcgtgatct 3660
ggtacgtgaa acccatgtct cactctccga cttgatccac ccactcttta ttgaagaaca 3720
cattaaccaa gctgtgccaa tttcaaccct gccggggatt tgccgtctgc ccgaaagcgc 3780
acttgccgat gagatccaaa ggctctatgc cttagggatc cgctatgtga tgccctttgg 3840
gatttcccat accaaagatc cacagggcag cgacacttgg aatgacaatg gattgctcgc 3900
acggatgatc cgtaccataa aagccaccgc gccagagatg atggtgatcc ccgatatttg 3960
tttttgtgaa tataccgacc atggacactg cggcgtgttg caccaagacg aagtctgtaa 4020
cgaccaaacc gtggctaact tagtcaaaca atccgtcacc gccgctaaag cgggagctga 4080
tatgttggcg ccatcagcaa tgatggatgg tcaaattaaa gcgatacgac aagggctgga 4140
tgaagcaggc tttgaacacg tagccatttt ggcccacgca gccaagttcg cctcctcttt 4200
ctacgggcct tttagggccg ctgtagattg tgaactcagt ggtaaccgca aaggctatca 4260
gctcgattac gccaatggcc gccaagcatt gctcgaagca ctgctcgatg aggaagaagg 4320
cgcagatatt ttgatggtaa aacccggcac gccatatttg gatgtattaa gtcgcctaag 4380
acaagaaacc cacctcccct tagcggccta tcaagtgggt ggcgaatatg caggtattaa 4440
atttgctgcg ctggcgggcg ccctcgatga gcgcgccgtt gtcactgaaa cctttatcgg 4500
tttaaaacgg gctggtgccg atttaattgt cagttattac actaaacaat atgccgagtg 4560
gttagcagag ttacgcgaat aaaacagaac ctaattagga gtctaatgtg aatatcatta 4620
ccagtgcctt cccacagcgc agaatgcgcc gcatgcgtaa acatgatttt agtcgtcgcc 4680
tgatggctga gaatcaccta acagtgaatg acttaatcta tccaatgttt gtgctcgaag 4740
gcagcaatcg cagcgaaaaa gtggcttcaa tgccaggtgt agagcgctac tctatcgacc 4800
tactgctaaa agaagcagaa gagctagttg aattaggtat ccccttaata gccctctttc 4860
ctgttacgcc ttccgagaaa aagtcgctta tggcagaaga ggcatacaat gctgatgcgc 4920
tagtgcaacg cgcagtgcgt gaactcaaaa aagctttccc gcaacttggc attatgaccg 4980
acgtagctct agatcctttc acgacccatg gtcaagacgg cattattgat gaaacaggct 5040
atatcctgaa tgacatcacc acagagatct tagtgaaaca agcactctcc catgctgaag 5100
cgggcgcaga cattgtcgct ccatcggata tgatggacgg ccgcattggc gccattcgcc 5160
aagcgctaga agctgctggc catgttaaca ctcaaatcat ggcctactct gccaaatact 5220
cttcaagcta ctacggccca ttccgcgatg cggttggctc agcaggcaac ctaaaaggtg 5280
gcaataaaca tagctatcaa atggacccag caaatagcga tgaagcgctg cacgaagtcg 5340
cactggatat ccaagagggc gcagatatgg tgatggtaaa acctggcatg ccatacctcg 5400
atatcgttca ccgtgtaaag actgaattag cagtccccac cttcgcctac caagtgagtg 5460
gtgaatatgc catgcacatg gctgcaatcc aaaatggctg gttagcagaa aaggcaatcg 5520
tcatggaatc gctactatgc tttaaacgcg ctggcgccga tggcatcctt acctacttcg 5580
caaaacgtgc cgcacagtgg ttaaaagaag ctaaataact cgaccactcg aggccaggca 5640
tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc 5700
ggtgaacgct ctctactaga gtcacactgg ctcaccttcg ggtgggcctt tctgcgttta 5760
taaccggtaa accagcaata gacatagcgg tagacaccag tagtttatct tacaattttt 5820
gttgacactc tatcgttgat agagttattt taccactccc tatcagtgat agagaaaaga 5880
attcaaaact aagatctcgg atggaaacta ggcatgtctg aaaaccgcat acgtatcgct 5940
acccgcaaga gtccgctggc catgtggcaa gcagaatttg ttaaagcaga attagaacgc 6000
attcaccctg gtattgtggt ggagctattg ccaatgagca ctaagggcga tgttatctta 6060
gacacgccat tagctaaagt cggtggcaaa ggcttgttcg ttaaagaact cgaagtcgcc 6120
atgctggaag atcaagccga catcgcggtg cactcaatga aagacgtgcc tgtagatttc 6180
cccgaaggat taggactgga agtcatttgt gagcgtgaag atcctcgcga tgcttttgtc 6240
tccaatattt ataagtcgat cagtgagttg ccacttggtg ccacggttgg tacttctagc 6300
ctgcgccgtc agtgccaact gcgtgcttcc cgtcccgatc ttatcatcaa agatctgcgt 6360
ggcaacgtag gtactcgcct cgcgaaactc gataacggtg aatacgatgc gattattctt 6420
gccgcggcag gcttaatccg cctgaagtta tctgagcgta tcgccagctt tatctctgcc 6480
gaagagtcct tacccgcaaa cggtcaaggt gctgtcggta tcgaatgtcg caccaatgat 6540
gagcgcgtta aagcattatt agcgccatta gaacacttag agacacgcta ccgcgtgatc 6600
gccgagcgcg cgatgaatac tcgccttgaa ggtggttgcc aagtccctat tggcgccttt 6660
gccgaaattg atggtgatga gatgacactg cgcggattag tgggtaaccc agatggcagt 6720
gaaatcatcg aaggcgtgat caccggtcct aagaccgaag ccacgcaatt aggtgttgcc 6780
cttgcggaag aactactcag caaaggcgcc aaaagcatcc tcgatgctgt ttacgccaaa 6840
gcctaagtcg atgaaagtct tactgacgcg ccccgagggg cgcaatcagt ccatggtcga 6900
tgccttgaat gaaagaggca tcgaacactg cgttacgcca ctactttgtg ttgaggcgac 6960
accggctcta cctcctgaaa cctcacatcc actcgctaat gtcgatatgg ttgtctgtat 7020
cagcgccaat gcggttagct ttgctgacga tacgtttaaa gccaatgatg ccaacgttaa 7080
aggctggcca aaagtgcctt atttcgctgt agggcatgcc acttgggaag cactacaaca 7140
aatcgacatc gatgcccttg aggcgcccga tgattgccag cagactgaag ggttactaac 7200
tctacctacg ctgcaacaca tccaaggcaa aaagattacc attattcgcg gtgttggtgg 7260
ccgtgaagcg ctcgctgaac aactgacatc tagaggcgca caggtgcgct attgggaagt 7320
ctatcaacgt gcttgtccgc cgctggatgg cactattatc acccaacagt ggatagactt 7380
agggatagat actgtcgtgg tgacaagcgg agaagtactg gataatctga ttaatctagt 7440
gccaaaagag ttatttgcat ggctgcgctc atgtcatatc atagtcccca gtaaccgagt 7500
agaagctcaa gctcatgcct ttggtataac ccaagtcacc aatgccaatg ccgccaacag 7560
caaagccgtg ctaaacgccc ttaaactcta atcaataagt ctaggaatca agccaaatgg 7620
cagaattaaa gaatgatcgt tatttacgcg ccctactaaa acagcctgtt gatatgaccc 7680
ctgtgtggat gatgcgtcaa gcgggccgtt atctccctga atataaagca actcgcgccc 7740
aggcgggtga ttttatgtct ttatgtaaaa accacgaatt ggcctgtgaa gtgacgctac 7800
aaccgctgcg tcgttacgag ctagatgcgg cgattctgtt ttccgacatt ctgacggttc 7860
ccgatgctat gggattaggt ctgtattttg aggcgggtga aggcccacgt tttgagcgcc 7920
cgacagacac tattgatgcc atcaaaaaat tatcaattcc tgatccagaa gatgagctgg 7980
gttatgtgat gaaggcggtg agtacaattc gtcgtgaatt gaatggtcaa gtgccattaa 8040
tcggcttctc aggttcacct tggacgctgg ccacttatat ggttgaaggc ggttcgagca 8100
aaaccttcga aaaaatcaaa aaaatggcct atgccgagcc tgctgcactg catatgttac 8160
tcgacaagtt agctgactca gtgactttat acctgaatgc gcaggtcgct aatggtgctc 8220
aatctttaat gattttcgac tcttggggcg gtgcattgtc gcatacagct taccgtgagt 8280
tttcactgcg ttatatgcag aagattgtcg atggtctgac tcgctttgcc gatggtcgcc 8340
aagtaccagt aaccctattc actaaaggtg gtggcttatg gttagaagcc atggcggaaa 8400
ccggttgtga cgccttaggt ttagactgga cggtggatat tgccgatgct cgtcgccgtg 8460
taggccataa agttgcgcta caaggcaaca tggacccatc tatgttatat gcacctatcc 8520
cacgcattga agaggaagtt ggtcaaatcc ttgcgggata cggtgaaggt acaggccacg 8580
tatttaactt aggccatggt attcaccagc atgtcgatcc agagcatgca ggcgccttta 8640
ttaaggcggt ccacgctcaa tctaagcaat accataagta actaatttac cctcggagga 8700
cacgccttga agcagcccac tcagataagc tgggatcagt cgatgatcga aaaatataac 8760
tacagcggtc cccgttatac ttcttatcca acggcgctag agttcgatga ttcattcact 8820
gaacaaaacc tgttaactgc gattgaaaac agcaagagtg acaaactgtc gctgtatatt 8880
cacatcccct tctgcgccaa actttgctat tactgtggct gcaataaagt catcactcgt 8940
cacgcccata aggccgacca atacattgag tatttaagcc acgaaattat taagcgcgcc 9000
ccactgttta agcattactc ggtcacccaa atgcactggg gcggcggcac accaaccttc 9060
ttaaatcctg agcaaattat taaacttacc gcattaatta aggctaactt taactttgcc 9120
gatgaaggtg agttctctat cgaagttgac ccgcgtgaaa ttgaactttc catgctcgac 9180
acccttaaag aagccggctt taaccgtatt tcgattggtg ttcaggactt caacaaagaa 9240
gtacaagtcg cggttaaccg tgagcaggac gagcaattta ttttcgattt aatggccaaa 9300
gccaaggcta tgggattcgt ctcaaccaat atcgatttaa tctacggctt gccacaccag 9360
actccagaga cattcgccgc caccatgcag cgcgtgttag atctgtcgcc cgatcgtcta 9420
tctgtattca actatgctca cttacccgcg cgttttgccg cgcagcgtaa aattaaagat 9480
gagcatttac cttcgccaaa acaaaagctt gagatgctgc atcaaactat cgagacctta 9540
actggcgcgg gttatcaata cattggtatg gaccacttcg cgaagcctga cgatgagctg 9600
gctaagttac aacgcgaagg caaactgcac cgcaacttcc agggttatac cacccaagaa 9660
gaatgcgatt tgcttggtct tggcgtgtcg tctatcagcc aaattggcga ttgctatgcg 9720
caaaaccaaa aggacattcg cccttactac gaagccatcg ataaagatgg ccatgcgctc 9780
tggaaaggct gcagcttgaa tcgtgacgac gaaatccgcc gcgtagtgat caaacaattg 9840
atctgccact tcgacttaga tatggccaaa atagatgaaa aactgggaat taagtttgag 9900
gaatacttcg ccgaagactt aaaactactg caaaccttta tcgatgataa attagttgaa 9960
gtcgccgaca gaaagatcac catcagcccc actggccgcc tgttgatccg caatatctgt 10020
atgtgcttcg acctttacta ccgtcaaaaa gcgcgtcaac aacagttctc tcgtgtgatc 10080
taactcgacc actcgaggcc aggcatcaaa taaaacgaaa ggctcagtcg aaagactggg 10140
cctttcgttt tatctgttgt ttgtcggtga acgctctcta ctagagtcac actggctcac 10200
cttcgggtgg gcctttctgc gtttataacc ggtaaaccag caatagacgg cgaacagaac 10260
tctattgaga ttttatccaa tttttgttga cactctatcg ttgatagagt tattttacca 10320
ctccctatca gtgatagaga aaagaattca aaaacgccaa ctttctggaa agattaatat 10380
gcaaacatta ataatctact caaccatcga cggtcaaacg ctagaaattt gtcgtaagat 10440
taaagcattt gctgagcggg cgggtgaaaa ggtctccctc tttagcttag aacaggctga 10500
agctataaac cttgcagatg ttgataaggt attgattggt gcgagtatcc gctatggtaa 10560
acatagacct gagctttacc aatttgtgaa tcgcaaccat gcggtgttaa gcgcgaaagt 10620
taatggtttt tttacggtaa atgtggtggc gcggaagccg ttaaagaaca ccccagaaac 10680
caatccttat atgcagaaat tcctcaaatt atccctttgg caaccacaac acttggcggt 10740
atttgctggt aagattgatt accctaaata tggcttattc gaccgcacaa tgatctgttt 10800
tatcatgtgg atgactaagg ggccaacgga tcttaagggc acgtttgagt ttaccgattg 10860
ggctaaagtc gaagcttttg gcactcattt tagtaagcta taatactttt actgaacgag 10920
aataccccat gacacgcatc ctggtgcttt attttacccg aggaggccat acggccaaga 10980
ttgccaatgc aatagcggag caattaaccc tgcgtggcgc aaaggttgac ttagtcgata 11040
tcaatagtgc ggctgcaaca cgaatcaact ggtccgatta tcagctggtg gctttgggtg 11100
cctgtgtact ctatggcact tatgataaga gtgtatttca atttattgag caacatgtgc 11160
aggctttgag ttttttgcca aacagttttt tctgcgtcaa cgtggtcgca cgtaatccgg 11220
agaaacgtat tcctgaaaac aataaatacc tgcaaaagtt tatcactcta tctccttgga 11280
ctcccgcaga tttgaagatt attgctggta aagtcgatta tccatcttgg ccttggtacg 11340
acagattaat gatccagtta attatgaaaa tcactaaagg cccaacggat ccaaaagcag 11400
ttattgatta taccgattgg gaagatgtga aagtctatgc cgaccatctg ctgaccttgg 11460
tcgaggttgc tgaacctgcc taattttatt gagataatcg aggcttaagt gaaaaaaatt 11520
ctgatcatct tttccagtgt tcatggccac actcgtaaaa tcaccaatca gttagctcag 11580
caactcaaag agttgggtaa ttcggtggtg attgcggata ttaaggctgt ccctgcgatg 11640
gagtctttcg ataagatcat tattggcgcg agtattcgtc acggaaaaca taatcctgcg 11700
ttgtacgaat ttatccaaaa gcatcaacag atcctcacgc aaaaggtcag tggctttttc 11760
tccgtcagtt tagtggctcg taaacccgag aaaaatactc cagaaaccaa cccatacatg 11820
caagcatttt taagcaaaac gacttggcgc cctaagttgc tacaagtgtt tggcggtaat 11880
ctgaattacc aaggttataa tgctttcgat agaaatatta ttcgttttat catgtggtta 11940
actaaggggc caacggatcc tgtcaccaat gttgaataca cagactggca aaaagtgcaa 12000
gagtttggtt tacaaatcca tcaagcctaa ctaggttttc aggattatca aaagaaatgg 12060
gtcacgctgc gcgtggcaaa gttggagtgc tgttattaaa ccttggcact cctgatgcgc 12120
caacagcatc ggcagtaagg cgttatcttg ccgagttttt atctgatcca cgggtggtgg 12180
aaatcccaaa actcctctgg atgctgattt tgtatggcat agtacttagg gtacgccctg 12240
caaagtctgc agcactttat caaaaggtgt ggactgaggc ggggtcgcca ctgatggata 12300
tcagtttgcg acaaacggct aagctatccg ataaattaac cgcggatggt catcaagttt 12360
cggttcactt agctatgcgt tatggtaatc cttctgttgc cagcacttta cgagagatgc 12420
acaaacaagg gattgataag ctggtggttt taccgctcta tccgcaatat gctgcgccga 12480
caactggctc ggcttttgac gctatcgcta aagagttatc ccaatggcgc tacctgccat 12540
cgctgcattt tattaatact tatcacgata accctgattt tattgctgca ttagtcaatt 12600
cgattcgtga cgattttgat aaacatggca agccgcaaaa gttagtgctg tcttaccatg 12660
gaatgcctga gcgcaatctt catctgggtg atccatatta ttgtttttgc atgaagacta 12720
ctcgtcttgt ggctgagcaa ttaggtttga gcaaagatga atttgcgatc acattccaat 12780
ctcgctttgg taaggccaag tggttgcaac cctatacgga tgcaacgatg gcggctctac 12840
cgagtcaagg tgtgcgtgat gtagcgattg tgtgcccagc atttagcgcc gattgtttag 12900
agacgctaga agagattgtc ggcgaaaatg gccatatctt tactcatgcg gggggagaga 12960
agttccgata tattcctgcg ctcaatgata atgatgacca catcgccatg atggcgaatt 13020
tggtgaagcc gtatctgtaa tatttggctg ataaaaggta gcacattgac ttctccctct 13080
cctgcgtttg gcgtgttatt agtaaatctt ggtacgcctg atgaacccac tccgaaagcg 13140
gttaagcgat ttctcaagca gtttttaagt gatcctcggg tcgtcgattt atccccttgg 13200
ttgtggcaac ccattttgca ggggattatc ctgaacaccc gtcctaagaa agtcgctaaa 13260
ctttatcaaa gtgtgtggac ggagcaaggt tcgccgttaa tggtgattag tcagtgccaa 13320
gcccaaaagt tggcaacgga tttaagcgcc acctttaatc agaccattcc ggtggaactg 13380
ggtatgagct atggcaatcc ttcgattgag agtggctttg ccaaactcaa agcccaaggc 13440
gccgaacgta tcgtggtgct gccgctgtat ccgcagtatt cctgctcaac cgtcgccagt 13500
gtgtttgatg cggtagcgca ttatttgact cgcgtgcgtg atatacctga gctgcgtttt 13560
aacaagcagt atttcgccca tgaagcctat attgcggcgc tggcgcattc ggtaaagcgc 13620
cattggaaaa cccatggtca ggccgagaag ctgattttat ctttccacgg gatcccgctg 13680
cgctacgcga ccgaaggcga cccataccca gagcagtgcc gcaccaccgc caagttatta 13740
gcgcaggcct taggcttgac cgacggacaa tggcaagtat gtttccaatc ccgcttcggt 13800
aaagaagagt ggttgacgcc ctatgccgat gagttgctgg cggatttacc ccgccaaggc 13860
gtgaaaagtg tcgatgtgat ttgccctgcc tttgctaccg attgccttga aaccctagaa 13920
gaaatctcga ttggcgcgaa agagaccttc ctccatgcag gtggcgaagc ctatcatttt 13980
attccttgtt tgaatgatga tgagctacat atagagctac tcaggttatt agtacaagaa 14040
caaacgcagt cttggataag tgcagaataa ctcgaccact cgaggccagg catcaaataa 14100
aacgaaaggc tcagtcgaaa gactgggcct ttcgttttat ctgttgtttg tcggtgaacg 14160
ctctctacta gagtcacact ggctcacctt cgggtgggcc tttctgcgtt tataaccggt 14220
aaaccagcaa tagactgtca ggaaaatact gcgtttacta tcagcaattt ttgttgacac 14280
tctatcgttg atagagttat tttaccactc cctatcagtg atagagaaaa gaattcaaaa 14340
tattattaga gactgaggaa aacccatgat cccagaactt ggacactttt cgctgataat 14400
aggagtggct tttgccttct tattaaccag cgttcccctt ataggtgttg cccgtaaaga 14460
ccaatatcta gtgaggtatg cttggccgtt agcctacgga atgttctttt ttatcgcttt 14520
atccgtagta tcacttggtt acagcttcgc cgttgatgat ttctccgtgg cctatgtggc 14580
acatcactct aattctcagt tacctatctt ctttaagatt gcggccgtat ggggcggtca 14640
tgaagggtcg ctgctattct gggtgttcgc gctatccact tgggctgcct ctgttgcttt 14700
attcagtaaa ggcttagaag aagtcttcac cgctcgcgtg ttagcggtat tggcattgat 14760
tgtgattggc ttcagcttgt ttatgttact cacttctagc ccatttgaac gtatattccc 14820
aatgcctgct gaaggccgcg acttaaatcc aatgctgcag gatgtgggct taatcttcca 14880
ccctccgatg ttatatttgg gttatgtggg tttctcagtc agttttgcat ttgcgattgc 14940
agctttgatg agtggtcacc ttgattctgc ttgggctcgt tggtcgcgtc cttggacctt 15000
agccgcttgg gttttcctca ctggtggtat tgcattaggt tcttggtggg cgtattacga 15060
attaggctgg ggtggatggt ggttctggga tccagtagaa aacgcttcat ttatgccttg 15120
gctagtgggt acggctttag tgcattcact gatcgtgacg gaaaagcgcg gtgcattccg 15180
taactggacg gtattgctgt ctatcttcgc attctcgcta agtttactcg gtacctttat 15240
cgtacgctct ggtgtgttga cttcagtgca ttcatttgca gccgatccaa gccgcggtat 15300
gtttattcta ttattgcttg gtctcgctat cggtggttcg ctcactttgt ttgccttccg 15360
tgcaagtgaa atgagcagcc ctgcacgctt cgagctgaaa tcaaaagaaa ccatgctgtt 15420
agtttgtaac gtgttactga cggttgcagc gggtactgtt ctgttaggca ctttataccc 15480
actgctgatc gatgcgttag gcatgggtaa gatttctgtt ggacctccat actttaacgc 15540
tgtgtttgta cccatagtac ttgtactgtt tgcctttatg ggcgtcggtc caatcattcg 15600
ttggaaaaaa tcgaaagctg gtgaattgaa gcgacagtta ctcgtacctg cattagtatc 15660
tctggtgatt ggtattgtca cgccgtttat cgtcgatggg gcctttaacg cttgggttgc 15720
ttgcggtatc gccgctgcag cttggattat tttggcaacc gcaaaagcag cttacagcat 15780
cgttaagcct aaagatggtg aagtaagcat cgcacgtatg ggccgtagcc aactcggtat 15840
gatcatcgcg cacttaggta ttgctgtgtc tgttattggt gccactatgg tgtctaacta 15900
ctcagtggag aaaagtgtgc gtatggggcc tggcgtaagc caagagctag cgggttacac 15960
ctttaaatat ctcgaaacta aaaacgttgt tggtcctaat tacactgcgc agcaaggtca 16020
aattgagatt tacaaaggcg ataagttact gacactgctc aaacccgatc gtcgccaata 16080
caatgtgcgt actatggata tgaccgaagc cggtatcgat tggggtctgt tccgcgatct 16140
gtatgtgacg atgggcgatc cgattagtag tactgaattt gctgtgcgtt tgaactacaa 16200
gccgtttgtg cgttggttat ggttcggagc aatattcatg atggtcggcg gtttctttgc 16260
cgcatcggat aaacgctatc gctcaaaagt cgcggctacc gttaaaccgc aagctgaaaa 16320
agcgaaatta gctaccgctc aataactcga ccactcgagg ccaggcatca aataaaacga 16380
aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt gaacgctctc 16440
tactagagtc acactggctc accttcgggt gggcctttct gcgtttataa ccggtaaacc 16500
agcaatagac actatcggaa taaaggagtt cgcttacttc ctatttaacg accctgccct 16560
gaaccgacga ccgggtcgaa tttgctttcg aaccccagag tcccgctcag aagaactcgt 16620
caagaaggcg atagaaggcg atgcgctgcg aatcgggagc ggcgataccg taaagcacga 16680
ggaagcggtc agcccattcg ccgccaagct cttcagcaat atcacgggta gccaacgcta 16740
tgtcctgata gcggtccgcc acacccagcc ggccacagtc gatgaatcca gaaaagcggc 16800
cattttccac catgatattc ggcaagcagg catcgccatg ggtcacgacg agatcctcgc 16860
cgtcgggcat gcgcgccttg agcctggcga acagttcggc tggcgcgagc ccctgatgct 16920
cttcgtccag atcatcctga tcgacaagac cggcttccat ccgagtacgt gctcgctcga 16980
tgcgatgttt cgcttggtgg tcgaatgggc aggtagccgg atcaagcgta tgcagccgcc 17040
gcattgcatc agccatgatg gatactttct cggcaggagc aaggtgagat gacaggagat 17100
cctgccccgg cacttcgccc aatagcagcc agtcccttcc cgcttcagtg acaacgtcga 17160
gcacagctgc gcaaggaacg cccgtcgtgg ccagccacga tagccgcgct gcctcgtcct 17220
gcagttcatt cagggcaccg gacaggtcgg tcttgacaaa aagaaccggg cgcccctgcg 17280
ctgacagccg gaacacggcg gcatcagagc agccgattgt ctgttgtgcc cagtcatagc 17340
cgaatagcct ctccacccaa gcggccggag aacctgcgtg caatccatct tgttcaatca 17400
tgcgaaacga tcctcatcct gtctcttgat cagatcttga tcccctgcgc catcagatcc 17460
ttggcggcaa gaaagccatc cagtttactt tgcagggctt cccaacctta ccagagggcg 17520
ccccagctgg caattccggt tcgcttgctg tccataaaac cgcccagtct agctatcgcc 17580
atgtaagccc actgcaagct acctgctttc tctttgcgct tgcgttttcc cttgtccaga 17640
tagcccagta gctgacattc atcccaggtg gcacttttcg gggaaatgtg cgcgcccgcg 17700
ttcctgctgg cgctgggcct gtttctggcg ctggacttcc cgctgttccg tcagcagctt 17760
ttcgcccacg gccttgatga tcgcggcggc cttggcctgc atatcccgat tcaacggccc 17820
cagggcgtcc agaacgggct tcaggcgctc ccgaagatct cgggccgtct cttgggcttg 17880
atcggccttc ttgcgcatct cacgcgctcc tgcggcggcc tgtagggcag gctcataccc 17940
ctgccgaacc gcttttgtca gccggtcggc cacggcttcc ggcgtctcaa cgcgctttga 18000
gattcccagc ttttcggcca atccctgcgg tgcataggcg cgtggctcga ccgcttgcgg 18060
gctgatggtg acgtggccca ctggtggccg ctccagggcc tcgtagaacg cctgaatgcg 18120
cgtgtgacgt gccttgctgc cctcgatgcc ccgttgcagc cctagatcgg ccacagcggc 18180
cgcaaacgtg gtctggtcgc gggtcatctg cgctttgttg ccgatgaact ccttggccga 18240
cagcctgccg tcctgcgtca gcggcaccac gaacgcggtc atgtgcgggc tggtttcgtc 18300
acggtggatg ctggccgtca cgatgcgatc cgccccgtac ttgtccgcca gccacttgtg 18360
cgccttctcg aagaacgccg cctgctgttc ttggctggcc gacttccacc attccgggct 18420
ggccgtcatg acgtactcga ccgccaacac agcgtccttg cgccgcttct ctggcagcaa 18480
ctcgcgcagt cggcccatcg cttcatcggt gctgctggcc gcccagtgct cgttctctgg 18540
cgtcctgctg gcgtcagcgt tgggcgtctc gcgctcgcgg taggcgtgct tgagactggc 18600
cgccacgttg cccattttcg ccagcttctt gcatcgcatg atcgcgtatg ccgccatgcc 18660
tgcccctccc ttttggtgtc caaccggctc gacgggggca gcgcaaggcg gtgcctccgg 18720
cgggccactc aatgcttgag tatactcact agactttgct tcgcaaagtc gtgaccgcct 18780
acggcggctg cggcgcccta cgggcttgct ctccgggctt cgccctgcgc ggtcgctgcg 18840
ctcccttgcc agcccgtgga tatgtggacg atggccgcga gcggccaccg gctggctcgc 18900
ttcgctcggc ccgtggacaa ccctgctgga caagctgatg gacaggctgc gcctgcccac 18960
gagcttgacc acagggattg cccaccggct acccagcctt cgaccacata cccaccggct 19020
ccaactgcgc ggcctgcggc cttgccccat caattttttt aattttctct ggggaaaagc 19080
ctccggcctg cggcctgcgc gcttcgcttg ccggttggac accaagtgga aggcgggtca 19140
aggctcgcgc agcgaccgcg cagcggcttg gccttgacgc gcctggaacg acccaagcct 19200
atgcgagtgg gggcagtcga aggcgaagcc cgcccgcctg ccccccgagc ctcacggcgg 19260
cgagtgcggg ggttccaagg gggcagcgcc accttgggca aggccgaagg ccgcgcagtc 19320
gatcaacaag ccccggaggg gccacttttt gccggagggg gagccgcgcc gaaggcgtgg 19380
gggaaccccg caggggtgcc cttctttggg caccaaagaa ctagatatag ggcgaaatgc 19440
gaaagactta aaaatcaaca acttaaaaaa ggggggtacg caacagctca ttgcggcacc 19500
ccccgcaata gctcattgcg taggttaaag aaaatctgta attgactgcc acttttacgc 19560
aacgcataat tgttgtcgcg ctgccgaaaa gttgcagctg attgcgcatg gtgccgcaac 19620
cgtgcggcac cctaccgcat ggagataagc atggccacgc agtccagaga aatcggcatt 19680
caagccaaga acaagcccgg tcactgggtg caaacggaac gcaaagcgca tgaggcgtgg 19740
gccgggctta ttgcgaggaa acccacggcg gcaatgctgc tgcatcacct cgtggcgcag 19800
atgggccacc agaacgccgt ggtggtcagc cagaagacac tttccaagct catcggacgt 19860
tctttgcgga cggtccaata cgcagtcaag gacttggtgg ccgagcgctg gatctccgtc 19920
gtgaagctca acggccccgg caccgtgtcg gcctacgtgg tcaatgaccg cgtggcgtgg 19980
ggccagcccc gcgaccagtt gcgcctgtcg gtgttcagtg ccgccgtggt ggttgatcac 20040
gacgaccagg acgaatcgct gttggggcat ggcgacctgc gccgcatccc gaccctgtat 20100
ccgggcgagc agcaactacc gaccggcccc ggcgaggagc cgcccagcca gcccggcatt 20160
ccgggcatgg aaccagacct gccagccttg accgaaacgg aggaatggga acggcgcggg 20220
cagcagcgcc tgccgatgcc cgatgagccg tgttttctgg acgatggcga gccgttggag 20280
ccgccgacac gggtcacgct gccgcgccgg tagcacttgg gttgcgcagc aacccgtaag 20340
tgcgctgttc cagactatcg gctgtagccg cctcgccgcc ctataccttg tctgcctccc 20400
cgcgttgcgt cgcggtgcat ggagccgggc cacctcgacc tgaatggaag ccggcgg 20457

Claims (6)

1. A recombinant plasmid for highly producing heme, which is characterized by comprising the following genes: hemA, hemL, hemB1, hemB2, hemC, hemD, hemE, hemN, hemG1, hemG2, hemG3, hemH1, hemH2, and ccmf;
the source of hemA, hemL, hemB1, hemB2, hemC, hemD, hemE, hemN, hemG1, hemG2, hemG3, hemH1, hemH2 is E.coli MG1655;
the source of the ccmf is S. oneidensis MR-1.
2. The recombinant plasmid of claim 1, wherein the plasmid vector of the recombinant plasmid is pBF-ptoto;
the sequence of the plasmid vector is shown as SEQ ID NO:1 is shown.
3. The recombinant plasmid according to any one of claims 1 to 2, wherein the sequence of the recombinant plasmid is as set forth in SEQ ID NO:2, respectively.
4. A method for constructing the recombinant plasmid according to any one of claims 1 to 3, comprising the steps of:
taking a plasmid vector as a template, and amplifying to obtain a plasmid skeleton;
using E, coli MG1655 genome as template to amplify hemA, hemL, hemB, assembling the obtained DNA fragment and plasmid skeleton to obtain plasmid-HE 1;
using E, coli MG1655 genome as template to amplify hemC, hemD, hemE, hemN, assembling the obtained DNA fragment and plasmid skeleton to obtain plasmid-HE 2;
using E, coli MG1655 genome as template to amplify hemG1, hemG2, hemG3, hemH1, hemH2, and assembling the obtained DNA fragment and plasmid skeleton to obtain plasmid-HE 3;
amplifying ccmF by using an S, oneidensis MR-1 genome as a template, and assembling the obtained DNA fragment and a plasmid skeleton to obtain a plasmid-HE 4;
on the basis of obtaining the plasmid-HE 1, the plasmid-HE 2, the plasmid-HE 3 and the plasmid-HE 4, assembling HE1, HE2, HE3 and HE4DNA fragments to obtain recombinant plasmids.
5. A genetically engineered strain for high production of heme comprising the recombinant plasmid of any one of claims 1 to 3; the host bacterium of the genetic engineering strain is S. oneidensis MR-1; the promoter of the genetic engineering strain is a tetracycline inducible promoter system.
6. A method for producing heme with high yield is characterized by comprising the following steps:
culturing the genetically engineered strain of claim 5, wherein the OD of the bacterial liquid is 600 Adding an inducer for fermentation culture when the concentration is 0.15 to 0.25, and collecting supernatant.
CN202011204558.3A 2020-11-02 2020-11-02 Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme Active CN112301049B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011204558.3A CN112301049B (en) 2020-11-02 2020-11-02 Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011204558.3A CN112301049B (en) 2020-11-02 2020-11-02 Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme

Publications (2)

Publication Number Publication Date
CN112301049A CN112301049A (en) 2021-02-02
CN112301049B true CN112301049B (en) 2022-10-28

Family

ID=74333703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011204558.3A Active CN112301049B (en) 2020-11-02 2020-11-02 Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme

Country Status (1)

Country Link
CN (1) CN112301049B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609427B (en) * 2019-01-25 2021-11-12 中国科学院水生生物研究所 Hishewanella loevansis genetic engineering bacterium capable of producing heme at high yield and construction method thereof
CN113462628B (en) * 2021-07-02 2022-11-08 南京工业大学 Gene engineering bacterium for producing heme as well as construction method and application thereof
CN115141787B (en) * 2022-06-08 2023-08-15 青岛农业大学 Submarine microbial sensor and preparation method and application thereof
CN116121288B (en) * 2023-03-27 2023-09-01 广东省科学院微生物研究所(广东省微生物分析检测中心) Vector for cloning pseudomonas putida large fragment DNA and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004701A (en) * 2014-06-18 2014-08-27 江南大学 Method for building high-yield 5-aminolevulinic acid escherichia coli engineering strains
CN104017767A (en) * 2014-06-18 2014-09-03 江南大学 Method for improving yield of 5-aminolevulinic acid by utilizing combined control strategy
CN109294963A (en) * 2018-10-11 2019-02-01 中国科学院水生生物研究所 The Shewanella genetic engineering bacterium and construction method of one plant height production protoporphyrin PPIX
CN109609427A (en) * 2019-01-25 2019-04-12 中国科学院水生生物研究所 One plant height produces her Shewanella genetic engineering bacterium of the Lip river of ferroheme and its construction method
CN110382700A (en) * 2017-12-12 2019-10-25 韩国科学技术院 Use the extracellular ferroheme generation method of metabolic engineering microorganism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2626900C (en) * 2005-08-20 2013-07-23 Scarab Genomics, Llc Reduced genome e. coli

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004701A (en) * 2014-06-18 2014-08-27 江南大学 Method for building high-yield 5-aminolevulinic acid escherichia coli engineering strains
CN104017767A (en) * 2014-06-18 2014-09-03 江南大学 Method for improving yield of 5-aminolevulinic acid by utilizing combined control strategy
CN110382700A (en) * 2017-12-12 2019-10-25 韩国科学技术院 Use the extracellular ferroheme generation method of metabolic engineering microorganism
CN109294963A (en) * 2018-10-11 2019-02-01 中国科学院水生生物研究所 The Shewanella genetic engineering bacterium and construction method of one plant height production protoporphyrin PPIX
CN109609427A (en) * 2019-01-25 2019-04-12 中国科学院水生生物研究所 One plant height produces her Shewanella genetic engineering bacterium of the Lip river of ferroheme and its construction method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A conserved haem redox and trafficking pathway for cofactor attachment;Cynthia L Richard-Fogal et al.;《The EMBO Journal》;20090723;第28卷;第2349-2359页 *
Heme Ligand Identification and Redox Properties of the Cytochrome c Synthetase, CcmF;Brian San Francisco et al.;《Biochemistry》;20111108;第50卷;第10974-10985页 *
Shewanella oneidensis细胞色素c成熟系统及亚硝酸盐抑制其延胡索酸呼吸分子机制的研究;金苗;《中国优秀博硕士学位论文全文数据库(博士) 基础科学辑》;20170215(第02期);第A006-162页 *
基于模块化优化策略强化大肠杆菌合成血红素;翁焕娇等;《食品与生物技术学报》;20191231;第38卷(第6期);第86-94页 *
大肠杆菌细胞色素还原酶CcmH结构和生化特性研究;郑学明;《中国优秀博硕士学位论文全文数据库(硕士) 基础科学辑》;20081115(第11期);第A006-136页 *

Also Published As

Publication number Publication date
CN112301049A (en) 2021-02-02

Similar Documents

Publication Publication Date Title
CN112301049B (en) Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme
UA76690C2 (en) Yeast which ferments xylose to ethanol (variants), plasmid vector and method for fermentation of xylose to ethanol
WO2010110599A9 (en) Novel αlpha-neoagarobiose hydrolase, and method for obtaining a monosaccharide using same
CN110373370B (en) Catalytic system coupled with ATP regeneration system and application of catalytic system in glutathione production process
CN101983240B (en) Flocculent yeast and method for production thereof
CN108315288A (en) A kind of recombination bacillus coli and its construction method and the application of expression formamidase and phosphorous acid dehydrogenase fusion proteins
CN101748069B (en) Recombinant blue-green algae
CN106480082A (en) A kind of gene knockout method for pseudomonas putida NBRC 14164
CN106754609A (en) One plant is attenuated the engineered strain of producing rhamnolipid with high yield and its builds and application
CN104480127B (en) Hyperthermophilic glucosides enzyme mutant and its application in prepared by Ginsenoside compound K
WO2020134427A1 (en) Use of sll0528 gene in improving ethanol tolerance of synechocystis sp. pcc 6803
CN114107356B (en) Method for transforming pseudomonas putida to assimilate D-galactose
CN107164256A (en) A kind of method of Sphingol single-cell genetic transformation
CN114574418B (en) Recombinant escherichia coli and hydrogen production application
CN104403969A (en) Peroxidase capable of degrading malachite green and preparation method for peroxidase
CN114134186A (en) Method for synthesizing 5-hydroxy beta-indolyl alanine by using glucose as substrate through biological method
CN114672525A (en) Biosynthesis method and application of N-acetyl-5-methoxytryptamine
Ludwig et al. Transformation and gene replacement in the facultatively chemoheterotrophic, unicellular cyanobacterium Synechocystis sp. PCC6714 by electroporation
CN109370972A (en) A kind of acetobacter engineering bacteria and its application
FI129574B (en) Variant bacterial strains and processes for protein or biomass production
CN112175981B (en) Method for site-directed gene knockout of vibrio harveyi based on stimulation of absolute ethyl alcohol or sodium dodecyl sulfonate
CN114015634B (en) Recombinant escherichia coli for high yield of succinic acid and construction method and application thereof
Jia et al. Complete genome sequence of a plant growth-promoting endophytic bacterium V4 isolated from tea (Camellia sinensis) leaf
Samassekou Gene Editing of a Secondary Alcohol Dehydrogenase in Nocardia cholesterolicum NRRL 5767 Using CRISPR/Cas9 Technology
CN110106129B (en) Rhodobacter sphaeroides with glutamate dehydrogenase gene inhibited, preparation method thereof and production method of farnesol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant