CN112299481A - 一种Bi2S3的制备方法 - Google Patents

一种Bi2S3的制备方法 Download PDF

Info

Publication number
CN112299481A
CN112299481A CN202010898087.4A CN202010898087A CN112299481A CN 112299481 A CN112299481 A CN 112299481A CN 202010898087 A CN202010898087 A CN 202010898087A CN 112299481 A CN112299481 A CN 112299481A
Authority
CN
China
Prior art keywords
sulfur source
solution
source
preparation
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010898087.4A
Other languages
English (en)
Other versions
CN112299481B (zh
Inventor
陈嵘
陶雄
胡晓武
苏春平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202010898087.4A priority Critical patent/CN112299481B/zh
Publication of CN112299481A publication Critical patent/CN112299481A/zh
Application granted granted Critical
Publication of CN112299481B publication Critical patent/CN112299481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0285Sulfides of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Bi2S3的制备方法,它以铋源和复合硫源为主要原料进行溶剂热反应,再经洗涤、干燥,得Bi2S3产物。本发明采用一步溶剂热法,并首次提出以复合硫源代替传统的单一硫源来合成Bi2S3,利用反应过程中不同硫源的释放速度差异及不同硫源与Bi3+形成的物质之间的相互作用,调控Bi2S3的生长机制,可有效提升所得Bi2S3的比表面积,并降低其粒径,可对Cr(VI)表现出优异的吸附与催化还原性能,为高性能Bi2S3的制备提供一条全新思路。

Description

一种Bi2S3的制备方法
技术领域
本发明属于功能复合材料制备技术领域,具体涉及一种对Cr(VI)等具有较高吸附性能与光催化还原性能的Bi2S3的制备方法。
背景技术
随着工业的发展使重金属污染愈发严重,其中危害较大的重金属为铬污染,其中正六价铬(Cr(VI))具有十分强的致癌性、刺激性,对环境具有巨大的危害。目前,工业上Cr(VI)废水的主要处理方法是将Cr(VI)还原为Cr(III),然后在碱性条件下Cr(III)会形成Cr(OH)3,从而将Cr(VI)从水体中去除。但是这种方法具有处理效率不高、处理费用高和处理后副产物难以处理易造成二次污染等缺点。光催化处理Cr(VI)是目前一种新兴技术,由于光催化处理Cr(VI) 具有处理效率高、处理费用低和处理后副产物少等优点受到人们的广泛关注,选择合适的催化剂是去除Cr(VI)的关键之一。
硫化铋纳米材料是一种环境友好型n型半导体光催化剂,具有合成条件方便,化学稳定性高,生物毒性较小等优点,在能源、水处理、药物治疗、红外成像和生物医学工程等方面都受到了广泛的关注,其中Bi2S3为报道较多的一种处理Cr(VI)的光催化剂。目前已报道的硫化铋的合成方法有很多,但是这些Bi2S3的合成方案基本上以一种铋源对应一种硫源,且合成的硫化铋具有比表面积比较小,平均纳米尺寸较大等不足,对Cr(VI)的吸附与光催化还原性能较差。如中国专利CN104226335A提供了一种具有多级结构的Bi2S3的合成方法,以硫脲为硫源,所得Bi2S3虽具有一定的比表面积与多级结构,但其合成方案较为复杂,要经过两步的合成才能得到成品,且产物比表面积只有29~33m2/g,对Cr(VI)的吸附效果较差。中国专利CN103626228A公开了一种片状硫化铋的合成方法,通过在水相中调节pH来控制Bi2S3的形貌,所选用的硫源为硫代乙酰胺或硫代硫酸钠中的一种,所得Bi2S3的厚度较大(160nm 左右,尺寸大),比表面积较小。专利CN104817111A公开了一种Bi2S3纳米实心微球的常温合成方法,以五水硝酸铋和单一硫源为主要原料,虽提供了一种简单的Bi2S3的合成方法,但所得Bi2S3的纳米尺寸比较大(200~3000nm),比表面积较小。
发明内容
本发明的主要目的在于针对现有技术存在的不足,提供一种Bi2S3的制备方法,通过在 Bi2S3溶剂热合成工艺中采用复合硫源,制备得到尺寸小、比表面积大的Bi2S3,可对Cr(VI) 等表现出较大的吸附量与较强的光催化还原性能;且涉及的制备工艺简单,操作方便,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种Bi2S3的制备方法,它以铋源和复合硫源为主要原料进行溶剂热反应,再经洗涤、干燥,得Bi2S3产物。
上述方案中,所述复合硫源为硫代乙酰胺、L-半胱氨酸、硫脲、硫化铵中两种以上的混合物。
上述方案中,所述铋源为硝酸铋。
上述方案中,所述溶剂热反应温度为120~180℃,时间为8~16h。
上述方案中,所述溶剂热反应采用的溶剂为乙二醇。
上述方案中,所述铋源和复合硫源的摩尔比1:(1.5~10)。
上述方案中,最优的复合硫源组合为L-半胱氨酸与硫化铵,其中复合硫源中L-半胱氨酸和硫化铵的摩尔比为1:(0.5~2)。
上述方案中,所述洗涤步骤为水洗加醇洗,清洗至上清液为无色且上清液的pH值为中性。
上述方案中,所述干燥温度为40~90℃。
根据上述方案中所得Bi2S3的比表面积可达59.18m2/g,平均粒径为101.39nm,其可对 Cr(VI)表现出较高的吸附(可达132.48mg/g)与光催化还原效果(光催化去除率可达86%)。
本发明的原理为:
本发明首次提出在Bi2S3溶剂热合成工艺中采用复合硫源,反应过程中不同硫源的释放 S2-速度不同,先释放S2-的硫源先和铋源进行结合形成Bi2S3,后释放S2-的硫源吸附到形成的 Bi2S3表面上,抑制Bi2S3的生长,同时随着温度的升高,后释放S2-的硫源释放S2-使得Bi2S3继续生长;此外复合硫源中,不同硫源与Bi3+形成的物质之间相互作用,可进一步限制Bi2S3尺寸的增长并有效提升其比表面积,显著提升对Cr(VI)等污染物的吸附与催化还原性能。
与现有技术相比,本发明的有益效果为:
1)本发明首次提出采用复合硫源代替传统的单一硫源来合成Bi2S3,可有效提升所得Bi2S3的比表面积,并降低其粒径,可对Cr(VI)表现出十分强的吸附与催化还原性能,为高性能Bi2S3的制备提供一条全新思路。
2)本发明只需采用一步溶剂热法反应,涉及的制备方法简单、操作方便,适合推广应用。
附图说明
图1为本发明实施例1~3所得Bi2S3的X射线衍射图谱。
图2为对比例1~4所得Bi2S3的X射线衍射图谱。
图3为(a)对比例1~4和(b)实施例1~3所得Bi2S3对Cr(VI)的光催化活性图。
图4为本发明实施例2所得Bi2S3的扫描电镜图。
图5为本发明对比例1所得Bi2S3的扫描电镜图。
图6为本发明对比例2所得Bi2S3的扫描电镜图。
图7为本发明实施例3所得Bi2S3的扫描电镜图。
图8为本发明对比例3所得Bi2S3的扫描电镜图。
图9为本发明对比例4所得Bi2S3的扫描电镜图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种Bi2S3的制备方法,包括如下步骤:
1)将0.0025mol五水硝酸铋溶于20ml乙二醇中超声至透明,得溶液A;将0.0050mol硫脲溶于20ml乙二醇中超声至透明,得溶液B;将0.0025mol硫化铵溶于10ml乙二醇溶液中超声至透明,得溶液C;将溶液B与溶液C进行混合后搅拌30min,得溶液D;
2)将溶液A与溶液D进行混合,室温下搅拌30min后倒入反应釜中,于180℃保温反应8h,将反应所得黑色固体水洗五次加醇洗后真空60℃干燥12h,即得所述Bi2S3
本实施例所得Bi2S3的XRD图见图1,结果表明所得产物为单相Bi2S3。此外,经测试,本实施例所得Bi2S3的比表面积为46.08m2/g,平均纳米尺寸为130.21nm。
将本实施例所得Bi2S3进行对Cr(VI)的最大吸附量的测定实验,具体步骤为:用100ml 锥形瓶分别配制40ml浓度为40、80、120、160和200mg/L的pH=2的Cr(VI)溶液,称取0.02g所得Bi2S3分别加到这五种浓度的Cr(VI)溶液中并超声分散均匀,然后将锥形瓶放进恒温摇床中在30℃和160r/min的转速条件下,吸附处理2h;在吸附完成后取3ml经上述处理的混合液并离心保留上清液进行紫外测量,根据标准曲线得吸附后溶液中Cr(VI)浓度,然后计算出吸附平衡浓度以及吸附容量后用Freundlich和Langmuir等温吸附模型进行拟合即可得到最大吸附量。结果表明,本实施例所得产物对Cr(VI)的最大吸附量为98.65mg/g。
将本实施例所得Bi2S3进行对Cr(VI)的光催化性能测定实验,具体步骤为:在50ml石英玻璃管中倒入40ml的40mg/L的Cr(VI)溶液,称取0.02g所得Bi2S3加入Cr(VI)溶液中并超声分散均匀,然后暗处搅拌吸附30min以达到吸附与脱附平衡,在吸附完成后将经上述处理所得混合液用可见光进行照射,且每隔30min取3ml混合液并离心保留上清液后测紫外,根据标准曲线得吸附后溶液中Cr(VI)浓度,总照射时长为2h,根据光照2h后溶液中残留的Cr(VI)浓度与初始的Cr(VI)浓度即可计算出Cr(VI)去除率。结果表明,本实施例所得产物对Cr(VI)的光催化去除率为75%(参考图3(b))。
实施例2
一种Bi2S3的制备方法,包括如下步骤:
1)将0.0025mol五水硝酸铋溶于20ml乙二醇中超声至透明,得溶液A;将0.00125mol 硫代乙酰胺溶于15ml乙二醇中超声至透明,得溶液B;将0.0025mol硫脲溶于15ml乙二醇溶液中超声至透明,得溶液C;将溶液B与溶液C进行混合后搅拌30min,得溶液D;
2)将溶液A与溶液D进行混合,室温下搅拌30min后倒入反应釜中,于150℃保温反应12h,将反应所得黑色固体水洗五次加醇洗后真空60℃干燥12h,即得所述Bi2S3
本实施例所得产物的XRD图见图1,结果表明所得产物为单相的Bi2S3。本实施例所得产物的扫描电镜图见图4,结果表明所得Bi2S3呈纳米棒状结构。此外,经测试,本实施例所得Bi2S3的比表面积为37.81m2/g,平均纳米尺寸为158.67nm。
采用实施例1所述方法对本实施例所得Bi2S3对Cr(VI)的最大吸附量和光催化去除率进行测定,结果表明所得Bi2S3对Cr(VI)的最大吸附量为95.59mg/g,光催化去除率为75%。
对比例1~2
对比单一硫源(对比例1和对比例2)和复合硫源条件下所得Bi2S3的比表面积、平均纳米尺寸、吸附性能、光催化性能和形貌;对比例1和2所述Bi2S3的制备方法与实施例2大致相同,不同之处分别在于:
对比例1中采用的硫源为硫代乙酰胺,其用量为0.00375mol;
对比例2中采用的硫源为硫脲,其用量为0.00375mol。
对比例1和2(对照实施例)所得产物的XRD衍射图分别如图2所示,结果表明所得产物也为均匀单相的Bi2S3。此外,经测试,对比例1所得产物的比表面积为13.64m2/g,平均纳米尺寸为431.35nm;对比例2所得产物的比表面积为7.10m2/g,平均纳米尺寸为844.71nm。
对比例1和对比例2所得产物的形貌图分别如图5和图6所示,对比例1的形貌为均一的纳米棒,对比例2为纳米花状。
采用实施例2所述方法分别对对比例1和对比例2所得Bi2S3对Cr(VI)的最大吸附量和光催化去除率进行测定,结果表明:对比例1和对比例2对Cr(VI)的最大吸附量分别为45.22mg/g 和21.0mg/g;对比例1和对比例2对Cr(VI)的光催化去除率分别为41.92%和16.80%。
上述结果可以看出:在相同硫源条件下,本发明实施例2采用的复合硫源体系所得Bi2S3的比表面积、平均纳米尺寸、吸附性能和光催化性能各项都显著优于对比例1和对比例2采用的单一硫源合成体系。
本发明实施例2的形貌的合成机制为:硫代乙酰胺和硫脲混合作为复合硫源,由于硫代乙酰胺的S2-的释放速度比硫脲快很多,导致在合成过程中首先是硫代乙酰胺在常温缓慢释放 S2-与铋源结合形成Bi2S3,硫脲与Bi3+进行结合形成配合物后吸附到Bi2S3表面上抑制Bi2S3生长,然后随着温度的升高硫脲分解也逐渐释放S2-,因此实施例2的形貌为纳米棒,形貌相对于对照实施例1的纳米棒要更细。
实施例3
一种Bi2S3的制备方法,包括如下步骤:
1)将0.0025mol五水硝酸铋溶于20ml乙二醇中超声至透明,得溶液A;将0.0025mol硫化铵溶于15ml乙二醇中超声至透明,得溶液B;将0.0025mol L-半胱氨酸溶于15ml乙二醇溶液中超声至透明,得溶液C;将溶液B与溶液C进行混合后搅拌30min,得溶液D;
2)将溶液A与溶液D进行混合,室温下搅拌30min后倒入反应釜中,于160℃保温反应12h,将反应所得黑色固体水洗五次加醇洗后真空60℃干燥12h,即得所述Bi2S3
本实施例所得Bi2S3的XRD图见图1,扫描电镜图见图7,所得Bi2S3呈纳米颗粒结构。此外,经测试,本实施例所得Bi2S3的比表面积为59.17m2/g,平均纳米尺寸为101.39nm。
采用实施例1所述方法对本实施例所得Bi2S3对Cr(VI)的最大吸附量和光催化去除率进行测定,结果表明所得Bi2S3对Cr(VI)的最大吸附量为132.48mg/g,光催化去除率为86%。
对比例3~4
对比单一硫源(对比例3和对比例4)和复合硫源条件下所得Bi2S3的比表面积、平均纳米尺寸、吸附性能、光催化性能和形貌;对比例3和4所述Bi2S3的制备方法与实施例2大致相同,不同之处分别在于:
对比例3中采用的硫源为L-半胱氨酸,其用量为0.005mol;
对比例4中采用的硫源为硫化铵,其用量为0.005mol。
对比例3和4所得产物的XRD衍射图分别如图2所示,结果表明所得产物也均匀单相的 Bi2S3。此外,经测试,对比例3所得产物的比表面积为26.24m2/g,平均纳米尺寸为228.70nm;对比例4所得产物的比表面积为8.68m2/g,平均纳米尺寸为691.45nm。
对比例3和对比例4所得Bi2S3的产物的扫描电镜图见图8和图9。
上述结果表明,所得本发明实施例5所得产物的比表面积、吸附性能和光催化性能各项都均优于采用单一硫源体系的对比例3和4。
本发明实施例3所述Bi2S3的形貌合成机制为:L-半胱氨酸和硫化铵混合作为复合硫源,由于硫化铵的S2-的释放速度比L-半胱氨酸快很多,这导致在合成过程中首先是硫化铵在常温下即可释放S2-与铋源结合形成Bi2S3,然后L-半胱氨酸先与Bi3+进行结合形成聚合型配合物后吸附到Bi2S3表面上,同时由于柯肯达尔效应使得实施例3所述产物的形貌向着对比例3 的形貌生长,但实施例3的纳米颗粒形貌相要比对比例3的粒径更小。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (7)

1.一种Bi2S3的制备方法,其特征在于,它以铋源和复合硫源为主要原料进行溶剂热反应,再经洗涤、干燥,得Bi2S3产物。
2.根据权利要求1所述的制备方法,其特征在于,所述复合硫源为硫代乙酰胺、L-半胱氨酸、硫脲、硫化铵中两种以上的混合物。
3.根据权利要求1所述的制备方法,其特征在于,所述铋源为硝酸铋。
4.根据权利要求1所述的制备方法,其特征在于,所述溶剂热反应温度为120~180℃,时间为8~16h。
5.根据权利要求1所述的制备方法,其特征在于,所述溶剂热反应采用的溶剂为乙二醇。
6.根据权利要求1所述的制备方法,其特征在于,所述铋源和复合硫源的摩尔比1:(1.5~10)。
7.根据权利要求1所述的制备方法,其特征在于,所述复合硫源组合为L-半胱氨酸与硫化铵,其中复合硫源中L-半胱氨酸和硫化铵的摩尔比为1:(0.5~2)。
CN202010898087.4A 2020-08-31 2020-08-31 一种Bi2S3的制备方法 Active CN112299481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010898087.4A CN112299481B (zh) 2020-08-31 2020-08-31 一种Bi2S3的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010898087.4A CN112299481B (zh) 2020-08-31 2020-08-31 一种Bi2S3的制备方法

Publications (2)

Publication Number Publication Date
CN112299481A true CN112299481A (zh) 2021-02-02
CN112299481B CN112299481B (zh) 2023-06-16

Family

ID=74483820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010898087.4A Active CN112299481B (zh) 2020-08-31 2020-08-31 一种Bi2S3的制备方法

Country Status (1)

Country Link
CN (1) CN112299481B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251234A (zh) * 2020-10-21 2021-01-22 国网河北省电力有限公司电力科学研究院 一种降解土壤中重金属离子的光催化剂及其制备方法
CN114653334A (zh) * 2022-03-15 2022-06-24 广西大学 水热法合成的Bi2S3@SiO2纳米纤维膜及其制备方法与应用
CN115672353A (zh) * 2022-11-17 2023-02-03 昆明理工大学 一种Bi2S3/Bi2WO6异质结光催化材料及其制备方法与应用
CN115799518A (zh) * 2023-02-02 2023-03-14 暨南大学 铋/氧化铋纳米点/碳片复合材料、制备方法及其应用
CN116351437A (zh) * 2022-12-07 2023-06-30 烟台大学 一种硫化铋纳米棒光催化剂及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549887A (zh) * 2009-03-20 2009-10-07 清华大学 一种三硫化二铋纳米结构的合成方法
CN102616844A (zh) * 2012-04-06 2012-08-01 合肥工业大学 一种绒球状三硫化二铋及其制备方法
CN103480395A (zh) * 2013-03-25 2014-01-01 湖南大学 一种核壳结构硫化铋@氧化铋复合物微球的制备与应用
CN103626228A (zh) * 2013-12-02 2014-03-12 陕西师范大学 一种片状Bi2S3粉末的制备方法
CN105060338A (zh) * 2015-07-29 2015-11-18 武汉理工大学 一种相选择性铜锌锡硫纳米晶的制备方法
CN105854899A (zh) * 2016-05-31 2016-08-17 闫春燕 一种Bi2S3/TiO2复合型可见光催化剂及其制备方法
US20200102228A1 (en) * 2018-09-27 2020-04-02 Imam Abdulrahman Bin Faisal University METHODS OF DEGRADING ORGANIC POLLUTANTS AND PREVENTING OR TREATING MICROBE USING Bi2S3-CdS PARTICLES
CN111203239A (zh) * 2020-02-27 2020-05-29 齐鲁工业大学 一种钨酸铋/硫化铋/二硫化钼异质结三元复合材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549887A (zh) * 2009-03-20 2009-10-07 清华大学 一种三硫化二铋纳米结构的合成方法
CN102616844A (zh) * 2012-04-06 2012-08-01 合肥工业大学 一种绒球状三硫化二铋及其制备方法
CN103480395A (zh) * 2013-03-25 2014-01-01 湖南大学 一种核壳结构硫化铋@氧化铋复合物微球的制备与应用
CN103626228A (zh) * 2013-12-02 2014-03-12 陕西师范大学 一种片状Bi2S3粉末的制备方法
CN105060338A (zh) * 2015-07-29 2015-11-18 武汉理工大学 一种相选择性铜锌锡硫纳米晶的制备方法
CN105854899A (zh) * 2016-05-31 2016-08-17 闫春燕 一种Bi2S3/TiO2复合型可见光催化剂及其制备方法
US20200102228A1 (en) * 2018-09-27 2020-04-02 Imam Abdulrahman Bin Faisal University METHODS OF DEGRADING ORGANIC POLLUTANTS AND PREVENTING OR TREATING MICROBE USING Bi2S3-CdS PARTICLES
CN111203239A (zh) * 2020-02-27 2020-05-29 齐鲁工业大学 一种钨酸铋/硫化铋/二硫化钼异质结三元复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIN ZHANG等: ""Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-Aligned Nanorods"", 《THE JOURNAL OF PHYSICAL CHEMISTRY B》 *
LU TIAN等: ""Morphology-Controlled Synthesis of Bi2S3 Nanomaterials via Single- and Multiple-Source Approaches"", 《CRYSTAL GROWTH AND DESIGN》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251234A (zh) * 2020-10-21 2021-01-22 国网河北省电力有限公司电力科学研究院 一种降解土壤中重金属离子的光催化剂及其制备方法
CN114653334A (zh) * 2022-03-15 2022-06-24 广西大学 水热法合成的Bi2S3@SiO2纳米纤维膜及其制备方法与应用
CN114653334B (zh) * 2022-03-15 2023-08-04 广西大学 水热法合成的Bi2S3@SiO2纳米纤维膜及其制备方法与应用
CN115672353A (zh) * 2022-11-17 2023-02-03 昆明理工大学 一种Bi2S3/Bi2WO6异质结光催化材料及其制备方法与应用
CN116351437A (zh) * 2022-12-07 2023-06-30 烟台大学 一种硫化铋纳米棒光催化剂及其制备方法与应用
CN116351437B (zh) * 2022-12-07 2024-01-26 烟台大学 一种硫化铋纳米棒光催化剂及其制备方法与应用
CN115799518A (zh) * 2023-02-02 2023-03-14 暨南大学 铋/氧化铋纳米点/碳片复合材料、制备方法及其应用

Also Published As

Publication number Publication date
CN112299481B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN112299481A (zh) 一种Bi2S3的制备方法
Yuan et al. Multi-component design and in-situ synthesis of visible-light-driven SnO2/g-C3N4/diatomite composite for high-efficient photoreduction of Cr (VI) with the aid of citric acid
Hou et al. The preparation of three-dimensional flower-like TiO 2/TiOF 2 photocatalyst and its efficient degradation of tetracycline hydrochloride
Zhou et al. Hydrothermal synthesis of novel ternary hierarchical MoS2/TiO2/clinoptilolite nanocomposites with remarkably enhanced visible light response towards xanthates
Wu et al. Construct interesting CuS/TiO2 architectures for effective removal of Cr (VI) in simulated wastewater via the strong synergistic adsorption and photocatalytic process
CN104707542B (zh) 一种光催化剂/SiO2复合气凝胶材料及其制备方法
CN113171766B (zh) 集吸油/吸附金属离子/光催化三元一体化磁性纳米石墨相氮化碳材料的制备方法及应用
Talebian et al. Ultraviolet to visible-light range photocatalytic activity of ZnO films prepared using sol–gel method: the influence of solvent
Liang et al. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification
CN111450858B (zh) 一种复合光催化剂Ag/AgCl@Co3O4的制备方法及由此制得的复合光催化剂
US9138737B2 (en) Method for regulating the distribution of metallic nanoparticles within the resin support
Zhou et al. Facile synthesis of clinoptilolite-supported Ag/TiO2 nanocomposites for visible-light degradation of xanthates
Wang et al. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation
Sandhu et al. Photocatalytic denitrification of water using polystyrene immobilized TiO2 as floating catalyst
Ahirwar et al. Synthesis of mesoporous TiO 2 and its role as a photocatalyst in degradation of indigo carmine dye
CN105728008A (zh) 一种制备AgCl/Bi2O2CO3复合光催化材料的方法及其产品
Zhang et al. Performance and mechanism of biochar-coupled BiVO4 photocatalyst on the degradation of sulfanilamide
Abarna et al. Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide
Wang et al. Tuning the Morphological Structure and Photocatalytic Activity of Nitrogen‐Doped (BiO) 2CO3 by the Hydrothermal Temperature
Hou et al. Preparation of Ag SPR-promoted TiO2-{001}/HTiOF3 photocatalyst with oxygen vacancies for highly efficient degradation of tetracycline hydrochloride
Ediati et al. Addition of graphene oxide to ZIF-8/HKUST-1 composite for enhanced adsorptive and photocatalytic removal of congo red in wastewater
Hou et al. A three-dimensional nano-network WO 3/F-TiO 2-{001} heterojunction constructed with OH-TiOF 2 as the precursor and its efficient degradation of methylene blue
Lu et al. Ultrastable photodegradation of formaldehyde under fluorescent lamp irradiation by anti-reflection structure SnS2/TiO2 composite
Mohamed et al. Doping cadmium oxide into mesoporous zinc oxide matrix for enhanced removal/reduction of Hg (II) Ions
CN111111696B (zh) 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant