CN112284533A - Radiometer for remote sensor on-orbit atmospheric correction - Google Patents
Radiometer for remote sensor on-orbit atmospheric correction Download PDFInfo
- Publication number
- CN112284533A CN112284533A CN201910673417.7A CN201910673417A CN112284533A CN 112284533 A CN112284533 A CN 112284533A CN 201910673417 A CN201910673417 A CN 201910673417A CN 112284533 A CN112284533 A CN 112284533A
- Authority
- CN
- China
- Prior art keywords
- detector
- radiometer
- ground
- port
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 title claims abstract description 51
- 239000011248 coating agent Substances 0.000 claims abstract description 15
- 238000000576 coating method Methods 0.000 claims abstract description 15
- 238000005286 illumination Methods 0.000 claims abstract description 5
- 238000002834 transmittance Methods 0.000 claims description 17
- 230000004907 flux Effects 0.000 claims description 12
- 230000005855 radiation Effects 0.000 claims description 9
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 238000002310 reflectometry Methods 0.000 claims description 6
- 238000000691 measurement method Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 230000008676 import Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000000701 chemical imaging Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000005427 atmospheric aerosol Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0297—Constructional arrangements for removing other types of optical noise or for performing calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/255—Details, e.g. use of specially adapted sources, lighting or optical systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N2021/0106—General arrangement of respective parts
- G01N2021/0112—Apparatus in one mechanical, optical or electronic block
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
- G01N2021/1795—Atmospheric mapping of gases
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域technical field
本发明涉及光谱辐射定标的技术领域,特别涉及到一种用于遥感器在轨大气校正的辐射计。The invention relates to the technical field of spectral radiation calibration, in particular to a radiometer used for on-orbit atmospheric correction of a remote sensor.
背景技术Background technique
随着国家经济和科技的发展,国家宏观决策、国防军事、国土资源调查、精准农业、环境监测、大气探测、极端灾害预报等领域急需航天遥感数据的支持。而高光谱成像技术是80年代发展起来的遥感技术,与传统的光谱仪不同的是,高光谱成像技术是集成像与光谱于一体(图谱合一),以纳米级高光谱分辨率,在获取目标二维空间图像信息的同时,同步获取目标的连续精细光谱信息,使航天遥感的探测能力大为提高,可广泛应用于陆地、大气、海洋等观测中。With the development of the national economy and science and technology, the support of aerospace remote sensing data is urgently needed in the fields of national macro-decision-making, national defense and military, land and resources survey, precision agriculture, environmental monitoring, atmospheric detection, and extreme disaster forecasting. The hyperspectral imaging technology is a remote sensing technology developed in the 1980s. Different from the traditional spectrometer, the hyperspectral imaging technology integrates the image and the spectrum (integration of the spectrum), with nano-scale hyperspectral resolution, in the acquisition of targets At the same time of two-dimensional space image information, continuous fine spectral information of the target is simultaneously obtained, which greatly improves the detection ability of space remote sensing, and can be widely used in land, atmosphere, ocean and other observations.
通过高光谱相机在轨获取的地面三维立方体数据,可以反演出地物的反射率曲线;然而受到地物上空大气特性的影响,其反演的反射率曲线与地物目标的真实反射率曲线存在一定的差异,由于大气中的分子和气溶胶粒子散射和吸收的贡献,目标在探测器穿过上行大气之前的辐射值和地物目标的真实辐射值存在很大的差别,且该差别随天气条件和局地大气参数(如水汽和其他吸收气体含量、大气气溶胶、温度、湿度和气压等)的不同有很大的变化。因此,要获取高质量可溯源至SI(国际基本单位制)的高光谱航天遥感数据,精确地定量化诠释地物信息就必须深入开展高光谱成像仪对地观测工作的研究,进行大气校正,扣除大气影响。The ground 3D cube data obtained by the hyperspectral camera in orbit can invert the reflectivity curve of the ground object; however, due to the influence of the atmospheric characteristics over the ground object, the inverted reflectivity curve and the real reflectivity curve of the ground object exist. Due to the contribution of scattering and absorption of molecules and aerosol particles in the atmosphere, the radiation value of the target before the detector passes through the upward atmosphere and the real radiation value of the ground object are very different, and the difference varies with weather conditions. and local atmospheric parameters (such as water vapor and other absorbed gas content, atmospheric aerosols, temperature, humidity and air pressure, etc.) vary greatly. Therefore, in order to obtain high-quality hyperspectral aerospace remote sensing data traceable to SI (International Basic System of Units), and to accurately and quantitatively interpret the ground object information, it is necessary to carry out in-depth research on the earth observation work of hyperspectral imagers, and to carry out atmospheric correction. Atmospheric effects are deducted.
现有的大气辐射校正方法主要包括实际大气透过率的测量和根据探测的大气参数模拟计算大气透过率。但实时测量长斜程路径的大气透过率非常困难,且不易实现。而通过构建大气光谱透过率的计算模式对测量的辐射信号进行校正则主要采用的是计算机软件仿真分析法,这类方法一般利用国外的大气辐射传输软件(如MODTRAN等)采用标准大气模式计算大气透过率,这类方法的优势在于操作简单、成本低和周期短等优点。然而我国典型地区实际大气与标准大气模式存在较大差异,其在计算精度与计算效率上存在一定的局限性。因此,在实际工程应用中,仍然需要采用大气测量仪器对测量场地定标时刻的大气特性参数进行实际观测校正。但目前在实际工程应用对大气特性参数校正需要采用多台大气测量仪器,测量过程复杂,且缺乏自定标装置和仪器衰减自校正功能,难以保持长期稳定性。The existing atmospheric radiation correction methods mainly include the measurement of the actual atmospheric transmittance and the simulated calculation of the atmospheric transmittance based on the detected atmospheric parameters. However, real-time measurement of atmospheric transmittance for long-slope paths is very difficult and difficult to achieve. The computer software simulation analysis method is mainly used to correct the measured radiation signal by constructing a calculation model of atmospheric spectral transmittance. This kind of method generally uses foreign atmospheric radiation transfer software (such as MODTRAN, etc.) to calculate the standard atmospheric model. Atmospheric transmittance, the advantages of this type of method lie in the advantages of simple operation, low cost and short cycle. However, there is a big difference between the actual atmosphere and the standard atmospheric model in typical areas of my country, and it has certain limitations in calculation accuracy and calculation efficiency. Therefore, in practical engineering applications, it is still necessary to use atmospheric measuring instruments to perform actual observation and correction of atmospheric characteristic parameters at the calibration time of the measurement site. However, at present, the calibration of atmospheric characteristic parameters in practical engineering applications requires the use of multiple atmospheric measurement instruments, the measurement process is complex, and the lack of self-calibration devices and instrument attenuation self-correction functions makes it difficult to maintain long-term stability.
发明内容SUMMARY OF THE INVENTION
本发明提出了一种用于遥感器在轨大气校正的辐射计,以稳定已知的太阳为参照,在原理上消除了自身衰减和变化对定标源标定精度的影响,能够精确测量定标场上空的大气特性参数,消除大气廓线误差,反演大气参数。The invention proposes a radiometer used for atmospheric correction of remote sensors in orbit. Taking the stable and known sun as a reference, in principle, the influence of self-attenuation and change on the calibration accuracy of the calibration source can be eliminated, and the calibration can be accurately measured and calibrated. Atmospheric characteristic parameters over the field, eliminate atmospheric profile errors, and invert atmospheric parameters.
为此,本发明采用以下技术方案:For this reason, the present invention adopts the following technical solutions:
实施例一:Example 1:
一种用于遥感器在轨大气校正的辐射计,如图1所示,所述辐射计包括积分球1,积分球1内表面涂覆有漫反射涂层2;所述积分球1设有对地聚光口3、太阳光入射口4和一个探测器接口5;所述对地聚光口3衔接聚光系统6,所述对地聚光口3和聚光系统6之间设有第一电磁阀11;所述太阳光入射口4设有第二电磁阀12;所述探测器接口5设有准直校正模块和探测器模块;所述对地聚光口3和太阳光入射口4的入射光线进入积分球后经过漫反射涂层2多次反射后,在积分球内表面形成均匀的照面,再通过探测器接口5的准直校正模块后导入探测器模块。A radiometer used for on-orbit atmospheric correction of a remote sensor, as shown in Figure 1, the radiometer includes an integrating sphere 1, and the inner surface of the integrating sphere 1 is coated with a
其中,所述准直校正模块包括视场光阑7和校正准直透镜8,所述校正准直透镜8置于视场光阑7内,光线从探测器接口5入校正准直透镜8后导入探测器模块;所述探测器模块包括滤光片9和探测器单元10,光线经滤光片9后导入探测器单元10,所述探测器单元10为InGaAs探测器。The collimation and correction module includes a field diaphragm 7 and a
其中,所述聚光系统6为反射式结构。Wherein, the
其中,所述InGaAs探测器为集成式探测器,集成至少1个像元。Wherein, the InGaAs detector is an integrated detector, which integrates at least one pixel.
其中,所述对地聚光口3入射通量与太阳光入射4口入射通量保持相等,因Among them, the incident flux of the
太阳光入射口通量为The sunlight incident flux is
其中,为大气层外太阳辐照度,bλ为带宽,θ为太阳光入射角度,Ds为太阳光入射口口径;in, is the solar irradiance outside the atmosphere, b λ is the bandwidth, θ is the incident angle of sunlight, and D s is the aperture of the solar light entrance;
对地聚光口入射通量为The incident flux to the concentrator is
其中,为上行大气透过率,为下行大气透过率,ρ(λ)为地面反射率,τ0(λ)为地面观测聚光系统透过率,Ω为轨道高度与地面形成的立体角度,Do为对地聚光口口径;in, is the upward atmospheric transmittance, is the downward atmospheric transmittance, ρ(λ) is the ground reflectivity, τ 0 (λ) is the transmittance of the ground observation concentrating system, Ω is the solid angle formed by the orbit height and the ground, and D o is the concentrating port on the ground caliber;
当when
则太阳光入射口口径与对地聚光口口径关系为:Then the relationship between the aperture of the sunlight entrance and the aperture of the concentrator on the ground is:
实施例二
一种用于遥感器在轨大气校正的辐射计,如图2所示,所述辐射计包括积分球1,积分球1内表面涂覆有漫反射涂层2;所述积分球1设有对地聚光口3、太阳光入射口4和两个探测器接口51和52;所述对地聚光口3衔接聚光系统6,所述对地聚光口3和聚光系统6之间设有第一电磁阀11;所述太阳光入射口4设有第二电磁阀12;所述探测器接口51和52均设有准直校正模块和探测器模块;所述对地聚光口和太阳光入射口的入射光线进入积分球后经过漫反射涂层多次反射后,在积分球内表面形成均匀的照面,再通过探测器接口51和52的准直校正模块后导入探测器模块。A radiometer used for on-orbit atmospheric correction of a remote sensor, as shown in Figure 2, the radiometer includes an integrating sphere 1, and the inner surface of the integrating sphere 1 is coated with a
其中,所述探测器接口51处的第一准直校正模块包括第一视场光阑71和第一校正准直透镜81,所述第一校正准直透镜81置于第一视场光阑71内,光线从探测器接口51入第一校正准直透镜81后导入第一探测器模块,所述第一探测器模块包括第一滤光片91和第一探测器单元101,光线经滤光片91后导入探测器单元101,所述探测器单元101为InGaAs探测器;所述探测器接口52处的第二准直校正模块包括第二视场光阑72和第二校正准直透镜82,所述第二校正准直透镜82置于第二视场光阑82内,光线从探测器接口52入第二校正准直透镜82后导入第二探测器模块,所述探测器模块包括第二滤光片92和第二探测器单元102,光线经滤光片92后导入探测器单元102,所述探测器单元102为Silicon探测器。The first collimation and correction module at the
其中,所述InGaAs探测器为集成式探测器,集成至少1个像元。Wherein, the InGaAs detector is an integrated detector, which integrates at least one pixel.
其中所述对地聚光口3入射通量与太阳光入射口4入射通量保持相等,因太阳光入射口通量为Wherein, the incident flux of the
其中,为大气层外太阳辐照度,bλ为带宽,θ为太阳光入射角度,Ds为太阳光入射口口径;in, is the solar irradiance outside the atmosphere, b λ is the bandwidth, θ is the incident angle of sunlight, and D s is the aperture of the solar light entrance;
对地聚光口入射通量为The incident flux to the concentrator is
其中,为上行大气透过率,为下行大气透过率,ρ(λ)为地面反射率,τ0(λ)为地面观测聚光系统透过率,Ω为轨道高度与地面形成的立体角度,Do为对地聚光口口径;in, is the upward atmospheric transmittance, is the downward atmospheric transmittance, ρ(λ) is the ground reflectivity, τ 0 (λ) is the transmittance of the ground observation concentrating system, Ω is the solid angle formed by the orbit height and the ground, and D o is the concentrating port on the ground caliber;
当when
则太阳光入射口口径与对地聚光口口径关系为:Then the relationship between the aperture of the sunlight entrance and the aperture of the concentrator on the ground is:
一种基于上述的用于遥感器在轨大气校正的辐射计的测量方法,包括如下:A measurement method based on the above-mentioned radiometer for on-orbit atmospheric correction of a remote sensor, comprising the following:
1)辐射计的自定标校正:采用遥感器在轨道运行中经过一定太阳高度角时辐射计对日观测探测器的输出均值与上一次遥感器在轨道运行中经过相同太阳高度角时辐射计对日观测探测器的输出均值的比值来确定辐射计自身的相对衰减;1) Self-calibration correction of the radiometer: the mean value of the output of the radiometer to the solar observation detector when the remote sensor passes a certain solar altitude during orbital operation is the same as the radiometer when the remote sensor passed the same solar altitude during the orbital operation. The ratio of the output mean of the daily observation detector to determine the relative attenuation of the radiometer itself;
其中,探测器输出均值为遥感器在轨道中运行从太阳高度角α至太阳高度角β的时间t内,利用第一电磁阀关闭对地聚光口,开启第二电磁阀,使太阳光入射口对日观测,入射光线进入积分球后经漫反射涂层多次反射,在积分球内表面形成均匀的照面,再通过探测器连续采集的N次数据的平均值 Among them, the average output of the detector is the time t from the solar altitude angle α to the solar altitude angle β of the remote sensor running in the orbit. The first solenoid valve is used to close the concentrating port on the ground, and the second solenoid valve is opened to allow sunlight to enter. For daily observation, the incident light enters the integrating sphere and is reflected multiple times by the diffuse reflection coating to form a uniform surface on the inner surface of the integrating sphere.
2)大气辐射特性测量:遥感器途经地面定标场上空时,利用第二电磁阀关闭太阳光入射口,开启第一电磁阀,使对地聚光系统对准定标场中心参考区域,定标场光线经对地聚光系统集光后进入积分球后经漫反射涂层多次反射,在积分球内表面形成均匀的照面,再通过探测器采集数据,取定标场中心参考区域的大气透过率。2) Measurement of atmospheric radiation characteristics: When the remote sensor passes over the ground calibration field, the second solenoid valve is used to close the sunlight inlet, and the first solenoid valve is opened, so that the ground concentrating system is aligned with the center reference area of the calibration field, and the The light of the calibration field is collected by the concentrating system on the ground and then enters the integrating sphere, and then is reflected multiple times by the diffuse reflection coating to form a uniform illumination surface on the inner surface of the integrating sphere. Atmospheric transmittance.
本发明采用以上技术方案,具有如下优势:The present invention adopts the above technical scheme, and has the following advantages:
1)本发明以稳定已知的太阳为参照,在原理上消除了自身衰减和变化对定标源标定精度的影响,能够精确测量定标场上空的大气特性参数,消除大气廓线误差,反演大气参数;1) The present invention takes the stable and known sun as a reference, eliminates the influence of self-attenuation and change on the calibration accuracy of the calibration source in principle, can accurately measure the atmospheric characteristic parameters over the calibration field, eliminates atmospheric profile errors, and reverses the play atmospheric parameters;
2)本发明在光线进去探测器前设置校正模块以解决光线经积分球后,折射进入探测器,由于折射角偏大,会导致波长曲线翘起变宽的问题,从而保证了探测器的光谱响应带宽,并使大气校正辐射计的定标更加准确;2) In the present invention, a correction module is set before the light enters the detector to solve the problem that the light is refracted and enters the detector after passing through the integrating sphere. Due to the large refraction angle, the wavelength curve will be warped and widened, thereby ensuring the spectrum of the detector. Response bandwidth and make calibration of atmospheric correction radiometers more accurate;
3)结构简单,稳定性好。3) Simple structure and good stability.
附图说明Description of drawings
图1为本发明用于遥感器在轨大气校正的辐射计实施例一的结构示意图1 is a schematic structural diagram of Embodiment 1 of a radiometer used for remote sensor on-orbit atmospheric correction according to the present invention
图2为本发明用于遥感器在轨大气校正的辐射计实施例二的结构示意图FIG. 2 is a schematic structural diagram of
图3为本发明具体实施方式中聚光系统的结构示意图FIG. 3 is a schematic structural diagram of a light concentrating system in a specific embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、特征和优点更加的清晰,以下结合附图及实施例,对本发明的一种具体实施方式做出更为详细的说明,在下面的描述中,阐述了很多具体的细节以便于充分的理解本发明,但是本发明能够以很多不同于描述的其它方式来实施,因此,本发明不受以下公开的具体实施例的限制。In order to make the objectives, features and advantages of the present invention clearer, a specific implementation of the present invention will be described in more detail below with reference to the accompanying drawings and embodiments. In the following description, many specific details are set forth. In order to facilitate a full understanding of the present invention, the present invention is capable of being carried out in many other ways than described, and therefore, the present invention is not limited by the specific embodiments disclosed below.
按本发明中的结构特点和功能给出具体实施方法。用于遥感器在轨大气校正的辐射计系统指标如下:The specific implementation method is given according to the structural features and functions in the present invention. The radiometer system indicators used for the on-orbit atmospheric correction of the remote sensor are as follows:
所述聚光系统采用反射式结构,如图3所示,透镜选用石英材料,同时考虑结构的轻小型化,光学设计结果如下图所示:The light collecting system adopts a reflective structure, as shown in Figure 3, the lens is made of quartz material, and the light and miniaturization of the structure is considered at the same time, and the optical design results are shown in the following figure:
对于Si探测器采用单元独立布局5个,对于InGaAs探测器采用5元合1整体布局。探测器中心波长设置及接收的能量如下表所示:For Si detectors, 5 independent cells are used, and for InGaAs detectors, a 5-in-1 overall layout is used. The central wavelength setting of the detector and the received energy are shown in the table below:
辐射计太阳入光口和对地聚光口入射光线在积分球内进入积分球后经漫反射涂层多次反射,在积分球内表面形成均匀的照面后,到达探测器的滤光片的入射角会大于>9°,易造成波长曲线翘起变宽,使探测器获取的数据不精确,因此在采用在光线进去探测器前设置校正准直透镜,校正准直透镜与滤光片距离为0.5mm;光线离开校正准直透镜后,到达探测器滤光片表面的入射角度控制在9°以内,从而保证探测器的光谱响应带宽,并使大气校正辐射计的定标更加准确。The incident light from the solar light entrance and the ground concentrating port of the radiometer enters the integrating sphere and is repeatedly reflected by the diffuse reflection coating. After forming a uniform surface on the inner surface of the integrating sphere, it reaches the filter of the detector The incident angle will be greater than 9°, which will easily cause the wavelength curve to warp and widen, making the data obtained by the detector inaccurate. Therefore, a calibration collimator lens is used before the light enters the detector, and the distance between the collimator lens and the filter is corrected. After the light leaves the calibration collimating lens, the incident angle to the detector filter surface is controlled within 9°, thereby ensuring the spectral response bandwidth of the detector and making the calibration of the atmospheric correction radiometer more accurate.
用于遥感器在轨大气校正的辐射计的测量方法,包括如下:Measurement methods for radiometers used for on-orbit atmospheric correction of remote sensors, including the following:
1)辐射计的自定标校正:采用遥感器在轨道运行中经过一定太阳高度角时辐射计对日观测探测器的输出均值与上一次遥感器在轨道运行中经过相同太阳高度角时辐射计对日观测探测器的输出均值的比值来确定辐射计自身的相对衰减;1) Self-calibration correction of the radiometer: the mean value of the output of the radiometer to the solar observation detector when the remote sensor passes a certain solar altitude during orbital operation is the same as the radiometer when the remote sensor passed the same solar altitude during the orbital operation. The ratio of the output mean of the daily observation detector to determine the relative attenuation of the radiometer itself;
其中,探测器输出均值为遥感器在轨道中运行从太阳高度角-2°至太阳高度角+4°(北极阴影区附近)的时间2min内,利用第一电磁阀关闭对地聚光口,开启第二电磁阀,使太阳光入射口对日观测,入射光线进入积分球后经漫反射涂层多次反射,在积分球内表面形成均匀的照面,再通过探测器连续采集的10次数据的平均值 Among them, the average output of the detector is the time when the remote sensor runs in the orbit from the sun altitude angle of -2° to the sun altitude angle of +4° (near the arctic shadow area) for 2 minutes, and the first solenoid valve is used to close the concentrating port on the ground. Open the second solenoid valve to make the sunlight entrance to observe the sun. The incident light enters the integrating sphere and is reflected by the diffuse reflection coating for multiple times, forming a uniform surface on the inner surface of the integrating sphere, and then continuously collects 10 data through the detector. average of
2)大气辐射特性测量:遥感器途经地面定标场上空时,利用第二电磁阀关闭太阳光入射口,开启第一电磁阀,使对地聚光系统对准定标场中心参考区域,定标场光线经对地聚光系统集光后进入积分球后经漫反射涂层多次反射,在积分球内表面形成均匀的照面,再通过探测器采集数据,取定标场中心参考区域的大气透过率。2) Measurement of atmospheric radiation characteristics: When the remote sensor passes over the ground calibration field, the second solenoid valve is used to close the sunlight inlet, and the first solenoid valve is opened, so that the ground concentrating system is aligned with the center reference area of the calibration field, and the The light of the calibration field is collected by the concentrating system on the ground and then enters the integrating sphere, and then is reflected multiple times by the diffuse reflection coating to form a uniform illumination surface on the inner surface of the integrating sphere. Atmospheric transmittance.
按照定标场中心参考区域与轨道的相对关系,对于不同定标时间点,卫星在±10°范围内侧摆。考虑到偏流角影响,侧摆角度要求精度优于0.1°,即大气校正辐射计采集区域定位精度优于1.54km。According to the relative relationship between the reference area at the center of the calibration field and the orbit, for different calibration time points, the satellite swings within the range of ±10°. Considering the influence of the drift angle, the accuracy of the roll angle is required to be better than 0.1°, that is, the positioning accuracy of the atmospheric correction radiometer collection area is better than 1.54km.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910673417.7A CN112284533B (en) | 2019-07-24 | 2019-07-24 | Radiometer for remote sensor on-orbit atmospheric correction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910673417.7A CN112284533B (en) | 2019-07-24 | 2019-07-24 | Radiometer for remote sensor on-orbit atmospheric correction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112284533A true CN112284533A (en) | 2021-01-29 |
CN112284533B CN112284533B (en) | 2024-06-21 |
Family
ID=74419085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910673417.7A Active CN112284533B (en) | 2019-07-24 | 2019-07-24 | Radiometer for remote sensor on-orbit atmospheric correction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112284533B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113686819A (en) * | 2021-08-11 | 2021-11-23 | 江苏省农业科学院 | Incident Optical Path Structure of Crop Growth Information Sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5835267A (en) * | 1997-07-15 | 1998-11-10 | Eastman Kodak Company | Radiometric calibration device and method |
CN102564590A (en) * | 2011-12-29 | 2012-07-11 | 中国科学院长春光学精密机械与物理研究所 | Ground feature simulation spectral radiance calibration source device |
US20120314208A1 (en) * | 2011-06-09 | 2012-12-13 | Carl Zeiss Microimaging Gmbh | Measuring method and device for determining transmission and/or reflection properties |
CN105444881A (en) * | 2015-12-14 | 2016-03-30 | 中国科学院合肥物质科学研究院 | Self-correcting atmosphere-earth surface optical radiation characteristic observer |
CN106017680A (en) * | 2016-08-02 | 2016-10-12 | 中国科学院长春光学精密机械与物理研究所 | Halogen tungsten lamp source and imaging spectrometer onboard calibration method |
CN108603834A (en) * | 2015-12-11 | 2018-09-28 | 帝斯曼知识产权资产管理有限公司 | The system and method that optical measurement is used on clear sheet |
CN210513419U (en) * | 2019-07-24 | 2020-05-12 | 中国科学院上海技术物理研究所启东光电遥感中心 | Radiometer for remote sensor on-orbit atmospheric correction |
-
2019
- 2019-07-24 CN CN201910673417.7A patent/CN112284533B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5835267A (en) * | 1997-07-15 | 1998-11-10 | Eastman Kodak Company | Radiometric calibration device and method |
US20120314208A1 (en) * | 2011-06-09 | 2012-12-13 | Carl Zeiss Microimaging Gmbh | Measuring method and device for determining transmission and/or reflection properties |
CN102564590A (en) * | 2011-12-29 | 2012-07-11 | 中国科学院长春光学精密机械与物理研究所 | Ground feature simulation spectral radiance calibration source device |
CN108603834A (en) * | 2015-12-11 | 2018-09-28 | 帝斯曼知识产权资产管理有限公司 | The system and method that optical measurement is used on clear sheet |
CN105444881A (en) * | 2015-12-14 | 2016-03-30 | 中国科学院合肥物质科学研究院 | Self-correcting atmosphere-earth surface optical radiation characteristic observer |
CN106017680A (en) * | 2016-08-02 | 2016-10-12 | 中国科学院长春光学精密机械与物理研究所 | Halogen tungsten lamp source and imaging spectrometer onboard calibration method |
CN210513419U (en) * | 2019-07-24 | 2020-05-12 | 中国科学院上海技术物理研究所启东光电遥感中心 | Radiometer for remote sensor on-orbit atmospheric correction |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113686819A (en) * | 2021-08-11 | 2021-11-23 | 江苏省农业科学院 | Incident Optical Path Structure of Crop Growth Information Sensor |
CN113686819B (en) * | 2021-08-11 | 2024-05-14 | 江苏省农业科学院 | Incident light path structure of crop growth information sensor |
Also Published As
Publication number | Publication date |
---|---|
CN112284533B (en) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110006463B (en) | An on-orbit absolute radiometric calibration method and system for an optical remote sensing satellite | |
CN102901516B (en) | A kind of multispectral image radiation correction method based on absolute radiometric calibration | |
US11635481B2 (en) | Stellar atmospheric refraction measurement correction method based on collinearity of refraction surfaces | |
Jackson et al. | Field calibration of reference reflectance panels | |
CN103018736A (en) | Satellite-borne remote sensor radiation calibration method based on atmospheric parameter remote sensing retrieval | |
CN104406607A (en) | Multi-visual field composite optical sensor calibration device and method | |
CN108120510A (en) | A kind of in-orbit absolute radiation calibration method of optical sensor based on reflection mirror array | |
CN108107002A (en) | The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target | |
CN103852078A (en) | Device and method for measuring stray light protection angle of space optical attitude sensor | |
Wang et al. | Water vapor retrievals from near-infrared channels of the advanced Medium Resolution Spectral Imager instrument onboard the Fengyun-3D satellite | |
CN106769895A (en) | A kind of method for demarcating measurement whole atmosphere spectral transmittance | |
CN210513419U (en) | Radiometer for remote sensor on-orbit atmospheric correction | |
CN112284533A (en) | Radiometer for remote sensor on-orbit atmospheric correction | |
CN109632643B (en) | On-orbit calibration method and device for multi-angle polarization detector | |
CN114218786B (en) | On-orbit polarized radiation characteristic inversion method for unpolarized satellite sensor | |
CN214667266U (en) | Integrating sphere ratio radiometer for remote sensor on-orbit radiometric calibration | |
CN111721734B (en) | On-orbit spectrum calibration method for infrared very-high spectral resolution detector for high-resolution five-number satellite | |
CN114200670B (en) | Design method of free-form surface reflecting mirror for direct solar radiation measurement | |
CN103398695B (en) | Distance measurement system and distance measurement method applied to canopy reflectance spectra measurement | |
ES2984655T3 (en) | High-precision real-time measurement system for atmospheric attenuation of electromagnetic radiation | |
CN113624640A (en) | Edge scattering detection device and method for detecting atmospheric temperature and density profile | |
CN102539120B (en) | Measuring method for spectral reflectance of off-axis R-C system | |
CN114279689B (en) | Device and method for detecting diffraction effect of aperture diaphragm | |
CN113865708B (en) | Satellite sensor radiation time sequence calibration method based on accurate sun-ground distance | |
Li et al. | Skylight VIS-NIR Polarization Radiometer: Design, Calibration and Measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 226200 building 11, Jinmeng Pioneer Park, 101 Nanhai Road, high tech Zone, Qidong City, Nantong City, Jiangsu Province Applicant after: Qidong Zhongke photoelectric remote sensing center Address before: 226200 building 11, Jinmeng Pioneer Park, 101 Nanhai Road, high tech Zone, Qidong City, Nantong City, Jiangsu Province Applicant before: QIDONG PHOTOELECTRIC AND REMOTE SENSING CENTER, SHANGHAI INSTITUTE OF TECHNICAL PHYSICS OF THE CHINESE ACADEMY OF SCIENCES |
|
CB02 | Change of applicant information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240116 Address after: 200083 No. 500, Yutian Road, Shanghai, Hongkou District Applicant after: SHANGHAI INSTITUTE OF TECHNICAL PHYSICS, CHINESE ACADEMY OF SCIENCE Applicant after: Qidong Zhongke photoelectric remote sensing center Address before: 226200 building 11, Jinmeng Pioneer Park, 101 Nanhai Road, high tech Zone, Qidong City, Nantong City, Jiangsu Province Applicant before: Qidong Zhongke photoelectric remote sensing center |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |