CN108107002A - The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target - Google Patents

The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target Download PDF

Info

Publication number
CN108107002A
CN108107002A CN201711181278.3A CN201711181278A CN108107002A CN 108107002 A CN108107002 A CN 108107002A CN 201711181278 A CN201711181278 A CN 201711181278A CN 108107002 A CN108107002 A CN 108107002A
Authority
CN
China
Prior art keywords
mrow
msub
lambda
mfrac
multiple level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711181278.3A
Other languages
Chinese (zh)
Inventor
陈洪耀
张黎明
李鑫
徐伟伟
司孝龙
韩涛
杨利峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201711181278.3A priority Critical patent/CN108107002A/en
Publication of CN108107002A publication Critical patent/CN108107002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • G01N2021/1795Atmospheric mapping of gases

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target the invention discloses one kind, with grayscale target(Target plate), speculum, the multiple level target such as active light source be reference, linear regression is utilized to calculate separation target emanation and atmospheric path radiation, surface atmosphere coupled radiation.By live atmosphere optical thickness, it is unrestrained always than(It is needed if target is diffusion)And the measurement of multiple level target energy combines Atmospheric Absorption gas permeation rate and calculates, and realizes the in-orbit absolute radiometric calibration of optical sensor.The in-orbit absolute radiometric calibration technology of the present invention does not depend on Radiance transfer calculation, reduces the influence of the factors such as aerosol, atmospheric model, which can realize optical sensor full dynamic range, high accuracy Scaling based on the measured data of ground.

Description

The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target
Technical field
The present invention relates to optical remote sensing science and technology fields more particularly to a kind of multiple level target that is based on to simplify radiation transmission Calculate in-orbit absolute radiation calibration method.
Background technology
Optical remote sensing has important answer in fields such as survey of territorial resources, surveying and mapping, urban planning and military surveillances Use meaning.The rdaiation response of the remotely-sensed datas such as biophysical parameters of observed object product and remote sensor has direct relation, therefore The accuracy of absolute radiometric calibration during remote sensor operation directly affects the breadth and depth of its remote sensing data application.
Optical sensor transmitting before Laboratory Calibration be most comprehensively, accuracy it is highest, however emit when acutely shaking The performances such as the reasons such as the aging of dynamic, outer space rugged environment and optical element, the rdaiation response of instrument can change.Portion Although spectroscopy remote sensor is equipped with the onboard process system such as lamp or diffusing panel, but scaling system itself may decay (some has stability monitoring system), and these systems can only realize the calibration of part aperture or part light path mostly.Light During learning remote sensor in orbit, using large area uniform field or made Target as scene, pass through ground spectral reflectivity, atmosphere light The place vicarious calibration mode of parameter measurement combination Radiance transfer calculation is learned, physical quantity is directly traced to the source to solar constant outside air, Therefore absolute radiometric calibration under optical sensor working condition can be realized.
Reflectivity method, Radiance and irradiance-based method are three kinds of common place vicarious calibration modes, wherein irradiation level Diffusion/the global radiation on ground is added unlike method is unique from reflectivity method than measuring, it is right in reflectivity method so as to reduce The uncertainty that the hypothesis of aerosol scattering is brought.Vicarious calibration based on large area uniform field is to condition (such as height above sea level in place Highly, Reflectivity for Growing Season etc.) it is more demanding, and be only capable of realizing One point standard (single spoke brightness).Meet the big of calibration requirement Area uniform field limited amount, and the radiation calibration field reflectivity in China is relatively low, and the high-end needs of response extrapolate to obtain, at present The attainable precision level of traditional calibrating method is more than 6%.
With the raising of optical sensor spatial resolution, the uniformity and lambert's property in place cannot meet the need of calibration Will, in addition, more star networking temporal resolutions improve, and calibrate place it is few and single, calibration chance it is few, efficiency is low, calibration the cycle It is long, it is desirable that with reference to having more high stability, mobility and space-time adaptability, existing In-flight calibration technological means is difficult to meet for calibration High-precision, the needs of high frequency time businessization calibration in China's optical sensor full dynamic range.
The raising of optical sensor spatial resolution so that special based on possessing flat spectrum, space uniform, approximate Lambertian body The high-precision of artificial target of property, the in-orbit absolute radiometric calibration of high frequency time are possibly realized.Found university in the South Dakota State in the U.S. (South Dakota State University) realizes more in full dynamic range of the optical sensor based on artificial target Grade radiation calibration, however traditional Calibration Method using Radiance transfer calculation as core is needed to aerosol properties, air Point spread function, ambient enviroment reflectivity etc. are carried out it is assumed that in complex background, and actual conditions are difficult to be consistent with hypothesis. Calculation error caused by model hypothesis is up to more than 20% in blue wave band.
The content of the invention
The defects of the object of the invention is exactly to make up prior art is provided a kind of radiated based on the simplification of multiple level target and passed It is defeated to calculate in-orbit absolute radiation calibration method.
The present invention is achieved by the following technical solutions:
One kind simplifies the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, and particular content is as follows:
According to radiative transfer model, under complex environment the spoke brightness of optical sensor entrance pupil be represented by:
Wherein Es(λ) be air external spectrum irradiation level, μsFor the cosine of solar zenith angle, Tgassν, λ) and it is to absorb gas Body transmitance, ρa(λ) be air inherent reflectivity, τ (λ) be atmosphere optical thickness, S (λ) be air spherical albedo, tds, λ) transmitance, ρ are diffused for the sun-groundB(λ) be ambient enviroment reflectivity, ρt(λ) be target reflectivity, t'dν, λ) and it is light Learn remote sensor-ground diffusion transmitance, αs(λ) for sun incident direction overflow always than;
Theoretical, the synchronization in certain area coverage, air inherent reflectivity ρ according to plane-parallel atmospherea(λ), inhale Receive gas permeation rate Tgassν, λ) and ambient enviroment reflectivity ρB(λ) is constant, then formula (1) can be rewritten as:
L (λ)=A (λ)+B (λ) ρt(λ) (2)
Wherein:
From formula (2), the spoke brightness of optical sensor entrance pupil and the energy level ρ of ground targett(λ) is linearly closed into unitary System;
According to optical sensor radiation calibration equation (5)
And image gray value and different energy levels carry out linear regression, obtain:
(i) as ρ in i-th of passage of optical sensortDuring (λ)=0, L (λ)=A (λ), image intensity value DN is side at this time The intercept of journey
(ii) ρ is worked astDuring (λ)=1, L (λ)=A (λ)+B (λ), image intensity value DN is the slope of equation at this time
The responsiveness calibration coefficient A of optical sensor is obtained by equation (6), (7)gain
The atmosphere optical thickness τ (λ) and solar direction are overflow always than αs(λ) can be by actinometer and by responding It spends the spectral radiometer of calibration while measures and obtain.
DescribedWithIt is linearly returned and is calculated by different energy level reflected signals, while can also combined Test data optimization in more days is calculated.
When the multiple level target is diffuser, then size is more than the distance between more than 5 × 5 pixels, different energy levels 5 pixels need to be more than.
When multiple level target is diffuser, spectrum is flat in remote sensor channel range, and spectral reflectivity is less than 1%.
When multiple level target is diffuser, remote sensor view zenith angle is less than in the range of 10 °, target bi reflection distribution letter Number variation is less than 1%.
, it is necessary to lay more than 3 × 3 array when the multiple level target is non-diffuse body, the distance between array is Non- whole pixel, more than 5 pixels detect the modulation transfer function of remote sensor systems, are influenced with correcting rdaiation response.
When multiple level target is non-diffuse body, the distance between each energy level is more than 10 pixels.
Energy level covering more than 70% dynamic range of optical sensor of multiple level target, energy level are not less than 3 grades.
The absolute radiometric calibration calculation process for being simplified Radiance transfer calculation based on multiple level target is illustrated in fig. 2 shown below, wherein The Radiance transfer calculations such as MODTRAN/6S obtain the sun-destination path atmospheric spectral transmittance and actinometer measurement transmitance It approaches, so as to obtain the sun-destination path atmospheric spectral transmittance, then changes the geometric position factor, obtain remote sensor-target Path atmospheric spectral transmittance.The method that target emanation and atmospheric path radiation, the separation of surface atmosphere coupled radiation pass through linear regression It is calculated, target emanation is obtained by measuring reflection/radiation energy (or reflectivity) with reference to atmosphere optical thickness survey calculation Go out.
It is an advantage of the invention that:(1) in-orbit absolute radiometric calibration technology of the invention is disobeyed based on the measured data of ground Rely Radiance transfer calculation, reduce the influence of the factors such as aerosol, atmospheric model;
(2) in-orbit absolute radiometric calibration technology of the invention can realize optical sensor full dynamic range, high accuracy Scaling;
(3) in-orbit absolute radiometric calibration technology of the invention can reduce large area uniform field by geographical location, weather condition Etc. conditions limitation.
Description of the drawings
Fig. 1 is solar radiation-ground-remote sensor interaction schematic diagram.
Fig. 2 is in-orbit radiation calibration techniqueflow.
Fig. 3 is multiple level target (diffuser) layout diagram.
Fig. 4 multiple level target (non-diffuse body) layout diagram.
Specific embodiment
Such as Fig. 1,2, one kind simplifies the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, specific interior Hold as follows:
Radiation at optical sensor entrance pupil mainly radiates three by atmospheric path radiation, target reflected radiation, ambient background Divide comprehensive function composition, be illustrated in fig. 1 shown below:According to radiative transfer model, the spoke brightness of optical sensor entrance pupil can under complex environment It is expressed as:
Wherein Es(λ) be air external spectrum irradiation level, μsFor the cosine of solar zenith angle, Tgassν, λ) and it is to absorb gas Body transmitance, ρa(λ) be air inherent reflectivity, τ (λ) be atmosphere optical thickness, S (λ) be air spherical albedo, tds, λ) transmitance, ρ are diffused for the sun-groundB(λ) be ambient enviroment reflectivity, ρt(λ) be target reflectivity, t'dν, λ) and it is light Learn remote sensor-ground diffusion transmitance, αs(λ) for sun incident direction overflow always than;
Theoretical, the synchronization in certain area coverage, air inherent reflectivity ρ according to plane-parallel atmospherea(λ), inhale Receive gas permeation rate Tgassν, λ) and ambient enviroment reflectivity ρB(λ) is constant, then formula (1) can be rewritten as:
L (λ)=A (λ)+B (λ) ρt(λ) (2)
Wherein:
From formula (2), the spoke brightness of optical sensor entrance pupil and the energy level ρ of ground targett(λ) is linearly closed into unitary System;
According to optical sensor radiation calibration equation (5)
And image gray value and different energy levels carry out linear regression, obtain:
(i) as ρ in i-th of passage of optical sensortDuring (λ)=0, L (λ)=A (λ), image intensity value DN is side at this time The intercept of journey
(ii) ρ is worked astDuring (λ)=1, L (λ)=A (λ)+B (λ), image intensity value DN is the slope of equation at this time
The responsiveness calibration coefficient A of optical sensor is obtained by equation (6), (7)gain
The atmosphere optical thickness τ (λ) and solar direction are overflow always than αs(λ) can be by actinometer and by responding It spends the spectral radiometer of calibration while measures and obtain.
DescribedWithIt is linearly returned and is calculated by different energy level reflected signals, while can also combined Test data optimization in more days is calculated.
As shown in figure 3, when the multiple level target is diffuser, then size is more than more than 5 × 5 pixels, different energy levels The distance between need to be more than 5 pixels.
When multiple level target is diffuser, spectrum is flat in remote sensor channel range, and spectral reflectivity is less than 1%.
When multiple level target is diffuser, remote sensor view zenith angle is less than in the range of 10 °, target bi reflection distribution letter Number variation is less than 1%.
As shown in figure 4, it is necessary to lay more than 3 × 3 array when the multiple level target is non-diffuse body, array it Between distance for non-whole pixel, more than 5 pixels detect the modulation transfer functions of remote sensor systems, to correct rdaiation response shadow It rings.
When multiple level target is non-diffuse body, the distance between each energy level is more than 10 pixels.
Energy level covering more than 70% dynamic range of optical sensor of multiple level target, energy level are not less than 3 grades.
The atmosphere optical thickness τ, solar direction are overflow always than αs(λ) can determine by actinometer and by responsiveness Target spectral radiometer measures obtain simultaneously.
It need not be to the meter of the parameters such as atmospheric aerosol type, aerosol optical depth, atmospheric path radiation, air albedo It calculates and assumes, Radiance transfer calculation only needs the calculating of gas absorption transmitance.
The energy level target on ground is the grayscale target (target plate) that spectrum is flat, lambert's property is good in remote sensor channel range, quilt Speculum, active illuminating source and similar natural target of the dynamic formula reflection sun etc..
1) multiple level target is laid
The laying of multiple level target need to select the region that surrounding is open, physical features is flat to lay, and according to circumstances ground can be laid black More than 10 pixels of the distance between color spacer screen, multi-object, cloth set direction is along optical sensor heading, the energy level of laying 3 or more are needed, layout diagram is as shown in Figure 3.
2) live synchro measure
Crossing before and after pushing up needs to carry out atmosphere optical thickness, overflow always than (multiple level target needs when being diffuse material), multiple level The meteorologic parameters such as the energy level sequence (including reflectivity, spoke brightness, luminous intensity etc.) of target and temperature and humidity pressure.
3) data processing
According to optical sensor radiation calibration equation
And image gray value and different energy levels carry out linear regression, obtain:
(i) as ρ in i-th of passage of optical sensortDuring (λ)=0, L (λ)=A (λ), image intensity value DN is side at this time The intercept of journey
(ii) ρ is worked astDuring (λ)=1, L (λ)=A (λ)+B (λ), image intensity value DN is the slope of equation at this time
The responsiveness calibration coefficient A of optical sensor is obtained by above equationgain, dark current DN0It can be observed by camera deep Sky obtains.

Claims (9)

1. one kind simplifies the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, it is characterised in that:Specifically Content is as follows:
According to radiative transfer model, under complex environment the spoke brightness of optical sensor entrance pupil be represented by:
<mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;pi;</mi> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;rho;</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>+</mo> <msub> <mi>t</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;rho;</mi> <mi>B</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mi>t</mi> </msub> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>v</mi> </msub> </mrow> </msup> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mi>B</mi> </msub> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <msubsup> <mi>t</mi> <mi>d</mi> <mo>,</mo> </msubsup> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein Es(λ) be air external spectrum irradiation level, μsFor the cosine of solar zenith angle, Tgassν, λ) and it is penetrated to absorb gas Rate, ρa(λ) be air inherent reflectivity, τ (λ) be atmosphere optical thickness, S (λ) be air spherical albedo, tds, λ) and for too Sun-ground diffusion transmitance, ρB(λ) be ambient enviroment reflectivity, ρt(λ) be target reflectivity, t'dν, λ) and it is optical remote sensing Device-ground diffusion transmitance, αs(λ) for sun incident direction overflow always than;
Theoretical, the synchronization in certain area coverage, air inherent reflectivity ρ according to plane-parallel atmospherea(λ), gas is absorbed Transmitance Tgassν, λ) and ambient enviroment reflectivity ρB(λ) is constant, then formula (1) can be rewritten as:
L (λ)=A (λ)+B (λ) ρt(λ) (2)
Wherein:
<mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;pi;</mi> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;rho;</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>+</mo> <msub> <mi>t</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;rho;</mi> <mi>B</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>&amp;rho;</mi> <mi>B</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msubsup> <mi>t</mi> <mi>d</mi> <mo>,</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>B</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;pi;</mi> </mfrac> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>+</mo> <msub> <mi>t</mi> <mi>d</mi> </msub> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;rho;</mi> <mi>B</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>v</mi> </msub> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;pi;</mi> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>v</mi> </msub> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
From formula (2), the spoke brightness of optical sensor entrance pupil and the energy level ρ of ground targett(λ) is into unary linear relation;
According to optical sensor radiation calibration equation (5)
<mrow> <msub> <mi>L</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;Integral;</mo> <mi>L</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> <mrow> <mo>&amp;Integral;</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>DN</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>DN</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
And image gray value and different energy levels carry out linear regression, obtain:
(i) as ρ in i-th of passage of optical sensortDuring (λ)=0, L (λ)=A (λ), image intensity value DN is cutting for equation at this time Away from
<mrow> <mfrac> <mrow> <mo>&amp;Integral;</mo> <mi>A</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> <mrow> <mo>&amp;Integral;</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>DN</mi> <msub> <mi>&amp;rho;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> </msub> <mo>-</mo> <msub> <mi>DN</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>DN</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
(ii) ρ is worked astDuring (λ)=1, L (λ)=A (λ)+B (λ), image intensity value DN is the slope of equation at this time
<mrow> <mfrac> <mrow> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <mi>A</mi> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <mo>+</mo> <mi>B</mi> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> <mrow> <mo>&amp;Integral;</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>DN</mi> <msub> <mi>&amp;rho;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>-</mo> <msub> <mi>DN</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>DN</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
The responsiveness calibration coefficient A of optical sensor is obtained by equation (6), (7)gain
<mrow> <msub> <mi>A</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mfrac> <mrow> <mo>&amp;Integral;</mo> <mi>B</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> <mrow> <mo>&amp;Integral;</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> </mfrac> <mrow> <msub> <mi>DN</mi> <msub> <mi>&amp;rho;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>-</mo> <msub> <mi>DN</mi> <msub> <mi>&amp;rho;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
2. according to claim 1 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:The atmosphere optical thickness τ (λ) and solar direction are overflow always than αs(λ) can pass through actinometer and process The spectral radiometer of responsiveness calibration measures simultaneously to be obtained.
3. according to claim 1 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:DescribedWithIt is linearly returned and is calculated by different energy level reflected signals, while can also tied Test data optimization in more days is closed to be calculated.
4. according to claim 1 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:When the multiple level target is diffuser, then size is more than more than 5 × 5 pixels, between different energy levels away from From 5 pixels need to be more than.
5. according to claim 4 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:When multiple level target is diffuser, spectrum is flat in remote sensor channel range, and spectral reflectivity is less than 1%.
6. according to claim 5 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:When multiple level target is diffuser, remote sensor view zenith angle is less than in the range of 10 °, target bi reflection point The variation of cloth function is less than 1%.
7. according to claim 1 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:, it is necessary to lay the distance between more than 3 × 3 array, array when the multiple level target is non-diffuse body For non-whole pixel, more than 5 pixels detect the modulation transfer function of remote sensor systems, are influenced with correcting rdaiation response.
8. according to claim 7 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:When multiple level target is non-diffuse body, the distance between each energy level is more than 10 pixels.
9. according to claim 7 simplify the in-orbit absolute radiation calibration method of Radiance transfer calculation based on multiple level target, It is characterized in that:Energy level covering more than 70% dynamic range of optical sensor of multiple level target, energy level are not less than 3 grades.
CN201711181278.3A 2017-11-23 2017-11-23 The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target Pending CN108107002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711181278.3A CN108107002A (en) 2017-11-23 2017-11-23 The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711181278.3A CN108107002A (en) 2017-11-23 2017-11-23 The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target

Publications (1)

Publication Number Publication Date
CN108107002A true CN108107002A (en) 2018-06-01

Family

ID=62207687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711181278.3A Pending CN108107002A (en) 2017-11-23 2017-11-23 The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target

Country Status (1)

Country Link
CN (1) CN108107002A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115693A (en) * 2018-08-22 2019-01-01 中国科学院合肥物质科学研究院 A kind of open path atmospheric condition method of telemetering and system based on reflecting mirror
CN110006463A (en) * 2019-05-23 2019-07-12 中国科学院合肥物质科学研究院 A kind of in-orbit absolute radiation calibration method and system of Optical remote satellite
CN111947773A (en) * 2020-08-20 2020-11-17 中国电子科技集团公司第五十四研究所 Remote sensing image path radiation estimation method
CN112595344A (en) * 2020-11-20 2021-04-02 航天恒星科技有限公司 Method and device for on-orbit absolute radiometric calibration of remote sensing satellite high resolution camera
CN116576966A (en) * 2023-07-11 2023-08-11 中国科学院合肥物质科学研究院 On-orbit spectral response function correction method, device and computer equipment
CN116608888A (en) * 2023-07-18 2023-08-18 中国科学院合肥物质科学研究院 Optical remote sensor on-orbit radiation calibration reference body equipment and calibration method
CN116625647A (en) * 2023-07-20 2023-08-22 中国科学院合肥物质科学研究院 Method, device, apparatus and storage medium for determining responsivity coefficient of optical remote sensor
CN116753990A (en) * 2023-08-11 2023-09-15 中国科学院合肥物质科学研究院 Method, device, system and computer equipment for calibrating on-orbit radiation of optical remote sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115693A (en) * 2018-08-22 2019-01-01 中国科学院合肥物质科学研究院 A kind of open path atmospheric condition method of telemetering and system based on reflecting mirror
CN109115693B (en) * 2018-08-22 2021-05-04 中国科学院合肥物质科学研究院 Open optical path atmospheric state remote measuring method and system based on reflector
CN110006463A (en) * 2019-05-23 2019-07-12 中国科学院合肥物质科学研究院 A kind of in-orbit absolute radiation calibration method and system of Optical remote satellite
CN111947773A (en) * 2020-08-20 2020-11-17 中国电子科技集团公司第五十四研究所 Remote sensing image path radiation estimation method
CN111947773B (en) * 2020-08-20 2022-08-02 中国电子科技集团公司第五十四研究所 Remote sensing image path radiation estimation method
CN112595344A (en) * 2020-11-20 2021-04-02 航天恒星科技有限公司 Method and device for on-orbit absolute radiometric calibration of remote sensing satellite high resolution camera
CN116576966A (en) * 2023-07-11 2023-08-11 中国科学院合肥物质科学研究院 On-orbit spectral response function correction method, device and computer equipment
CN116608888A (en) * 2023-07-18 2023-08-18 中国科学院合肥物质科学研究院 Optical remote sensor on-orbit radiation calibration reference body equipment and calibration method
CN116608888B (en) * 2023-07-18 2023-10-24 中国科学院合肥物质科学研究院 Optical remote sensor on-orbit radiation calibration reference body equipment and calibration method
CN116625647A (en) * 2023-07-20 2023-08-22 中国科学院合肥物质科学研究院 Method, device, apparatus and storage medium for determining responsivity coefficient of optical remote sensor
CN116625647B (en) * 2023-07-20 2023-10-27 中国科学院合肥物质科学研究院 Method, device, apparatus and storage medium for determining responsivity coefficient of optical remote sensor
CN116753990A (en) * 2023-08-11 2023-09-15 中国科学院合肥物质科学研究院 Method, device, system and computer equipment for calibrating on-orbit radiation of optical remote sensor
CN116753990B (en) * 2023-08-11 2023-11-03 中国科学院合肥物质科学研究院 Method, device, system and computer equipment for calibrating on-orbit radiation of optical remote sensor

Similar Documents

Publication Publication Date Title
CN108107002A (en) The in-orbit absolute radiation calibration method of Radiance transfer calculation is simplified based on multiple level target
CN102901516B (en) A kind of multispectral image radiation correction method based on absolute radiometric calibration
CN109581372B (en) Ecological environment remote sensing monitoring method
CN110006463B (en) On-orbit absolute radiation calibration method and system for optical remote sensing satellite
CN110716185B (en) On-orbit radiation correction method for satellite-borne microwave radiometer
AU2014360786B2 (en) Method and system of calibrating a multispectral camera on an aerial vehicle
CN105092055B (en) Meteorological satellite sun reflected waveband Calibration Method based on cold cloud target
CN105352609B (en) A kind of Optical remote satellite absolute radiation calibration method based on space lambert&#39;s sphere
CN101598543A (en) A kind of atmospheric correction method for remote sensing images of practicality
CN113324656B (en) Unmanned aerial vehicle-mounted infrared remote sensing earth surface heat anomaly detection method and system
CN104880702A (en) Method and device for on-orbit absolute radiation calibration
JP2017532579A (en) Detection apparatus and method for identifying and monitoring clouds in an empty observation region
CN108120510A (en) A kind of in-orbit absolute radiation calibration method of optical sensor based on reflection mirror array
CN106778516A (en) A kind of method and device that surface temperature is determined using Chinese No. three satellite remote sensing dates of wind and cloud
Bendig et al. Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction
CN109813438A (en) The in-orbit radiation nonlinear calibration method of Fourier Transform Infrared Spectrometer
CN112798013A (en) Method for verifying on-orbit absolute radiation calibration result of optical load
CN105631886A (en) Relative positioning method for laser light spot and foot print camera on basis of aviation image
CN104483646B (en) Real-time calibration device and method for ground-based microwave radiometer
CN114279567A (en) On-orbit absolute radiation calibration method for micro-nano hyperspectral satellite constellation
CN105183989B (en) A kind of Landsat8 satellite data Reflectivity for Growing Season inversion method
CN116822141A (en) Method for inverting optical thickness of night atmospheric aerosol by utilizing satellite micro-optic remote sensing
Blum et al. Measurement of diffuse and plane of array irradiance by a combination of a pyranometer and an all-sky imager
Kómar et al. Analysis of diffuse irradiance from two parts of sky vault divided by solar meridian using portable spectral sky-scanner
CN106769895A (en) A kind of method for demarcating measurement whole atmosphere spectral transmittance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180601

RJ01 Rejection of invention patent application after publication