CN112278325B - 一种基于法向过载的总攻角控制方法 - Google Patents

一种基于法向过载的总攻角控制方法 Download PDF

Info

Publication number
CN112278325B
CN112278325B CN202010997234.3A CN202010997234A CN112278325B CN 112278325 B CN112278325 B CN 112278325B CN 202010997234 A CN202010997234 A CN 202010997234A CN 112278325 B CN112278325 B CN 112278325B
Authority
CN
China
Prior art keywords
angle
normal overload
attack angle
control
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010997234.3A
Other languages
English (en)
Other versions
CN112278325A (zh
Inventor
郭敏文
黄翔宇
李茂登
黄盘兴
魏春岭
徐超
胡锦昌
王晓磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN202010997234.3A priority Critical patent/CN112278325B/zh
Publication of CN112278325A publication Critical patent/CN112278325A/zh
Application granted granted Critical
Publication of CN112278325B publication Critical patent/CN112278325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明涉及一种基于法向过载的总攻角控制方法,在配平翼未成功展开时,通过下述方式进行控制:分析纵向短周期运动,简化俯仰平面内的动力学方程;建立期望法向过载即法向过载指令为零;根据简化的俯仰平面内的运动方程,推导攻角偏差与法向过载的关系;基于实测法向过载与期望法向过载的偏差,结合推导的法向过载与攻角偏差的关系,求解控制力矩,按照控制力矩进行控制。

Description

一种基于法向过载的总攻角控制方法
技术领域
本发明属于深空探测行星表面着陆项目中的小升力体稀薄大气进入过程的制导控制领域,涉及一种基于法向过载的总攻角控制方法。
背景技术
我国首次火星探测任务将通过一次发射实施火星环绕、着陆和巡视探测,任务的关键是成功实施进入、下降和着陆过程,实现火星表面软着陆。要实现安全软着陆,降落伞能否成功打开是关键,因此大气进入过程必须充分设计以满足各项开伞条件约束。降落伞展开的条件除了对开伞点处的动压、马赫数、高度有严格约束以外,对进入舱的攻角、侧滑角以及总攻角都有明确的限制,如总攻角应不大于6°。
在大气进入过程中,进入舱构型通过设计质心偏移产生了一定的升力,俯仰方向仅采用速率阻尼方式进行姿控,实现以某配平攻角气动稳定飞行的状态,这样能够帮助进入舱充分利用火星大气进行减速,使得开伞时高度、动压、马赫数等约束条件得到满足。为了进一步满足开伞点处对进入舱总攻角的约束,需在开伞点前通过展开配平翼以改变其原来的配平状态,使新的配平攻角恢复至0°附近。
在这个过程中,一旦配平翼展开出现故障,姿控仍采用速率阻尼方式,必然无法将总攻角控制在6°以内,因此需对总攻角进行控制。然而在开伞前的大气进入过程,如果试图改变气动配平状态,强制对进入舱的攻角进行控制,气动干扰力矩会很大,且总攻角越小,进入舱偏离配平状态的程度越大,控制所受的干扰力矩也越大。而且由于火星大气密度和气动力系数均存在较大的不确定性,干扰力矩也存在不确定性,此时如果直接以总攻角为控制目标,加之攻角测量的误差,必然会使开伞时刻总攻角的约束条件不能满足,严重危害降落伞的顺利展开。
发明内容
本发明解决的技术问题是:针对上述配平翼展开故障问题,为了保证进入舱的总攻角满足开伞条件的约束,本发明设计了一种基于法向过载的总攻角控制方法。
本发明解决技术的方案是:一种基于法向过载的总攻角控制方法,在配平翼未成功展开时,通过下述方式进行控制:
分析纵向短周期运动,简化俯仰平面内的动力学方程;
建立期望法向过载即法向过载指令为零;
根据简化的俯仰平面内的运动方程,推导攻角偏差与法向过载的关系;
基于实测法向过载与期望法向过载的偏差,结合推导的法向过载与攻角偏差的关系,求解控制力矩,按照控制力矩进行控制。
优选的,所述的简化假定探测器倾侧角和侧滑角,被控制在零度的目标姿态,且探测器的惯量积为零,忽略地球自转角速度的影响,且忽略当地地平的变化。
优选的,简化俯仰平面内的动力学方程如下:
Figure BDA0002693018220000021
Figure BDA0002693018220000022
Figure BDA0002693018220000023
式中,α为攻角,ωz为本体相对惯性系的俯仰角速率,γ为飞行路径角,ρ为火星大气密度,V为相对火星表面的速度大小,S为探测器的参考面积,lref为探测器的参考长度,Cmz为俯仰力矩系数,Iz为俯仰轴转动惯量,Ny为法向气动过载,m为探测器的质量,Cy为俯仰力矩系数,g为地球引力加速度,u是控制力矩。
优选的,攻角偏差与法向过载的关系为
Figure BDA0002693018220000031
其中,ωz为本体相对惯性系的俯仰角速率,
Figure BDA0002693018220000032
为攻角偏差,Ny为实测的法向过载,θ为俯仰角,gm为火星引力加速度,V为相对火星表面的速度大小。
优选的,控制力矩
Figure BDA0002693018220000033
其中,Ny为实测法向过载,Nyc=0为法向过载指令等于零,
Figure BDA0002693018220000034
为攻角偏差,为控制原配平状态下的攻角至开伞所需的攻角,
Figure BDA0002693018220000035
为攻角偏差需控制的目标量,
Figure BDA0002693018220000036
KIz为反馈系数。
优选的,所述的反馈系数通过下述方式确定:
首选,确定反馈系数之间的关系式,对于双积分环节的刚体模型,反馈系数满足如下关系:
Figure BDA0002693018220000037
其中,ωb为控制带宽,ζ为系统阻尼比;
然后,根据控制带宽必须抵抗上百牛米的气动干扰,且在避免导致对喷不稳定的前提下设计控制带宽;同时,根据过阻尼设计系统阻尼比;进而根据上述关系式确定
Figure BDA0002693018220000038
最后根据积分系数KIz
Figure BDA0002693018220000039
的1%~5%的关系确定KIz
本发明与现有技术相比的有益效果是:
我国首次火星探测即要实现火星表面的软着陆,而进入、下降和着陆过程中有些关键技术既前沿又兼具挑战性,其中的典型就是配平翼展开技术。为了满足开伞时对进入舱总攻角的约束,型号中通过展开配平翼将大气进入过程某较大配平攻角调整至0°附近。
新任务新设计,针对配平翼展开故障处理问题,目前国内外几乎没有公开发表的文章论及,而过载控制方法均是针对舵控飞行器设计的,与本专利有本质的区别。
当前我国火星探测任务EDL过程配平翼展开的安全性难以达到百分之百,而开伞条件约束又十分严苛。在这种情况下,本发明针对配平翼展开故障,提出了一种基于法向过载的总攻角控制方法,通过对加计可直接测量的法向过载进行控制,达到按期望姿态飞行的目的,同时避免了导航带来的攻角测量误差对控制精度的影响,大大提高了故障情况下开伞点总攻角满足约束的概率和开伞的成功率。
本发明通过对加计可直接测量的法向过载进行控制,达到按期望姿态飞行的目的,同时避免了导航带来的攻角测量误差对控制精度的影响,大大提高了故障情况下开伞点总攻角满足约束的概率和开伞的成功率。
附图说明
图1为本发明方法流程图;
图2为法向过载控攻角的控制器框图;
图3为展开配平翼故障时,法向过载控攻角的效果图;
图4为展开配平翼故障时,仅速率阻尼控制的效果图。
具体实施方式
下面结合实施例对本发明作进一步阐述。
小于某马赫数后展开配平翼,在配平翼未成功展开时,攻角需要采取基于法向过载的控制方法,以控制攻角近0°,满足开伞条件的需求。一种基于法向过载的总攻角控制方法,如图1所示,具体步骤如下:
(1)分析纵向短周期运动,简化俯仰平面内的动力学方程。纵向短周期运动描述了俯仰通道姿态运动与攻角运动。这里假定探测器倾侧角和侧滑角,被控制在零度的目标姿态,且探测器的惯量积为零,忽略地球自转角速度的影响,且因探测器速度较小忽略在较短时间内当地地平的变化,可得简化后的基本动力学方程如下。
Figure BDA0002693018220000041
Figure BDA0002693018220000042
Figure BDA0002693018220000051
式中,α为攻角,ωz为本体相对惯性系的俯仰角速率,γ为飞行路径角,ρ为火星大气密度,V为相对火星表面的速度大小,S为探测器的参考面积,lref为探测器的参考长度,Cmz为俯仰力矩系数,Iz为俯仰轴转动惯量,Ny为法向气动过载,m为探测器的质量,Cy为俯仰力矩系数,g为地球引力加速度。
(2)建立期望法向过载。为了保障降落伞的顺利展开,需要尽力控制攻角在0°附近,因此期望的法向过载即法向过载指令应该为零,即Nyc=0。
(3)推导法向过载偏差与俯仰角速度和攻角偏差之间的关系。
Ny为可测的法向过载,法向加速度az与法向过载的关系如下:
az=Nyg-gmcosθ
其中θ为俯仰角,gm为火星引力加速度。法向加速度与飞行路径角γ的变化率有如下关系:
Figure BDA0002693018220000052
根据简化动力学方程有
Figure BDA0002693018220000053
则可得攻角偏差与法向过载的关系为:
Figure BDA0002693018220000054
其中ωz为俯仰角速率,
Figure BDA0002693018220000055
为攻角偏差。
(4)基于实测法向过载与期望值的偏差,求解控制力矩u。
假设当前实测的法向过载为Ny,则设计控制器框图如图2所示,
Figure BDA0002693018220000056
其中,Ny为法向过载,Nyc=0为法向过载指令等于零,
Figure BDA0002693018220000057
为攻角偏差,为控制原配平状态下的攻角至开伞所需的攻角0°,
Figure BDA0002693018220000058
为攻角偏差需控制的目标量,
Figure BDA0002693018220000059
KIz为反馈系数。
对于双积分环节的刚体模型,可推导PD反馈系数满足如下关系:
Figure BDA0002693018220000061
其中,ωb为控制带宽,ζ为系统阻尼比。此处控制带宽必须足够高以抵抗上百牛米的气动干扰,在避免导致对喷不稳定的前提下,这里设计系统带宽约为3.5,根据过阻尼设计,系统阻尼比设计约为2,从而确定
Figure BDA0002693018220000062
积分系数KIz考虑强积分控制设计,同时可加积分饱和限制。根据上述原则,结合数学仿真,确定攻角控制的PID参数。
以某火星探测器为例进行仿真验证,图3为法向过载控总攻角的效果图,图4为仅采用速率阻尼控制的效果图,对比说明本发明所述方法的有效性。取火星着陆器质量为1300kg,Iz=848.9kg˙m2,lref=3.4m,Sref=10.5m2
Figure BDA0002693018220000063
KIz值取为2500,3000,1500。
设置配平翼展开故障,考虑大气密度偏差,气动系数偏差的情况下进行算法的200次打靶仿真,仿真结果如图2所示,图中红线为开伞时对攻角和攻角速率的条件约束,由蓝点可知开伞时最大的攻角为4.664°,攻角速率均很小,显然满足开伞的约束条件。对比仅速率阻尼的打靶结果如图4所示,最大总攻角已接近18°,大部分情况超出6°。可见本发明提出的姿态控制方法明显减小了开伞时的总攻角,改善了开伞条件,提高了开伞的安全性。
本发明未详细说明部分属于本领域技术人员的公知常识。

Claims (5)

1.一种基于法向过载的总攻角控制方法,其特征在于:在配平翼未成功展开时,通过下述方式进行控制:
分析纵向短周期运动,简化俯仰平面内的动力学方程;
建立期望法向过载即法向过载指令为零;
根据简化的俯仰平面内的运动方程,推导攻角偏差与法向过载的关系;
基于实测法向过载与期望法向过载的偏差,结合推导的法向过载与攻角偏差的关系,求解控制力矩,按照控制力矩进行控制;
控制力矩
Figure FDA0003546196220000011
其中,Ny为实测法向过载,Nyc=0为法向过载指令等于零,
Figure FDA0003546196220000012
为攻角偏差,为控制原配平状态下的攻角至开伞所需的攻角,
Figure FDA0003546196220000013
为攻角偏差需控制的目标量,
Figure FDA0003546196220000014
KIz为反馈系数。
2.根据权利要求1所述的方法,其特征在于:所述的简化假定探测器倾侧角和侧滑角,被控制在零度的目标姿态,且探测器的惯量积为零,忽略地球自转角速度的影响,且忽略当地地平的变化。
3.根据权利要求2所述的方法,其特征在于:简化俯仰平面内的动力学方程如下:
Figure FDA0003546196220000015
Figure FDA0003546196220000016
Figure FDA0003546196220000017
式中,α为攻角,ωz为本体相对惯性系的俯仰角速率,γ为飞行路径角,ρ为火星大气密度,V为相对火星表面的速度大小,S为探测器的参考面积,lref为探测器的参考长度,Cmz为俯仰力矩系数,Iz为俯仰轴转动惯量,Ny为法向气动过载,m为探测器的质量,Cy为俯仰力矩系数,g为地球引力加速度,u是控制力矩。
4.根据权利要求1所述的方法,其特征在于:攻角偏差与法向过载的关系为
Figure FDA0003546196220000021
其中,ωz为本体相对惯性系的俯仰角速率,
Figure FDA0003546196220000022
为攻角偏差,Ny为实测的法向过载,θ为俯仰角,gm为火星引力加速度,V为相对火星表面的速度大小。
5.根据权利要求1所述的方法,其特征在于:所述的反馈系数通过下述方式确定:
首选,确定反馈系数之间的关系式,对于双积分环节的刚体模型,反馈系数满足如下关系:
Figure FDA0003546196220000023
其中,ωb为控制带宽,ζ为系统阻尼比;
然后,根据控制带宽必须抵抗上百牛米的气动干扰,且在避免导致对喷不稳定的前提下设计控制带宽;同时,根据过阻尼设计系统阻尼比;进而根据上述关系式确定
Figure FDA0003546196220000024
最后根据积分系数KIz
Figure FDA0003546196220000025
的1%~5%的关系确定KIz
CN202010997234.3A 2020-09-21 2020-09-21 一种基于法向过载的总攻角控制方法 Active CN112278325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010997234.3A CN112278325B (zh) 2020-09-21 2020-09-21 一种基于法向过载的总攻角控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010997234.3A CN112278325B (zh) 2020-09-21 2020-09-21 一种基于法向过载的总攻角控制方法

Publications (2)

Publication Number Publication Date
CN112278325A CN112278325A (zh) 2021-01-29
CN112278325B true CN112278325B (zh) 2022-05-24

Family

ID=74421207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997234.3A Active CN112278325B (zh) 2020-09-21 2020-09-21 一种基于法向过载的总攻角控制方法

Country Status (1)

Country Link
CN (1) CN112278325B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115729096A (zh) * 2022-11-16 2023-03-03 上海寰宇乾堃航天科技有限公司 一种探空火箭减载方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7832688B2 (en) * 2004-12-07 2010-11-16 Lockheed Martin Corporation Optimized land mobile satellite configuration and steering
CN102139768A (zh) * 2010-10-28 2011-08-03 中国科学院力学研究所 一种亚轨道飞行器再入飞行的攻角制导方法
CN106017218A (zh) * 2016-05-18 2016-10-12 北京航天自动控制研究所 一种抗风干扰的飞行器攻角指令补偿方法及装置
CN111591470A (zh) * 2020-04-28 2020-08-28 西北工业大学 一种适应推力可调模式的飞行器精确软着陆闭环制导方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7832688B2 (en) * 2004-12-07 2010-11-16 Lockheed Martin Corporation Optimized land mobile satellite configuration and steering
CN102139768A (zh) * 2010-10-28 2011-08-03 中国科学院力学研究所 一种亚轨道飞行器再入飞行的攻角制导方法
CN106017218A (zh) * 2016-05-18 2016-10-12 北京航天自动控制研究所 一种抗风干扰的飞行器攻角指令补偿方法及装置
CN111591470A (zh) * 2020-04-28 2020-08-28 西北工业大学 一种适应推力可调模式的飞行器精确软着陆闭环制导方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
火星进入轨迹设计、优化及制导方法研究;郑艺裕;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》;20180115(第01期);全文 *
火星进入过程的开伞控制方法研究;王慧娟;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20180415(第04期);全文 *

Also Published As

Publication number Publication date
CN112278325A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN105676853B (zh) 一种无人机中立位置自动调整的飞行控制方法
EP2411972B1 (en) Trajectory tracking flight controller
CN111367182A (zh) 考虑输入受限的高超声速飞行器抗干扰反步控制方法
CN103926931A (zh) 轴对称高速飞行器运动特征综合识别方法
De Bruin et al. Accurate autonomous landing of a fixed-wing unmanned aircraft under crosswind conditions
CN106054921A (zh) 一种无人直升机抗侧风控制方法、系统
CN112278325B (zh) 一种基于法向过载的总攻角控制方法
CN109703768A (zh) 一种基于姿态/轨迹复合控制的软式空中加油对接方法
CN109703769A (zh) 一种基于预瞄策略的空中加油对接控制方法
Mueller et al. Critical subsystem failure mitigation in an indoor UAV testbed
CN108562293B (zh) 基于干扰观测器的行星着陆有限时间控制方法
CN112327629B (zh) 基于动态补偿的小型无人直升机自适应容错控制方法
Smit Autonomous landing of a fixed-wing unmanned aerial vehicle using differential GPS
Bogdanov et al. Sdre control with nonlinear feedforward compensation for a small unmanned helicopter
Sun et al. Accurate homing of parafoil delivery systems based glide-ratio control
CN112364432A (zh) 一种载机挂飞投放分离过程控制方法
US7263414B2 (en) Method and device for controlling the attitude of an aircraft
Zhao et al. Automatic Prevention of Loss of Control Due to Winds by Bandwidth Adaptation
Kawaguchi et al. Post-flight evaluation of the guidance and control for D-SEND# 2 2nd drop test
Onuora et al. Unmanned aerial vehicle pitch optimization for fast response of elevator control system
Chao et al. Flight test investigation of stall/spin detection techniques for a flying wing UAS
Sim Flight characteristics of a manned, low-speed, controlled deep stallvehicle
Miyazawa et al. Flight control system for the automatic landing flight experiment
Wacker et al. X-38 application of dynamic inversion flight control
CN111651860A (zh) 一种可重复使用运载器再入段的预测校正鲁棒制导方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant