CN112268271A - 一种超超临界机组干湿态转换无扰切换控制方法 - Google Patents

一种超超临界机组干湿态转换无扰切换控制方法 Download PDF

Info

Publication number
CN112268271A
CN112268271A CN202011174088.0A CN202011174088A CN112268271A CN 112268271 A CN112268271 A CN 112268271A CN 202011174088 A CN202011174088 A CN 202011174088A CN 112268271 A CN112268271 A CN 112268271A
Authority
CN
China
Prior art keywords
control
unit
ultra
dry
supercritical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011174088.0A
Other languages
English (en)
Inventor
高瑞斌
陈宏伟
徐卫
何利军
周亚明
周晓韡
李偲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHN Energy Taizhou Power Generation Co Ltd
Original Assignee
CHN Energy Taizhou Power Generation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHN Energy Taizhou Power Generation Co Ltd filed Critical CHN Energy Taizhou Power Generation Co Ltd
Priority to CN202011174088.0A priority Critical patent/CN112268271A/zh
Publication of CN112268271A publication Critical patent/CN112268271A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/12Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating at critical or supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

本发明涉及本发明公开了一种超超临界机组干湿态转换无扰切换控制方法,包括以下步骤:采集机组DCS数据,通过机理建模+数据辨识的方法建立控制对象模型;采用粒子群多目标优化算法(PSO),对控制器参数进行寻优;改进控制逻辑,实现超超临界机组的协调控制系统在干/湿态转换过程中的无扰切换控制策略。

Description

一种超超临界机组干湿态转换无扰切换控制方法
技术领域
本发明属于热工自动控制领域,具体涉及一种超超临界机组干湿态转换无扰切换控制方法。
背景技术
近年来,随着电网技术的快速发展和工业自动化水平的不断提高,对单元机组的控制也提出了更高的要求。单元机组作为火电厂的主要组成同时也作为电网的基本单位,不仅承担着满足电网负荷的要求和调峰、调频的任务,它的稳定运行还直接影响着电网的经济性和安全性”。单元机组协调控制系统在这种背景下应运而生,它将汽轮机和锅炉作为不可分割的- 一个整体来进行综合控制,以它作为基础来实现电网侧的综合优化管理,已经成为目前电力生产自动化的主要发展趋势。因此如何对单元机组协调控制系统进行优化和设计,就成为了火电厂控制领域的重点研究课题。
随着机组参数的增大,受控对象的复杂程度和控制要求的提高,随之,而来的问题也变得更多。首先,对于传统的汽包锅炉而言,人们往往会忽略一些次要因素,这样就可以将亚临界机组协调控制系统简化成-一个双输入双输出的被控对象。而对于超临界机组协调控制系统而言,给水流量的扰动也会对机组的实发功率和主蒸汽压力产生很大的影响。因此,在超临界机组协调控制系统中,应将给水流量和中间点温度(或焓值)也作为协调控制系统的控制量和被控量,这就使得本身已经较为复杂的多变量系统的参数变得更多且耦合性变得更强。其次, 超临界机组并没有亚临界机组的汽包环节,只能采用直流炉,这使得水和水蒸气在机组内的循环速度上升,也就要求控制系统的快速性、实时性要更好;而且,由于缺少蓄热环节,这就要求控制系统要更严格地保证机组的质量平衡和能量平衡。同时,协调控制系统还存在动态非线性、时变、大时延、不确定干扰多等不利因素,这都为其控制系统的设计及优化带来了很大的挑战。以往传统的由人工试凑、参数整定而得到的PID控制器将很难保证机组的正常运行,就算勉强投入使用,当机组的动态特性发生较大变化后,也将很难适用。因此,迫切的需要--种先进的控制算法可以对这种复杂工业过程进行稳定和有效的控制。
除此之外,在直流炉湿/干态切换过程中,起动热力系统的运行状况非常复杂,手动控制易对系统产生较大扰动,特别是水煤比控制不当将导致干湿态之间频繁切换和机组参数的剧烈波动,从而影响机组正常运行。因此,实际工业过程对直流炉干湿态转换过程的全程自动控制有着较强烈地需求。
直流炉起动系统在锅炉起动、机组低负荷运行(蒸汽流量低于炉膛所需的最小流量)及停炉过程中,维持锅炉的最小流量,以保证炉膛水冷壁的安全,同时满足机组起、停及低负荷运行时对蒸汽流量的要求。直流炉起动系统分为带炉水循环泵和不带炉水循环泵2种起动系统。其中,不带炉水循环泵起动系统结构简单,给水经给水泵至高压加热器、上水操作阀、省煤器、水冷壁、汽水分离器、储水箱、溢流阀等系统形成给水循环回路。带炉水循环泵的起动系统相对复杂,设备较多,耦合性较强,但能够大大减少机组起动时的工质和热量损失,且大大减轻机组热态起动时对锅炉的热冲击。。
发明内容
为解决上述技术问题,本发明的目的是提供一种超超临界机组干湿态转换无扰切换控制方法。
本发明的技术方案如下:
一种超超临界机组干湿态转换无扰切换控制方法,通过机理建模和数据辨识的方法,建立超超临界机组协调控制模型,其特征在于包括:
S1、数据的选取及其预处理:
S11、根据合适的采样周期,选择启停过程平稳、运行过程信噪比足够大的数据;
S12、以通过以系统运行的初始条件作为系统输入输出的“零点”,进行零初始值处理;
S2、模型结构定义:协调控制系统为三输入三输出的多变量系统,确定被控量分别为机组负荷N、主蒸汽压力P、中间点温度T,控制量分别为给煤量B、调门开度μ、给水流量W,结构定义如下:
Figure BDA0002748206250000022
Figure BDA0002748206250000021
S3、传递模型参数辨识:采用基于火电厂现场运行历史数据的粒子群(PSO)寻优方法,对负荷、主蒸汽压力、中间点温度进行辨识。
进一步的,
把超临界机组协调控制系统作为一个整体来看,并同时对机组功率、主蒸汽压力、中间点温度这三个被控量建立控制模型:
Figure BDA0002748206250000031
利用多目标优化问题整体优化的方法(粒子群算法)优化控制器参数,求得问题的Pareto 解集;
以“所有控制回路的误差平方积分(ISE)的加权和”作为准则,从对上述解集中选择一个合适的最优解。
进一步的,
超超临界机组协调控制模型中湿态转干态为:
在锅炉运行工况由循环状态向直流状态转变时,给水控制由给水流量和储水罐水位控制切换为中间点温度(焓值)控制,其转换过程主要通过控制燃料量和给水流量实现,通过储水箱水位低保护控制逻辑跳闸锅炉循环水泵。
超超临界机组协调控制模型中干态转湿态为:
当锅炉由湿态转换至干态态且联锁控制功能投入时,储水箱水位达到联锁保护值后联锁起动锅炉循环泵,同时将锅炉循环泵出口调节阀切至自动控制方式,并将再循环流量设定为给水流量与主蒸汽流量之差。
借由上述方案,本发明至少具有以下优点:
本发明方法能够实现在工业过程对直流炉干湿态转换过程的全程自动控制。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某个实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1超超临界机组协调控制系统对象结构;
图2机组湿态自动转为干态减少给水流量控制逻辑;
图3机组湿态自动转为干态增加给煤量控制逻辑。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
参见图1-图3,本发明通过研究收集机组不同工况下的运行数据,采用大数据技术建立控制对象模型。在模型基础上,采用先进控制和智能优化算法进行控制参数寻优,并且提出超超临界机组的协调控制系统在干/湿态转换过程中的无扰切换控制策略,其总体步骤如下:
(1)采集机组DCS数据,通过机理建模+数据辨识的方法建立控制对象模型;
(2)采用PSO多目标优化算法,对控制器参数进行寻优
(3)改进控制逻辑,实现超超临界机组的协调控制系统在干/湿态转换过程中的无扰切换控制策略。
本发明超超临界机组模型的建立:
根据对超临界机组的静态特性分析可知,超临界机组协调控制系统为三输入三输出的多变量系统,其被控量分别为机组负荷N、主蒸汽压力P、中间点温度T,控制量分别为给煤量 B、调门开度μ、给水流量W。所以超临界机组协调控制系统对象传递函数模型结构如下式所示,其结构框图如图1所示。
Figure BDA0002748206250000041
再根据前人的经验可知,热工系统对象一般为有自平衡对象,其模型阶次一般在三阶以内。所以综上所述在系统辨识时选择的超临界机组对象简化模型集可以写为如下形式:
Figure BDA0002748206250000042
其中:k——增益系数
T1,T2——惯性时间常数
h——逆向响应系数
τ——纯延迟时间
根据对超临界机组的动态特性分析可知,当给煤量阶跃增加时,机组负荷、主蒸汽压力、中间点温度的响应都为正向增加,且不存在逆向响应过程,所以可以知道GNB、GPB、GTB中逆向响应系数h等于零。
当调门开度阶跃增加时,机组负荷的响应为先增加再减小至初始值附近,所以可以知道存在逆向响应过程,即G中逆向响应系数h不为零。主蒸汽压力的响应负向增加,且不存在逆向响应过程,即G中逆向响应系数等于零。中间点温度的响应为先减小再增加至初始值附近,存在逆向响应过程,即G中逆向响应系数h不为零。
当给水流量阶跃增加时,机组负荷和主蒸汽压力的响应过程相似,都为先增加再减小至初始值附近,即存在逆向响应过程,所以GNW和GPW中的逆向响应系数h不为零。中间点温度的响应过程为负向增大且无逆向响应过程,即GTW中的逆向响应系数h等于零。结合上述对超临界机组协调控制系统机理的静态特性以及动态特性的研究,确定了超临界机组协调控制系统对象线性动态数学模型结构如下所示:
Figure BDA0002748206250000051
Figure BDA0002748206250000052
历史数据的选取及其预处理:
现场历史数据的选取遵循了以下原则:
(1)起始工况和结束工况尽量平稳;
(2)工况变化过程中的数据要有足够大的信噪比;
(3)采样周期要合适。
由于传递函数是指系统在零初始条件下输出量与输入量的拉普拉斯变换之比,即认为零初始条件下系统的输入输出及其各阶导数均为零。由此可知必须对辨识数据进行零初始值处理,否则就等于假设初始条件下系统各参数值均在实际的零值点,显然这不符合绝大多数生产过程的实际情况,实际采集的未经处理的输入输出数据u(k)和y(k)的“零点”可能是任意的。当系统数据采集起始于系统运行的某个初始条件下,即认为这个初始条件就是系统输入输出的“零点”。进行零初始值处理后的数据为:
Figure BDA0002748206250000061
其中:N——零初始点数据个数
u*(k)零初值处理后的系统输入数据
y*(k)零初值处理后的系统输出数据
对机组负荷进行辨识:
对机组负荷N进行辨识,此时三个输入燃料量B、调门开度μ、给水流量W同时作用于机组负荷N。其结构如下所示:
N=GNB·B+G·μ+GNW·W (1)
对超临界机组辨识采用基于火电厂现场运行历史数据的粒子群(PSO)寻优方法。
结合现场历史数据,采用粒子群算法对给定的模型结构GNB、G和GNW中共12个参数进行寻优。根据经验以及最初得到的比较合理的参数后逐渐缩小参数寻优范围的方法,此时需要辨识公式中的12个参数依次为:
k11、T111、T112、τ11、k12、T121、h12、k13、T131、T132、h13
分别设置其上下限以及PSO优化算法参数,建立相应的优化目标,
Figure BDA0002748206250000062
就可以得到相应的数学模型。
对主蒸汽压力的辨识:
对主蒸汽压力P进行辨识,此时三个输入燃料量B、调门开度μ、给水流量W同时作用于主蒸汽压力P。其结构如下所示:
P=GPB·B+G·μ+GPW·W (3)
结合现场历史数据,采用粒子群算法对给定的模型结构GPB、G和GPW中总共11个参数进行寻优。根据经验以及最初得到的比较合理的参数后逐渐缩小参数寻优范围的方法,此时需要辨识公式中的11个参数依次为
k21、T211、T212、τ21、k22、T221、h22、k23、T231、T232、h23
分别设置其上下限以及PSO优化算法参数,建立相应的优化目标,优化目标为
Figure BDA0002748206250000071
就可以得到相应的数学模型。
对中间点温度的辨识:
对中间点温度T进行辨识,此时三个输入燃料量B、调门开度μ、给水流量W同时作用于中间点温度T。其结构如下所示:
T=GTB·B+G·μ+GTW·W (5)
结合现场历史数据,采用粒子群算法对给定的模型结构GTB、G和GTW中总共11个参数进行寻优。根据经验以及最初得到的比较合理的参数后逐渐缩小参数寻优范围的方法,此时需要辨识公式中的11个参数依次为
k31、T311、T312、τ31、k32、T321、h32、k33、T331、T332、h33
分别设置其上下限以及PSO优化算法参数,建立相应的优化目标,
Figure BDA0002748206250000072
就可以得到相应的数学模型。
基于先进控制算法的控制策略:
当把超临界机组协调控制系统作为一个整体来看,并同时对机组功率、主蒸汽压力、中间点温度这三个被控量进行优化得到一个整体的最优方案。即利用多目标优化问题整体优化的方法先求得问题的Pareto解集,然后根据一定的规则或准则从得到的Pareto解集中选择一个合适的最优解。值得指出的是在控制器参数优化的过程当中,目标函数的选择是非常重要的,因为不同的目标函数表示对控制品质的要求也不同,最后不同的目标函数可能导致控制器参数优化的结果不同。本发明在对超临界机组协调控制系统优化时选择的目标函数为所有控制回路的误差平方积分(ISE)的加权和。如下式所示:
Figure BDA0002748206250000073
式中:e1为机组负荷控制器的输入,e2为主蒸汽压力控制器的输入,e3为中间点温度控制器的输入,w1、w2、w3分别为各控制回路的加权系数。
对于火电厂实际机组,经常会出现PID控制器中的微分项系数过大,微分作用过强的现象。即当机组负荷N、主蒸汽压力P和中间点温度T的实际信号存在高频干扰、或由于某种原因出现抖动时,控制器的反应会非常强烈,这容易造成整个系统的摆动甚至不稳定,因此在实际应用和仿真研究时,多数情况下需要舍弃PID控制器中的微分项,仅保留比例和积分作用,即三个控制器均采用PI控制器,其结构如下式所示:
Figure BDA0002748206250000081
利用粒子群(PSO)算法对三个控制器参数同时寻优使得所有回路的误差平方积分的加权之和最小,其中各回路的加权系数均为1,最终可以得到控制器参数。
干湿态转换无扰切换的控制策略:
(一)干湿态转换情况:
在机组起动过程中,为了防止锅炉受热面温度超温,将省煤器流量设定值设定为远高于设计的锅炉最小流量。这样,可使在蒸汽流量满足转换为干态时锅炉循环流量较大的要求;如果通过增加给煤量使机组转换为干态,转换后的机组负荷较高,且难以操作。
机组降负荷时,锅炉起动系统随着负荷的降低,给水流量大于蒸汽流量时,汽水分离器会逐渐分离出液态水,并进入储水箱。随着储水箱水位的增加,起动锅炉起动循环泵,缓慢打开锅炉循环泵出口调节阀,调整循环流量使机组进入湿态运行。
(二)干湿态自动转换控制
在锅炉运行工况由循环状态向直流状态转变时,给水控制由给水流量和储水罐水位控制切换为中间点温度(焓值)控制,其转换过程主要通过控制燃料量和给水流量实现。
干态转湿态:
(1)参见图2,汽动给水泵投入自动控制方式,将给水流量减至当前蒸汽流量对应的流量(大于锅炉最小给水流量指令);每隔40s给水流量减少50t/h,逐渐将给水流量减至目标值;当给水流量与指令偏差大超过10s或机组主要参数(机组负荷、主蒸汽压力、主蒸汽温度等) 波动大时暂停减少给水流量,待给水流量调整至目标值或因给水流量调整而造成的机组参数波动稳定后继续减少给水流量;当汽水分离器中间点温度大于5℃或者总燃料跳闸(MFT)后减少给水流量;当锅炉达到干态时,将汽水分离器中间点焓值或温度投入自动控制方式,并将其焓值或温度的设定值偏置设置为0,PID控制器按照不同负荷下对应的温度调节汽水分离器中间点温度。
(2)参见图3,将运行磨煤机容量风挡板和燃料主控投入自动控制方式,增加给煤量,每隔 120s增加煤量5t/h,直至汽水分离器中间点温度大于5℃;当机组主要参数(机组负荷、主蒸汽压力、主蒸汽温度等)波动大时,暂停增加给炉煤量,待因给煤量调整而造成的机组参数波动稳定后继续增加给煤量,给煤量最大增至增前给煤量的1.3倍;将汽水分离器中间点焓值或温度投入自动控制方式,并将其焓值或温度设定值偏置设置为0,PID控制器按照不同负荷下对应的温度调节汽水分离器中间点温度。
机组湿态自动转为干态期间,应通过储水箱水位低保护控制逻辑跳闸锅炉循环水泵。如果无此跳闸控制逻辑,则当储水箱水位溢流阀关闭、汽水分离器中间点温度大于6℃、储水箱水位低于正常值时,跳闸锅炉循环水泵。当储水箱水位低于正常值且锅炉循环水泵停止运行、储水箱水位溢流阀关闭、汽水分离器中间点温度大于6℃时,机组进入直流状态运行
湿态转干态
为了确保储水箱水位和给水流量不出现大幅波动,避免机组跳闸,将锅炉湿态、态向干态转换控制逻辑优化为:当锅炉由湿态转换至干态且联锁控制功能投入时,储水箱水位达到联锁保护值后联锁起动锅炉循环泵,同时将锅炉循环泵出口调节阀切至自动控制方式,并将再循环流量设定为给水流量与主蒸汽流量之差。随着机组负荷的降低,通过总流量闭环控制回路,使直流炉逐渐由湿态转换到干态运行
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (3)

1.一种超超临界机组干湿态转换无扰切换控制方法,通过机理建模和数据辨识的方法,建立超超临界机组协调控制模型,其特征在于包括:
S1、数据的选取及其预处理:
S11、根据合适的采样周期,选择启停过程平稳、运行过程信噪比足够大的数据;
S12、以通过以系统运行的初始条件作为系统输入输出的“零点”,进行零初始值处理;
S2、模型结构定义:协调控制系统为三输入三输出的多变量系统,确定被控量分别为机组负荷N、主蒸汽压力P、中间点温度T,控制量分别为给煤量B、调门开度μ、给水流量W,结构定义如下:
Figure FDA0002748206240000011
Figure FDA0002748206240000012
S3、传递模型参数辨识:采用基于火电厂现场运行历史数据的粒子群(PSO)寻优方法,对负荷、主蒸汽压力、中间点温度进行辨识。
2.根据权利要求1所述的一种超超临界机组干湿态转换无扰切换控制方法,其特征在于:
把超临界机组协调控制系统作为一个整体来看,并同时对机组功率、主蒸汽压力、中间点温度这三个被控量建立控制模型:
Figure FDA0002748206240000013
利用多目标优化问题整体优化的方法(粒子群算法)优化控制器参数,求得问题的Pareto解集;
以“所有控制回路的误差平方积分(ISE)的加权和”作为准则,从对上述解集中选择一个合适的最优解。
3.根据权利要求2所述的一种超超临界机组干湿态转换无扰切换控制方法,其特征在于:
超超临界机组协调控制模型中湿态转干态为:
在锅炉运行工况由循环状态向直流状态转变时,给水控制由给水流量和储水罐水位控制切换为中间点温度(焓值)控制,其转换过程主要通过控制燃料量和给水流量实现,通过储水箱水位低保护控制逻辑跳闸锅炉循环水泵。
超超临界机组协调控制模型中干态转湿态为:
当锅炉由湿态转换至干态态且联锁控制功能投入时,储水箱水位达到联锁保护值后联锁起动锅炉循环泵,同时将锅炉循环泵出口调节阀切至自动控制方式,并将再循环流量设定为给水流量与主蒸汽流量之差。
CN202011174088.0A 2020-10-28 2020-10-28 一种超超临界机组干湿态转换无扰切换控制方法 Pending CN112268271A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011174088.0A CN112268271A (zh) 2020-10-28 2020-10-28 一种超超临界机组干湿态转换无扰切换控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011174088.0A CN112268271A (zh) 2020-10-28 2020-10-28 一种超超临界机组干湿态转换无扰切换控制方法

Publications (1)

Publication Number Publication Date
CN112268271A true CN112268271A (zh) 2021-01-26

Family

ID=74345135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011174088.0A Pending CN112268271A (zh) 2020-10-28 2020-10-28 一种超超临界机组干湿态转换无扰切换控制方法

Country Status (1)

Country Link
CN (1) CN112268271A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646051A (zh) * 2022-03-17 2022-06-21 国网湖南省电力有限公司 超临界火电机组湿态运行锅炉给水自动控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953966A (en) * 1974-08-08 1976-05-04 Westinghouse Electric Corporation Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation
CN109375507A (zh) * 2018-10-30 2019-02-22 国网江苏省电力有限公司 基于自寻优并矢展开控制器的火电机组深度调峰协调控制方法
CN110597070A (zh) * 2019-10-17 2019-12-20 上海电力大学 火电机组系统模型参数的辨识方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953966A (en) * 1974-08-08 1976-05-04 Westinghouse Electric Corporation Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation
CN109375507A (zh) * 2018-10-30 2019-02-22 国网江苏省电力有限公司 基于自寻优并矢展开控制器的火电机组深度调峰协调控制方法
CN110597070A (zh) * 2019-10-17 2019-12-20 上海电力大学 火电机组系统模型参数的辨识方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴林峰 等: "基于PSO优化与深度信念网络的机炉协调系统建模研究", 《浙江电力》, vol. 39, no. 9, pages 60 - 65 *
闫乃明 等: "直流炉干湿态自动转换控制研究", 《热力发电》, vol. 42, no. 7, pages 79 - 82 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646051A (zh) * 2022-03-17 2022-06-21 国网湖南省电力有限公司 超临界火电机组湿态运行锅炉给水自动控制方法及系统

Similar Documents

Publication Publication Date Title
CN101988697B (zh) 火电机组智能化的协调控制方法
CN101431310B (zh) 循环流化床发电机组的协调控制方法
CN105546508B (zh) 基于事件触发机制的火电厂主蒸汽温度控制系统及方法
CN108361683B (zh) 一种全负荷段再热气温智能控制系统
CN112082137B (zh) 一种燃煤锅炉蒸汽温度自动调节系统
CN110879620A (zh) 一种核电站立式蒸汽发生器液位控制方法以及系统
CN111045321B (zh) 一种深度调峰下的协调控制带嵌入式内模控制器的方法
CN112648606A (zh) 二次再热超超临界锅炉汽温协同控制系统
Zhu et al. Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network
CN112268271A (zh) 一种超超临界机组干湿态转换无扰切换控制方法
CN113448248A (zh) 一种火电机组灵活性及深度调峰智能控制方法
CN110955141A (zh) 一种基于神经网络逆模型再热汽温控制方法
Han et al. A L1-LEMPC hierarchical control structure for economic load-tracking of super-critical power plants
CN204114898U (zh) 超临界cfb锅炉再热汽温调整系统
Deng et al. Compensation design of coordinated control system for supercritical once-through CHP plants based on energy analysis
CN216281315U (zh) 一种双渣室燃煤机组主蒸汽温度优化控制装置
CN113282043A (zh) 基于多变量状态空间模型的超超临界机组协调控制方法
Sivakumar et al. An investigation on the efficacy of classical tuning algorithm to satisfy advanced requirements: control of main steam pressure during fuel switching and load disturbances in coal fired boilers
Chen et al. Fuzzy Adaptive PID Control of Biomass Circulating Fluidized Bed Boiler
CN113793707B (zh) 一种压水堆核电厂不调硼负荷跟踪运行与控制方法
Pan et al. Full process control strategy of fuel based on water-coal ratio of ultra supercritical units
CN114961907B (zh) 双抽汽超临界中间再热机组的热电解耦控制方法及系统
CN113238589B (zh) 一种过热汽温负荷前馈控制器参数的设置方法
CN114673982B (zh) 一种基于混合智能优化算法的火力发电锅炉主汽温控制系统
CN115095849B (zh) 一种二次再热机组主再热蒸汽温度协调控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination