CN112266468A - 一种全共轭嵌段聚合物半导体材料、制备方法及应用 - Google Patents

一种全共轭嵌段聚合物半导体材料、制备方法及应用 Download PDF

Info

Publication number
CN112266468A
CN112266468A CN202011194338.7A CN202011194338A CN112266468A CN 112266468 A CN112266468 A CN 112266468A CN 202011194338 A CN202011194338 A CN 202011194338A CN 112266468 A CN112266468 A CN 112266468A
Authority
CN
China
Prior art keywords
heteroarylene
arylene
polymer
bicyclic
monocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011194338.7A
Other languages
English (en)
Other versions
CN112266468B (zh
Inventor
袁鑫
袁建宇
冯逸丰
张琪麟
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202011194338.7A priority Critical patent/CN112266468B/zh
Publication of CN112266468A publication Critical patent/CN112266468A/zh
Application granted granted Critical
Publication of CN112266468B publication Critical patent/CN112266468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种全共轭嵌段聚合物半导体材料、制备方法及应用,属有机聚合物半导体材料技术领域。本发明提供的共轭聚合物为D1‑A1‑D2‑A2结构型,D1,D2代表具有给电子能力的基团,A1,A2代表具有拉电子能力的基团,D1,D2和A1,A2独立地代表未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、单环杂亚芳基、双环杂亚芳基和稠环结构。本发明提供的聚合物具有性能精确可控,结构多样化的特征,应用于有机聚合物太阳能电池,能有效提升共轭半导体聚合物的性能,无需采用溶剂添加剂或后期退火的方式,即可取得4.2%的光电转换效率,制备得到高性能太阳能电池,并简化了电池的制备工艺。

Description

一种全共轭嵌段聚合物半导体材料、制备方法及应用
技术领域
本发明涉及一种共轭聚合物半导体材料、制备方法及应用,属于有机聚合物半导体材料领域。
背景技术
低温溶液法制备有机光电子器件是目前科研界和工业界关注的热点,而决定目前有机光电子器件产品化商业化的最大障碍是产品的性能和成本,由于目前有机光电子器件的性能主要取决于所采用的有机分子的性能,所以开发新型的有机分子材料将是解决未来能量储存,光电转换,开发高效廉价半导体器件等关键(Y.-J.Cheng,S.-H.Yang,C.-S.Hsu,Chem.Rev.2009,109,5868)。
在过去的十多年中,高性能有机半导体材料的研发取得了长足的发展。在有机太阳能电池,有机发光二极管和有机场效应晶体管中也取得了优异的性能(J.H.Burroughes,D.D.C.Bradley,A.R.Brown,R.N.Marks,K.Mackay,R.F.Friend,P.L.Burn,A.B.Holmes,Nature.1990,347,539;M.A.Baldo,D.F.O’Brien,A.Shoustikow,S.Sibley,M.E.Thompson,S.R.Forrest,Nature 1998,395,151.),但是与商业化的性能门槛相比还有不少的距离,但是有机分子材料具有结构可设计性,性能可控,能进行低温溶液法制备,可研发柔性半透明的大面积器件,这些独特的优势是的有机光电子器件具有广阔的研发前景,以有机聚合物太阳能电池为例,2000年诺贝尔化学奖得主Alan J.Heeger等(G.Yu,J.Gao,J.C.Hummelen,F.Wudl,A.J.Heeger,Science 1995,270,1789)首次报道通过溶液旋涂方法制备得到以聚(3-
己基)噻吩和富勒烯衍生物(PCBM)为光敏层材料的高效聚合物太阳能电池器件以来,有机聚合物太阳能电池在过去的十多年中光电转换效率已经从最初的1%提高的现在的12%(Z.He,B.Xiao,F.Liu,H.Wu,Y.Yang,S.Xiao.C.Wang,T.P.Russell,Y.Cao,Nat.Photonics 2015,9,174),达到了商业化10%的要求,得益于新型有机半导体材料的研发和器件制备工艺的优化,有机太阳能电池取得了长足的发展,但是目前此类电池还存在能量损失高,目前的有机材料介电常数较低,有机太阳能电池制备时形貌不可控等不足,这使得后期的新材料研发有了明确的方向。
目前,广泛用于有机太阳能电池的有机分子材料主要采用D-A型的分子设计思路,通过这种方法可以很好的控制这种给体-受体型材料的光学吸收,电学能级,分子主链的平面性,分子间的相互作用力,是一种有效的提升材料光电转换性能的方法(J.Roncali,Chem.Rev.1997,97,173),在器件的后期制备方面,文献(W.Ma,C.Y.Yang,X.Gong,K.Lee,A.J.Heeger,Adv.Funct.Mater.2005,15,1617;J.Peet,J.Y.Kim,N.E.Coates,W.L.Ma,D.Moses,A.J.Heeger,G.C.Bazan,Nat.Mater.2007,6,497.)报道了有机太阳能电池需要通过热退火或采用高沸点的溶剂添加剂达到调整相分离的目的,这些繁琐的步骤不仅不利于商业化产品开发,更会对器件的寿命有所影响,因此,新型的分子材料设计需要以器件制备和性能为导向,能对材料的性能有精确的控制,更需要从材料本身来简化器件的制备步骤。
发明内容
本发明针对现有技术存在的不足,提出一种具有性能精确可控,结构多样化特征的全共轭嵌段聚合物有机半导体材料及其制备方法,将其应用于有机聚合物太阳能电池,能有效提升共轭半导体聚合物的性能。
实现本发明目的的技术方案是提供一种全共轭嵌段聚合物半导体材料,它的结构式为:
Figure BDA0002753542100000021
其中:D1和D2独立地代表具有给电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;D1和D2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;A1和A2为具有拉电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;A1和A2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;n代表聚合物的重复单元个数,为5~500之间的自然数。
本发明技术方案还包括上述全共轭嵌段聚合物半导体材料的制备方法,包括如下步骤:
(1)以四三苯基膦钯为催化剂,无水甲苯和二甲基甲酰胺为反应溶剂,按摩尔比1:1,将给体单元D1和受体单元A1,或给体单元D2和受体单元A2,在温度为110℃的条件下进行Stille交叉偶联反应40~60min,制备D1-A1或D2-A2结构聚合物溶液;
(2)将给体单元D2和受体单元A2以摩尔比1:1溶于无水甲苯,加入到步骤(1)制备的结构为D1-A1的聚合物溶液中,或将给体单元D1和受体单元A1以摩尔比1:1溶于无水甲苯,加入到步骤(1)制备的D2-A2结构聚合物溶液中,进行Stille交叉偶联反应,得到[D1-A1]n-[D2-A2]n结构的全共轭嵌段聚合物半导体材料;
其中,D1和D2独立地代表具有给电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;D1和D2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;A1和A2为具有拉电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;A1和A2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;n代表聚合物的重复单元个数,为5~500之间的自然数。
本发明上述技术方案中,D1和D2基团包括如下单元:
Figure BDA0002753542100000031
其中,X代表氧、硫、硒元素中的一种。
A1基团包括如下单元:
Figure BDA0002753542100000032
其中,X代表氧、硫、硒元素中的一种。
A2基团包括如下单元:
Figure BDA0002753542100000033
A2也可以为典型的小分子受体,其结构式为:
Figure BDA0002753542100000041
本发明所述的一种全共轭嵌段聚合物半导体材料的应用,将全共轭嵌段聚合物半导体材料溶解于无水甲苯或氯仿溶剂中,制备总浓度为6~10mg/ml的混合溶液,采用溶液旋涂法,制备体相异质结聚合物太阳能电池。
与现有技术相比,本发明的有益效果在于:
1.本发明提供的聚合物具有新型的D1-A1-D2-A2的主链结构,这种新型的结构相对于经典的D-A型结构能对有机半导体材料光学性能,电学性能,分子间的相互作用力能进行更精确的调控,提升最终材料的性能,进而提升有机电子器件的性能。
2.本发明提供的聚合物具有性能精确可控,结构多样化的特征,可应用于有机聚合物太阳能电池,制备的聚合物太阳能电池的转换效率达到4.2%,有效地提升全共轭嵌段聚合物的性能,并简化了电池的制备工艺。
附图说明
图1和图2分别是本发明实施例1制备的全共轭嵌段聚合物半导体材料P1(PBDB-T-b-P2TIDIC)的合成路线示意图;
图3是本发明实施例1制备的聚合物P1的氢谱核磁谱图;
图4是本发明实施例1制备的聚合物P1在不同溶剂中的紫外-可见吸收光谱图;
图5是本发明实施例1制备的聚合物P1在不同溶剂中的电学性质;
图6是本发明实施例2提供的聚合物太阳能电池器件结构示意图;
图7是本发明实施例2以聚合物P1为光敏层制备的太阳能电池中电流-电压特性图;
图8是本发明实施例2以聚合物P1为光敏层制备的太阳能电池中外量子效率图;
图9是本发明实施例1制备的聚合物P1在不同溶剂中的原子力显微镜形貌图;
图10和11分别是本发明实施例3制备的全共轭嵌段聚合物半导体材料P2(PBDB-T-b-PTY6)的合成路线示意图;
图12是发明实施例3制备的聚合物P2的氢谱核磁谱图;
图13是发明实施例1、3采用的给受体材料制备的聚合物P1和P2的[D1-A1]n-[D2-A2]n结构示意图。
具体实施方式
下面结合附图和实施例对本发明技术方案作进一步的说明。
本实施方案所用的原料为已知化合物,可在市场上购得,或可用本领域已知的方法合成。
实施例1
本实施例提供一种全共轭嵌段聚合物半导体材料,记作P1(PBDB-T-b-P2TIDIC),其结构式为:
Figure BDA0002753542100000051
可分别采用图1或图2的合成路线。原料M1、M3为给体,M2、M4为受体,它们的结构式如下:
Figure BDA0002753542100000061
参见附图1,它是本实施例提供的一种全共轭嵌段聚合物半导体材料P1(PBDB-T-b-P2TIDIC)的合成路线示意图;具体步骤如下:
取36.75毫克M1(0.0406mmol)和31.15毫克M2(0.0406mmol)加入150毫升反应管中,加入催化剂四三苯基膦钯3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
将70毫克M3(0.0406mmol)和20.02毫克M4(0.0406mmol)溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,记作P1(PBDB-T-b-P2TIDIC),产率80%。它的数均分子量为Mn=20K,分散度PDI=2.0。
参见附图2,它是本实施例提供的另一种制备全共轭嵌段聚合物半导体材料P1(PBDB-T-b-P2TIDIC)的合成路线示意图;具体步骤如下:
取70毫克M3(0.0406mmol)和20.02毫克M4(0.0406mmol))加入150毫升反应管中,加入催化剂四三苯基膦钯3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
将36.75毫克M1(0.0406mmol)和31.15毫克M2(0.0406mmol)溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,记作P1(PBDB-T-b-P2TIDIC),产率80%。它的数均分子量为Mn=20K,分散度PDI=2.0。
参见附图3,为本实施例制备的聚合物P1的氢谱核磁谱图。
参见附图4,为本实施例制备的聚合物P1在不同溶剂中的薄膜紫外可见吸收光谱,本发明制备的D1-A1-D2-A2结构聚合物材料,相比于传统的D-A型聚合物共轭材料,具有较宽的吸收光谱,并可进行精确的微调;
参见附图5,为本实施例制备的聚合物P1在不同溶剂中的电学性质;通过紫外光电子能谱确定聚合物P1的HOMO和LUMO能级,该能级结构有利于光生激子的分离。
实施例2
参见附图6,为本实施例提供的聚合物太阳能电池器件结构示意图;以本发明为给体材料的聚合物太阳能电池器件,可包括玻璃和导电玻璃(ITO)衬底层,电子传输层(ZnO),光敏层(P1),空穴传输层(MnO3)和电极(Ag)。
聚合物太阳能电池器件可按本领域已知方法制作,如按参考文献(Adv.Funct.Mater.2013,23,885.)公开的方法制作。具体方法为:导电玻璃(ITO)依次用洗涤剂、异丙醇、丙酮各超声清洗20分钟,将经过清洗的ITO首先臭氧15-20分钟,旋涂ZnO薄膜(转速4500转每分钟,时间40秒),150度退火10分钟,然后转移到手套箱中,旋涂实施例1制备的聚合物P1的氯苯/氯仿(CB/CF)溶液(重量比1/1.5,总浓度20毫克每毫升),转速1200转每分钟,旋涂100秒,然后在真空度1.0×10-6mbar下依次蒸镀10纳米厚的MoO3(速度0.2埃每秒),120纳米厚的银电极(速度0.3埃每秒),制得如图6所示的器件,各种器件的结构如下:
器件1:
ITO/ZnO(30nm)/PBDB-T-B-P2TIDIC(CF处理)/MoO3/Ag(120nm);
器件2:
ITO/ZnO(30nm)/PBDB-T-B-P2TIDIC(CF+3%CN处理)/MoO3/Ag(120nm);
器件3:
ITO/ZnO(30nm)/PBDB-T-B-P2TIDIC(CB处理)/MoO3/Ag(120nm);
器件4:
ITO/ZnO(30nm)/PBDB-T-B-P2TIDIC(CB+3%CN处理)/MoO3/Ag(120nm);
器件的电流-电压特性是在标准太阳光照射下(AM 1.5G,100mW/cm2,Newport,Class AAA solar simulator,94023A-U),由带有校正过的硅光电二极管的Keithley光源测量系统(Keithley 2400Sourcemeter)完成的,外量子效率由经过认证的卓立汉光SolarCellScan100测量的,所有测量均在氮气中完成。器件的性能数据参见下表1。
表1
Figure BDA0002753542100000081
参见附图7,它是本实施例提供的器件1~4的电流-电压特性曲线图。
参见附图8,它是本实施例提供的以聚合物P1为光敏层的太阳能电池中外量子效率图。
参见附图9,它是本实施例提供的聚合物P1在不同溶剂中的原子力显微镜形貌图。
结果表明,本发明制备的D1-A1-D2-A2结构型共轭聚合物材料是一种优异的有机光电材料,这种新型的设计结构具有广阔的前景,能进一步的提升有机半导体材料的性能。
实施例3
本实施例提供一种全共轭嵌段聚合物半导体材料,记作P2,其结构式为:
Figure BDA0002753542100000091
P2的制备可分别采用图10或图11的合成路线图。M1、M2采用实施例1提供的原料,原料PTY6的结构式为:
Figure BDA0002753542100000092
参见附图10,它是本实施例提供的一种制备全共轭嵌段聚合物半导体材料P2的合成路线示意图;具体步骤如下:
取36.75毫克M1(0.0406mmol)和31.15毫克M2(0.0406mmol)加入150毫升反应管中,加入催化剂四三苯基膦钯3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
将80.19毫克(0.0406mmol)PTY6溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,记作P2,产率80%。它的数均分子量为Mn=20K,分散度PDI=2.0。
参见附图11,它是本实施例提供的另一种制备全共轭嵌段聚合物半导体材料P2的合成路线示意图;具体步骤如下:
取80.19毫克(0.0406mmol)PTY6加入150毫升反应管中,加入催化剂四三苯基膦钯3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
将36.75毫克M1(0.0406mmol)和31.15毫克M2(0.0406mmol)溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,产率80%。它的数均分子量为Mn=20K,分散度PDI=2.0。
参见附图12,为本实施例制备的聚合物P2的氢核磁谱图。
以本实施例提供的聚合物P2为光敏层,按实施例2技术方案制备太阳能电池。
参见附图13,为本发明实施例1和3采用的给受体材料制备的聚合物P1和P2的[D1-A1]n-[D2-A2]n结构示意图。

Claims (10)

1.一种全共轭嵌段聚合物半导体材料,其特征在于它的结构式为:
Figure FDA0002753542090000011
其中:
D1和D2独立地代表具有给电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;D1和D2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;
A1和A2为具有拉电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;A1和A2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;
n代表聚合物的重复单元个数,为5~500之间的自然数。
2.根据权利要求1所述的一种全共轭嵌段聚合物半导体材料,其特征在于D1和D2基团选自如下单元:
Figure FDA0002753542090000012
其中,X代表氧、硫、硒元素中的一种。
3.根据权利要求1所述的一种全共轭嵌段聚合物半导体材料,其特征在于A1基团选自如下单元:
Figure FDA0002753542090000013
其中,X代表氧、硫、硒元素中的一种。
4.根据权利要求1所述的一种全共轭嵌段聚合物半导体材料,其特征在于A2基团选自如下单元:
Figure FDA0002753542090000021
5.根据权利要求1所述的一种全共轭嵌段聚合物半导体材料,其特征在于A2为典型的小分子受体,其结构式为:
Figure FDA0002753542090000022
6.一种如权利要求1所述的全共轭嵌段聚合物半导体材料的制备方法,其特征在于包括如下步骤:
(1)以四三苯基膦钯为催化剂,无水甲苯和二甲基甲酰胺为反应溶剂,按摩尔比1:1,将给体单元D1和受体单元A1,或给体单元D2和受体单元A2,在温度为110℃的条件下进行Stille交叉偶联反应40~60min,制备D1-A1或D2-A2结构聚合物溶液;
(2)将给体单元D2和受体单元A2以摩尔比1:1溶于无水甲苯,加入到步骤(1)制备的结构为D1-A1的聚合物溶液中,或将给体单元D1和受体单元A1以摩尔比1:1溶于无水甲苯,加入到步骤(1)制备的D2-A2结构聚合物溶液中,进行Stille交叉偶联反应,得到[D1-A1]n-[D2-A2]n结构的全共轭嵌段聚合物半导体材料;
其中,D1和D2独立地代表具有给电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;D1和D2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;
A1和A2为具有拉电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;A1和A2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;
n代表聚合物的重复单元个数,为5~500之间的自然数。
7.根据权利要求6所述的一种全共轭嵌段聚合物半导体材料的制备方法,其特征在于D1和D2基团选自如下单元:
Figure FDA0002753542090000031
其中,X代表氧、硫、硒元素中的一种。
8.根据权利要求6所述的一种全共轭嵌段聚合物半导体材料的制备方法,其特征在于A1基团选自如下单元:
Figure FDA0002753542090000032
其中,X代表氧、硫、硒元素中的一种;
A2基团选自如下单元:
Figure FDA0002753542090000033
9.根据权利要求6所述的一种全共轭嵌段聚合物半导体材料的制备方法,其特征在于A2为典型的小分子受体,其结构式为:
Figure FDA0002753542090000041
10.如权利要求1所述的一种全共轭嵌段聚合物半导体材料的应用,其特征在于:将所述的全共轭嵌段聚合物半导体材料溶解于无水甲苯或氯仿溶剂中,制备总浓度为6~10mg/ml的混合溶液,采用溶液旋涂法,制备体相异质结聚合物太阳能电池。
CN202011194338.7A 2020-10-30 2020-10-30 一种全共轭嵌段聚合物半导体材料、制备方法及应用 Active CN112266468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011194338.7A CN112266468B (zh) 2020-10-30 2020-10-30 一种全共轭嵌段聚合物半导体材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011194338.7A CN112266468B (zh) 2020-10-30 2020-10-30 一种全共轭嵌段聚合物半导体材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN112266468A true CN112266468A (zh) 2021-01-26
CN112266468B CN112266468B (zh) 2022-04-15

Family

ID=74344487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011194338.7A Active CN112266468B (zh) 2020-10-30 2020-10-30 一种全共轭嵌段聚合物半导体材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN112266468B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585175A (zh) * 2012-01-16 2012-07-18 中国科学院化学研究所 一种二维共轭苯并二呋喃类共轭聚合物材料及其制备方法与应用
CN103159941A (zh) * 2013-04-01 2013-06-19 苏州大学 一种全共轭侧链聚合物及其在聚合物太阳能器件中的应用
CN103467710A (zh) * 2013-07-29 2013-12-25 苏州大学 一种共轭聚合物半导体材料、制备方法及应用
CN105237749A (zh) * 2015-11-07 2016-01-13 苏州大学 一种共轭聚合物半导体材料、制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585175A (zh) * 2012-01-16 2012-07-18 中国科学院化学研究所 一种二维共轭苯并二呋喃类共轭聚合物材料及其制备方法与应用
CN103159941A (zh) * 2013-04-01 2013-06-19 苏州大学 一种全共轭侧链聚合物及其在聚合物太阳能器件中的应用
CN103467710A (zh) * 2013-07-29 2013-12-25 苏州大学 一种共轭聚合物半导体材料、制备方法及应用
CN105237749A (zh) * 2015-11-07 2016-01-13 苏州大学 一种共轭聚合物半导体材料、制备方法及应用

Also Published As

Publication number Publication date
CN112266468B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Sun et al. Recent progress on non-fullerene acceptors for organic photovoltaics
Zhang et al. Thiophene-based conjugated oligomers for organic solar cells
Li et al. Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%
Feng et al. All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units
Dutta et al. Novel naphtho [1, 2-b: 5, 6-b′] dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells
Li et al. Synthesis and photovoltaic properties of a simple non-fused small molecule acceptor
Gao et al. Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm− 2
Li et al. Benzodifuran‐containing Well‐defined π‐conjugated Polymers for Photovoltaic Cells
KR101743241B1 (ko) 높은 전자 이동도를 갖는 ndi계 공중합체 및 이의 합성방법
Fan et al. Enhancing the photovoltaic properties of low bandgap terpolymers based on benzodithiophene and phenanthrophenazine by introducing different second acceptor units
Lu et al. A facile strategy to enhance the fill factor of ternary blend solar cells by increasing charge carrier mobility
Zhao et al. Electron-transporting conjugated polymers from novel aromatic five-membered diimides: naphtho [1, 2-b: 4, 3-b′]-dithiophene and-diselenophene diimides
Xu et al. Synthesis and characterization of naphthalene diimide polymers based on donor-acceptor system for polymer solar cells.
Wang et al. Over 7% photovoltaic efficiency of a semicrystalline donor-acceptor polymer synthesized via direct arylation polymerization
Lee et al. Synthesis and characterization of low‐bandgap cyclopentadithiophene‐biselenophene copolymer and its use in field‐effect transistor and polymer solar cells
Lee et al. Benzodithiophene-based wide-bandgap small-molecule donors for organic photovoltaics with large open-circuit voltages
KR101828012B1 (ko) 유기 태양전지용 공액 고분자 및 이의 제조방법
Liu et al. Synthesis of low band-gap 2D conjugated polymers and their application for organic field effect transistors and solar cells
Bohra et al. Direct arylation polymerization toward efficient synthesis of benzo [1, 2‐c: 4, 5‐c'] dithiophene‐4, 8‐dione based donor‐acceptor alternating copolymers for organic optoelectronic applications
Xia et al. Synthesis of dithieno [2, 3-d: 2’, 3’-d’] benzo [1, 2-b: 4, 5-b’] dithiophene-alt-isoindigo conjugated polymer and enhancement of photovoltaic property with diphenyl sulfide additives
CN109749061B (zh) 联受体型聚合物光伏材料及其制备和应用
Wang et al. Incorporating trialkylsilylethynyl-substituted head-to-head bithiophene unit into copolymers for efficient non-fullerene organic solar cells
KR101960614B1 (ko) 메틸렌 싸이오펜 카르복실레이트와 벤조다이싸이오펜을 함유하는 공액형 고분자 유도체와 이를 이용한 유기 태양전지
CN112266468B (zh) 一种全共轭嵌段聚合物半导体材料、制备方法及应用
Lee et al. Dithieno [2, 3‐d: 2', 3'‐d'] benzo [1, 2‐b: 4, 5‐b'] dithiophene (DTBDAT)‐based copolymers for high‐performance organic solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant