CN112233991B - 一种利用飞秒脉冲激光诱导银纳米线互连的方法 - Google Patents

一种利用飞秒脉冲激光诱导银纳米线互连的方法 Download PDF

Info

Publication number
CN112233991B
CN112233991B CN202010981206.2A CN202010981206A CN112233991B CN 112233991 B CN112233991 B CN 112233991B CN 202010981206 A CN202010981206 A CN 202010981206A CN 112233991 B CN112233991 B CN 112233991B
Authority
CN
China
Prior art keywords
laser
silver nanowire
femtosecond
silicon dioxide
inducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010981206.2A
Other languages
English (en)
Other versions
CN112233991A (zh
Inventor
崔健磊
黄晨晨
梅雪松
凡正杰
王文君
刘斌
段文强
杨军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010981206.2A priority Critical patent/CN112233991B/zh
Publication of CN112233991A publication Critical patent/CN112233991A/zh
Application granted granted Critical
Publication of CN112233991B publication Critical patent/CN112233991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67138Apparatus for wiring semiconductor or solid state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/78261Laser
    • H01L2224/78262Laser in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/8521Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/85214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种利用飞秒脉冲激光诱导银纳米线互连的方法,该方法先将含银纳米线浓度10mg/mL的溶液用乙醇以1:15‑25的比例稀释,然后利用滴涂工艺将银纳米线溶液涂覆到二氧化硅基底表面,最后进行激光辐照诱导银纳米线实现互连。本发明无需精准定位,工艺简单,加工效率高,可大规模使用,得到的银纳米线互连结构的接头较光滑。

Description

一种利用飞秒脉冲激光诱导银纳米线互连的方法
技术领域
本发明属于纳米线结构互连领域,具体涉及一种利用飞秒脉冲激光诱导银纳米线互连的方法。
背景技术
随着智能触摸交互终端、可穿戴电子设备、柔性太阳能电池等行业快的速发展,对透明导电薄膜的透明、质轻、柔韧、高导电、大幅面和低成本等性能提出了更高要求,然而传统透明导电薄膜的电极材料由于存在电阻率高、紫外吸收及刚性强等问题,已经越来越不适用于柔性电子领域。新型的透明导电薄膜材料如碳纳米管薄膜、石墨烯薄膜、金属氧化物薄膜正逐步成为研究热点。其中银纳米线由于较高的导电性及尺寸效应下的高透明度使其成为制备透明导电薄膜电极材料最好的选择。但是未经连接的纳米线存在较大的接触电阻,制备成膜的表面粗糙度也较高,因此将散乱的纳米线连接起来对于解决银纳米线的实际应用有着极其重要的意义。目前连接纳米线的方法主要有附加粘结剂连接、通电烧结连接、冷焊连接及激光辐照连接。其中激光辐照连接操作简单、不要需要精准定位、无接触等特点已经被应用于纳米材料的连接领域。激光的辐照时间和激光的能量调控是诱导银纳米线互连的关键,传统的互连工艺通常需要精准定位而且需要的工艺较为繁琐,不利于大规模的生产应用。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种利用飞秒脉冲激光诱导银纳米线互连的方法,无需精准定位,工艺简单,加工效率高,可大规模使用。
为了实现上述目的,本发明采用的技术方案为:
一种利用飞秒脉冲激光诱导银纳米线互连的方法,包括以下步骤:
1)将银纳米线溶液滴涂于二氧化硅基底表面,然后将滴涂后的二氧化硅基底移至加热台在50-60℃加热1-2min;
2)搭建飞秒激光辐照系统:所搭建的飞秒激光辐照系统包括飞秒激光器、第一反射镜、1/2波片、分光棱镜、快门、第二反射镜、光阑和聚焦平凸透镜,其用于将飞秒超短脉冲激光聚焦于移动载物台上,并实时对激光功率进行调节,搭建好光路后,将二氧化硅基底固定在移动载物台上;
3)设置飞秒激光参数并诱导连接:采用飞秒激光辐照系统进行激光诱导,激光的具体参数为:脉冲宽度为1000fs、波长为800nm的飞秒激光,焦距为100mm的聚焦平凸透镜,70-100mW的激光能量辐照二氧化硅基底上的银纳米线10-30s,即得到互连的银纳米线结构。
本发明进一步的改进在于,银纳米线溶液的配置方法为:
按照体积比为1:15-25,在Ag浓度为10mg/mL的银纳米线溶液中加入溶剂混合,并搅拌均匀,其中溶剂为水,乙醇,或异丙醇。
本发明进一步的改进在于,按照体积比为1:20,在Ag浓度为10mg/mL的银纳米线溶液中加入溶剂混合。
本发明进一步的改进在于,使用槽式超声波清洗机超声混合30-35分钟。
本发明进一步的改进在于,步骤2)中,所搭建的飞秒激光辐照系统中,飞秒激光器的输出激光经过所述第一反射镜使光路转动90°,反射光依次经过所述1/2波片、所述分光棱镜、所述快门、所述第二反射镜、所述光阑、所述聚焦平凸透镜垂直照射在移动载物台的加工工位上,搭建好光路后,将二氧化硅基底固定在移动载物台上。
本发明进一步的改进在于,步骤3)中,设置飞秒激光参数并诱导连接的具体步骤为:使用1/2波片将出口功率为4W的飞秒脉冲激光调节至70-100mW,并使用功率计进行检测;然后用焦距的100mm的聚焦平凸透镜将圆形光斑激光束进行聚焦,并将焦点调至诱导二氧化硅基底上方1-1.5cm处,采用焦后诱导连接;设置快门,使飞秒激光作用时间为10-30s,当到达辐照时间后,立即关闭光路,防止破坏诱导互连后的纳米线结构。
本发明至少具有如下有益的技术效果:
利用飞秒激光的无接触、多光子非线性吸收等特点诱导二氧化硅基底上的银纳米线进行互连,形成的纳米线互连结构基本完整,接头质量较好,无类似焊接、烧蚀等热累积作用形成的接头,本发明工艺简单,可大规模使用并且对所选基底无损伤。
附图说明
图1为本发明所述光路的结构示意图。
图2(a)-(b)分别为实施例1所得银纳米线互连结构图。
图3(a)-(b)分别为实施例2所得银纳米线互连结构图。
图4(a)-(b)分别为实施例3所得银纳米线互连结构图。
图5(a)-(b)分别为实施例4所得银纳米线互连结构图。
图6(a)-(b)分别为实施例5所得银纳米线互连结构图。
附图标记说明:
1-飞秒激光器;2-第一反射镜;3-1/2波片;4-分光棱镜;5-功率计;6-快门;7-第二反射镜;8-聚焦平凸透镜;9-移动载物台;10-二氧化硅基底。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明提供的一种利用飞秒脉冲激光诱导银纳米线互连的方法,包括以下步骤:
1)调节银纳米线浓度并制备二氧化硅基底;所使用的银纳米线原液中Ag浓度为10mg/mL的溶液,纯度大于99wt%,其中溶剂为水,乙醇,异丙醇。此时银纳米线浓度过高,需要进一步稀释以实现银纳米线之间的互连,因此按照体积比为1:15-25,在Ag浓度为10mg/mL的银纳米线溶液中加入溶剂混合,并搅拌均匀,优选的按照体积比为1:20。将配置好的银纳米线溶液滴涂于二氧化硅基底表面,然后将滴涂后的二氧化硅基底移至加热台在50-60℃加热1-2min。
2)搭建光路:所搭建的光路主要包括飞秒激光器、第一反射镜、1/2波片、分光棱镜、快门、第二反射镜、光阑、聚焦平凸透镜,其作用是将飞秒超短脉冲激光聚焦于移动载物台上,并实时对激光功率进行调节,搭建好光路后,将二氧化硅基底固定在移动载物台上。
3)设置飞秒激光参数并诱导连接:采用飞秒激光辐照系统进行激光诱导,激光的具体参数为:脉冲宽度为1000fs、波长为800nm的飞秒激光,焦距为100mm的聚焦平凸透镜,70-100mW的激光能量辐照二氧化硅基底上的银纳米线10-30s,即得到互连的银纳米线结构。
所述的步骤2)搭建光路的具体步骤为:飞秒激光器的输出激光经过所述第一反射镜使光路转动90°,反射光依次经过所述1/2波片、所述分光棱镜、所述快门、所述第二反射镜、所述光阑、所述聚焦平凸透镜垂直照射在移动载物台的加工工位上。其中分光棱镜设置有功率计,用于检测光路中的激光功率,1/2波片用于调节光路中的激光功率,快门用于控制光路中激光的通断,聚焦平凸透镜将飞秒激光器输出的圆形光斑激光束进行聚焦,搭建好光路后,将二氧化硅基底固定在移动载物台上。
所述的步骤3)设置飞秒激光参数并诱导连接的具体工艺为:
a、使用1/2波片将出口功率为4W的飞秒脉冲激光调节至70-100mW,并使用功率计进行检测。
b、使用焦距的100mm的聚焦平凸透镜将圆形光斑激光束进行聚焦,并将焦点调至诱导二氧化硅基底上方1-1.5cm处,采用焦后诱导连接。
c、设置快门,使飞秒激光作用时间为10-30s,当到达作用时间后,立即关闭光路,防止破坏诱导互连后的纳米线结构。
实施例1,本发明提供的一种利用飞秒脉冲激光诱导银纳米线互连的方法,包括以下步骤:
1)调节银纳米线浓度并制备二氧化硅基底:在烧杯中加入10mL Ag浓度为10mg/mL的溶液,再加入乙醇溶液进行稀释,比例为1:20,然后使用槽式超声波清洗机超声混合30分钟。最后将配置好的银纳米线溶液滴涂于二氧化硅基底表面,然后将滴涂后的二氧化硅基底移至加热台在50℃加热1min。
2)搭建光路:飞秒激光器的输出激光经过所述第一反射镜使光路转动90°,反射光依次经过所述1/2波片、所述分光棱镜、所述快门、所述第二反射镜、所述光阑、所述聚焦平凸透镜垂直照射在移动载物台的加工工位上,搭建好光路后,将样片固定在移动载物台上。
3)设置飞秒激光参数并诱导连接:使用1/2波片将出口功率为4W的飞秒脉冲激光调节至100mW,并使用功率计进行检测。然后用焦距的100mm的聚焦平凸透镜将圆形光斑激光束进行聚焦,并将焦点调至诱导二氧化硅基底上方1cm处,采用焦后诱导连接。设置快门,使飞秒激光作用时间为30s,当到达辐照时间后,立即关闭光路,防止破坏诱导互连后的纳米线结构。
本实施例的有益效果:参照图2,本实施例得到银纳米线在激光作用下,形成了接头光滑的银纳米线互连结构,并且连接后的纳米线非激光作用区域结构保留完整。
实施例2:将实施例1步骤3)调整为:100mW的飞秒激光能量辐照10s,其它步骤顺序和参数不变,可以得到接头较好的银纳米线互连结构,参照图3。
实施例3:将实施例1步骤3)调整为:70mW的飞秒激光能量辐照30s,其它步骤顺序和参数不变,可以得到接头较好的银纳米线互连结构,参照图4。
实施例4:将实施例1步骤3)调整为:70mW的飞秒激光能量辐照10s,其它步骤顺序和参数不变,可以得到接头较好的银纳米线互连结构,参照图5。
实施例5:将实施例1步骤3)调整为:80mW的飞秒激光能量辐照10s,其它步骤顺序和参数不变,可以得到接头较好的银纳米线互连结构,参照图6。

Claims (3)

1.一种利用飞秒脉冲激光诱导银纳米线互连的方法,其特征在于,包括以下步骤:
1)将银纳米线溶液滴涂于二氧化硅基底表面,然后将滴涂后的二氧化硅基底移至加热台在50-60℃加热1-2min;银纳米线溶液的配置方法为:按照体积比为1:15-25,在Ag浓度为10mg/mL的银纳米线溶液中加入溶剂混合,并搅拌均匀,其中溶剂为水,乙醇,或异丙醇;
2)搭建飞秒激光辐照系统:所搭建的飞秒激光辐照系统包括飞秒激光器、第一反射镜、1/2波片、分光棱镜、快门、第二反射镜、光阑和聚焦平凸透镜,其用于将飞秒超短脉冲激光聚焦于移动载物台上,并实时对激光功率进行调节,搭建好光路后,将二氧化硅基底固定在移动载物台上;所搭建的飞秒激光辐照系统中,飞秒激光器的输出激光经过所述第一反射镜使光路转动90°,反射光依次经过所述1/2波片、所述分光棱镜、所述快门、所述第二反射镜、所述光阑、所述聚焦平凸透镜垂直照射在移动载物台的加工工位上,搭建好光路后,将二氧化硅基底固定在移动载物台上;
3)设置飞秒激光参数并诱导连接:采用飞秒激光辐照系统进行激光诱导,激光的具体参数为:脉冲宽度为1000fs、波长为800nm的飞秒激光,焦距为100mm的聚焦平凸透镜,70-100mW的激光能量辐照二氧化硅基底上的银纳米线10-30s,即得到互连的银纳米线结构;设置飞秒激光参数并诱导连接的具体步骤为:使用1/2波片将出口功率为4W的飞秒脉冲激光调节至70-100mW,并使用功率计进行检测;然后用焦距的100mm的聚焦平凸透镜将圆形光斑激光束进行聚焦,并将焦点调至诱导二氧化硅基底上方1-1.5cm处,采用焦后诱导连接;设置快门,使飞秒激光作用时间为10-30s,当到达辐照时间后,立即关闭光路,防止破坏诱导互连后的纳米线结构。
2.根据权利要求1所述的一种利用飞秒脉冲激光诱导银纳米线互连的方法,其特征在于,按照体积比为1:20,在Ag浓度为10mg/mL的银纳米线溶液中加入溶剂混合。
3.根据权利要求1所述的一种利用飞秒脉冲激光诱导银纳米线互连的方法,其特征在于,使用槽式超声波清洗机超声混合30-35分钟。
CN202010981206.2A 2020-09-17 2020-09-17 一种利用飞秒脉冲激光诱导银纳米线互连的方法 Active CN112233991B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010981206.2A CN112233991B (zh) 2020-09-17 2020-09-17 一种利用飞秒脉冲激光诱导银纳米线互连的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010981206.2A CN112233991B (zh) 2020-09-17 2020-09-17 一种利用飞秒脉冲激光诱导银纳米线互连的方法

Publications (2)

Publication Number Publication Date
CN112233991A CN112233991A (zh) 2021-01-15
CN112233991B true CN112233991B (zh) 2024-04-16

Family

ID=74107937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010981206.2A Active CN112233991B (zh) 2020-09-17 2020-09-17 一种利用飞秒脉冲激光诱导银纳米线互连的方法

Country Status (1)

Country Link
CN (1) CN112233991B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108015410A (zh) * 2017-12-01 2018-05-11 北京工业大学 一种基于飞秒激光诱导无定形GemSbnTek薄膜制备晶态纳米结构的方法
CN108648890A (zh) * 2018-05-10 2018-10-12 广州大学 纳米颗粒线阵列电阻的制备方法
CN109920603A (zh) * 2019-03-05 2019-06-21 中南大学 一种提高银纳米线透明导电膜导电性的装置及方法
CN111337472A (zh) * 2020-02-28 2020-06-26 江苏大学 一种表面增强拉曼散射基底及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092220A1 (ko) * 2012-12-14 2014-06-19 솔로테크 주식회사 이온성 액체를 이용한 은 나노와이어 제조방법
WO2015161313A1 (en) * 2014-04-18 2015-10-22 The Research Foundation For The State University Of New York Composite nanomaterials and micromaterials, films of same, and methods of making and uses of same
US9183968B1 (en) * 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108015410A (zh) * 2017-12-01 2018-05-11 北京工业大学 一种基于飞秒激光诱导无定形GemSbnTek薄膜制备晶态纳米结构的方法
CN108648890A (zh) * 2018-05-10 2018-10-12 广州大学 纳米颗粒线阵列电阻的制备方法
CN109920603A (zh) * 2019-03-05 2019-06-21 中南大学 一种提高银纳米线透明导电膜导电性的装置及方法
CN111337472A (zh) * 2020-02-28 2020-06-26 江苏大学 一种表面增强拉曼散射基底及制备方法

Also Published As

Publication number Publication date
CN112233991A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN102285635B (zh) 一种利用激光制作金属微纳结构的系统与方法
CN104993013B (zh) 一种大面积铜铟镓硒薄膜太阳能电池组件的全激光刻划方法
Haas et al. High speed laser processing for monolithical series connection of silicon thin‐film modules
CN109920603B (zh) 一种提高银纳米线透明导电膜导电性的装置及方法
CN106571410A (zh) 一种柔性不锈钢衬底太阳能电池组件的全激光刻划方法
CN111900218B (zh) 用于制备薄膜太阳能电池第二道刻线的方法
CN105149781B (zh) 一种基于光热效应的单点纳米焊接方法
CN101982285B (zh) 太阳能电池板激光刻划系统及刻划方法
CN108346744B (zh) 一种提高钙钛矿太阳能电池有效面积的激光加工方法
Kosuga et al. A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion
CN107498183A (zh) 一种用线光斑诱导制备大面积周期结构的方法
CN107930711A (zh) 一种基于y切铌酸锂芯片的光触发微液滴定向输运方法
CN106925895A (zh) 基于超短脉冲激光微加工的玻璃碳电极表面粗化制备方法
CN109868462A (zh) 一种实现在纳米尺度下激光辅助金离子化学还原的方法
CN104167656B (zh) 一种太赫兹光导天线及其制作方法
CN112233991B (zh) 一种利用飞秒脉冲激光诱导银纳米线互连的方法
CN110142510A (zh) 用于金属纳米元件的激光焊接装置及其方法
CN106399980B (zh) 一种利用激光直写技术在柔性基体上制备高粘结强度银电极的方法
CN102248289A (zh) 晶硅太阳能电池的激光划线绝缘设备
Iakovlev et al. Laser surface modification of ZnO for solar converters
CN201824059U (zh) 太阳能电池板激光刻划系统
CN103036131B (zh) 一种产生太赫兹超连续源的方法
CN104134721A (zh) 一种cigs太阳能薄膜电池膜层的激光划线方法
CN110282613B (zh) 一种飞秒脉冲激光诱导多壁碳纳米管产生共价互连的工艺
Tang et al. The study of laser scribing for the perovskite solar cells module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant