CN112229834A - 用于改进对光发射的检测的结构化基底及涉及其的方法 - Google Patents

用于改进对光发射的检测的结构化基底及涉及其的方法 Download PDF

Info

Publication number
CN112229834A
CN112229834A CN202010977928.0A CN202010977928A CN112229834A CN 112229834 A CN112229834 A CN 112229834A CN 202010977928 A CN202010977928 A CN 202010977928A CN 112229834 A CN112229834 A CN 112229834A
Authority
CN
China
Prior art keywords
nanostructures
substrate
reaction
reaction chamber
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010977928.0A
Other languages
English (en)
Inventor
M.S.鲍恩
袁大军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illumina Inc
Original Assignee
Illumina Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illumina Inc filed Critical Illumina Inc
Publication of CN112229834A publication Critical patent/CN112229834A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • G01N2021/6441Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Abstract

一种结构化基底(100)包括具有活性侧(104)的基底本体(102)。基底本体(102)包括沿着活性侧(104)开口的反应腔或反应位点(106),和分离反应腔(106)的间隙区域(118)。结构化基底(100)包括定位在每一个反应腔(106)内的集成放大器(120)。集成放大器(120)包括多个纳米结构(116),例如二聚体、三聚体、蝶形纳米天线、纳米棒、纳米环、纳米塞,其被配置为进行放大传播到相应的反应腔(106)中的电磁能量(108)或者放大在相应的反应腔(106)内产生的例如发射的荧光的电磁能量(110)中的至少一个。优选地,腔室(106)内的纳米结构(116)利用例如凝胶(122)的有机材料覆盖。优选地,纳米压印光刻(NIL)被用于制造结构化基底(100)。

Description

用于改进对光发射的检测的结构化基底及涉及其的方法
本申请是申请号为201680034513.1、申请日为2016年4月14日、发明名称为“用于改进对光发射的检测的结构化基底及涉及其的方法”的发明专利申请的分案申请。
技术领域
本发明总体上涉及生物或化学分析,并且更具体地涉及用于检测来自反应位点阵列的光发射的方法和系统。
背景技术
生物或化学研究中的多种方案涉及在支撑表面的局部区域处或在反应腔内进行大量受控反应。然后可以观察或检测指定反应,并且随后的分析可以辅助识别或揭示反应所涉及的化学物质的性质。例如,在一些多重测定中,具有可识别标记(例如,荧光标记)的未知分析物可以在受控条件下暴露于数以千计的已知探针。每个已知探针可以沉积到微板的相应的孔中。观察已知探针和孔内的未知分析物之间发生的任何化学反应可有助于识别或揭示分析物的性质。
检测来自反应位点阵列的光发射的其它方案包括已知的DNA测序方案,例如边合成边测序(SBS)或循环阵列测序。在SBS中,使用多个荧光标记的核苷酸对位于基底表面上的扩增DNA的多个簇(或克隆群落)的核酸进行测序。所述表面可以例如在流动池中限定通道。通过运行多个循环来确定不同簇中的核酸的序列,其中,将荧光标记的核苷酸加入到簇中,然后由光源激发以提供光发射。
虽然目前使用的测序系统在识别核苷酸和确定核酸序列方面是有效的,但是期望更经济有效的和/或达到更小错误率的系统。例如,期望增大反应位点的密度。然而,测序方法和相应系统利用复杂的技术集合。已经显示出一些技术改进可大幅降低成本。然而,难以预测哪些(如果存在)引起降低成本的改进。鉴于测序系统中的技术之间的依赖关系,更难预测哪些可以修改,而不会对方法或系统的整体性能产生不利影响。
许多方案所面临的一个挑战在于以适当水平的置信度检测产生光发射的指定反应。随着反应位点变小且反应位点密度变大,这一挑战更加困难。例如,反应位点的直径或宽度可以为750nm以下,并且,相邻的反应位点可以分开750nm以下。反应位点变小的一个结果是所产生的光发射量也变小,因此检测的挑战更大。此外,随着反应位点的密度变大,可能更难区分哪些反应位点提供了光发射。除了上述问题之外,通常期望减少用于检测光发射的时间量(也称为扫描时间或成像时间)。随着扫描时间的减少,检测到更少的光子,从而使可靠地检测指示发生指定反应的光发射更具挑战性。
因此,对于产生足够量的光用以检测反应位点阵列内的指定反应的装置、系统和方法的需求是存在的。
发明内容
本文提出一种结构基底和用于制造结构基底的方法,其改善对离散的反应位点所提供的光学发射的检测能力。例如,结构基底可增大在离散的位点处的生物物质所经历的激发光的强度,可以增大来自所述生物物质的光学发射的强度,和/或可以控制所述光学发射方向性。本文还提出一种检测来自离散的位点阵列的光学发射的方法。所述离散的位点可以是在基底本体内形成的反应腔,或者沿着装置基底的表面的局部区域。所述光学发射可以例如通过荧光、化学发光、生物发光、电致发光、辐射发光等产生。本文还提出具有比已知系统更高密度的离散位点(或更小的相邻位点之间的间距)的结构化基底及其制造方法。
在一些实施例中,方法和结构化基底可以被配置为强化荧光标记的样品的光发射,并且所述样品更具体地是荧光标记的核酸。在具体实施例中,本文所提出的方法和组合物通过涉及染料标记核苷酸的合成反应提供在测序中的DNA簇的荧光增强。然而,应理解,本文所述的方法和设备还可以适于其它应用。
在一个实施例中,提供了结构化基底。所述结构化基底包括具有活性侧的基底本体。所述基底本体包括沿着所述活性侧开口的反应腔和分离所述反应腔的间隙区域。所述结构化基底包括定位在每一个反应腔内的集成放大器。所述集成放大器包括多个纳米结构,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有基侧的基层,以及沿着所述基层的基侧形成纳米结构。所述方法还包括形成在基侧上叠置的腔室层。所述腔室层包括多个反应腔,其中,每一个反应腔包括在其中的多个纳米结构。所述多个纳米结构形成相应的反应腔的集成放大器,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有基侧的基层,以及沿着所述基层的基侧形成纳米结构。所述方法还包括在纳米结构的阵列上提供纳米压印光刻(NIL)层。所述方法还包括将反应腔的阵列压印到所述NIL层中,其中,所述纳米结构的不同的子阵列定位在每一个反应腔下方。每一个纳米结构的子阵列由相应的NIL层的填充区域围绕。所述方法还包括移除所述NIL层的相应的填充区域,以暴露在相应的反应腔内的纳米结构的子阵列。在每一个反应腔内的纳米结构的子阵列形成相应的反应腔的集成放大器,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有基侧的基层,以及沿着所述基侧提供纳米压印光刻(NIL)层。所述方法还包括压印所述NIL层以形成基部和从所述基部突出的纳米体的阵列。所述方法还包括沉积等离子共振膜,其覆盖所述纳米体以形成多个纳米结构。每一个纳米结构包括相应的纳米体和所述等离子共振膜的一部分。所述方法还包括形成包括多个反应腔的腔室层,其中,每一个反应腔包括在其中的多个纳米结构。所述多个纳米结构形成相应的反应腔的集成放大器,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有侧表面和反应腔阵列的工作基底。每一个反应腔具有沿着所述侧表面并从相应的开口延伸一深度至所述工作基底中的开口。所述反应腔与一阵列平面相重合。所述方法还包括以相对于阵列平面的非正交角度将沉积流直接引导在工作基底上。所述沉积流包括等离子体共振材料。所述工作基底在每一个反应腔中相对于所述沉积流的路径形成阴影区域和入射区域,使得所述沉积流的等离子体共振材料受所述侧表面的阻挡而不会沉积到所述阴影区域上,并且所述沉积流被允许穿过所述开口并且沿着所述入射区域形成。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括(a)提供具有侧表面和反应腔阵列的工作基底。每一个反应腔具有沿着所述侧表面的开口,并且从相应的开口延伸一深度至所述工作基底中,所述反应腔与一阵列平面相重合。所述方法还包括(b)将所述工作基底定位在相对于材料源的接收取向中。所述方法还包括(c)将沉积流从所述材料源以相对于所述阵列平面非正交的角度引导至所述工作基底上。所述沉积流包括等离子体共振材料。所述工作基底在处于接收取向中时在每一个反应腔中形成阴影区域和入射区域,使得所述沉积流的等离子体共振材料受所述侧表面的阻挡而不会沉积到所述阴影区域上,并且被允许穿过所述开口并且沿着所述入射区域形成。
相应地,本文所提出的一个实施例是基底,包括:在固体载体上分布的多个纳米结构;凝胶材料,其形成与所述多个纳米结构关联的层;以及在所述凝胶材料中的靶标核酸的库。在具体实施例中,所述纳米结构采用等离子体共振材料形成。在具体实施例中,所述等离子体共振材料包括从以下材料组成的组中选择的材料:金(Au),银(Ag),锡(Sn),铑(Rh),钌(Ru),钯(Pd),锇(Os),铱(Ir),铂(Pt),钛(Ti)和铝(Al),铬(Cr),铜(Cu),p型掺杂硅,n型掺杂硅和砷化镓。所述等离子体共振材料可以包括金属合金。例如,所述等离子体共振材料可以包括锌铟锡氧化物(ZITO)或氧化钽(例如TaO5)。在具体实施例中,凝胶材料覆盖纳米结构。在具体实施例中,所述固体载体包括流动池的表面。在具体实施例中,固体载体包括具有多个孔的平表面,所述纳米结构在所述多个孔内分布。
本文还提出一种制造基底的方法,包括:(a)提供包括平表面的固体载体;(b)在所述固体载体的表面上分散多个纳米结构;(c)以及利用凝胶材料涂覆所述固体载体的至少一部分,由此形成覆盖多个纳米结构的凝胶层。在具体实施例中,所述纳米结构采用等离子体共振材料形成。在这一方法的具体实施例中,步骤(b)和(c)同时进行。在具体实施例中,步骤(b)在步骤(c)之前进行。在具体实施例中,所述方法可以还包括(d)将靶标核酸的库递送至所述凝胶材料,以在所述凝胶材料中产生核酸特征的阵列。在一些实施例中,每一个特征包括不同的核酸类型。在具体实施例中,所述等离子体共振材料包括从以下材料组成的组中选择的材料:金(Au),银(Ag),锡(Sn),铑(Rh),钌(Ru),钯(Pd),锇(Os),铱(Ir),铂(Pt),钛(Ti)和铝(Al),铬(Cr),铜(Cu),p型掺杂硅,n型掺杂硅和砷化镓。所述等离子体共振材料可以包括金属合金。例如,所述等离子体共振材料可以包括锌铟锡氧化物(ZITO)或氧化钽(例如TaO5)。
本文还提出一种检测核酸的方法,包括:提供包括多个纳米结构的固体载体;凝胶材料形成覆盖所述多个纳米结构的层;并且,在所述凝胶材料中的靶标合算的库;利用结合至所述靶标核酸的至少一个荧光标记的探针接触所述固体载体;以及检测在所述固体载体上的荧光信号,以区别结合至所述至少一个探针的靶标核酸。在具体实施例中,所述纳米结构采用等离子体共振材料形成。在具体实施例中,所述等离子体共振材料包括从以下材料组成的组中选择的材料:金(Au),银(Ag),锡(Sn),铑(Rh),钌(Ru),钯(Pd),锇(Os),铱(Ir),铂(Pt),钛(Ti)和铝(Al),铬(Cr),铜(Cu),p型掺杂硅,n型掺杂硅和砷化镓。所述等离子体共振材料可以包括金属合金。例如,所述等离子体共振材料可以包括锌铟锡氧化物(ZITO)或氧化钽(例如TaO5)。在具体实施例中,固体载体包括流动池的表面。在具体实施例中,固体载体包括具有多个孔的平表面,所述纳米结构在所述多个孔中分布。在具体实施例中,荧光标记的探针包括荧光标记的核苷酸。在具体实施例中,荧光标记的探针包括荧光标记的寡核苷酸。在具体实施例中,检测包括检测在每个特征中的寡核苷酸探针到靶标核酸的杂交。在具体实施例中,检测包括检测在每个特征中的核苷酸或寡核苷酸探针到靶标核酸的合并。
本文还提出一种阵列,包括:包括表面的固体载体,所述表面包含多个孔,所述孔通过间隙区域彼此分开;以及在所述多个孔中的每一个中的多个纳米结构。在具体实施例中,所述纳米结构是等离子纳米结构。在具体实施例中,所述纳米结构位于所述孔的底部。在具体实施例中,所述纳米结构沿着所述孔的壁定位。在具体实施例中,所述间隙区域基本上不具有纳米结构。在具体实施例中,所述纳米结构包括纳米结构。在具体实施例中,所述纳米结构具有大于1nm,2nm,3nm,4nm,5nm,6nm,7nm,8nm,9nm,10nm,20nm,30nm,40nm,50nm,60nm,70nm,80nm,90nm或大于100nm的直径。在具体实施例中,所述纳米结构具有小于100nm,90nm,80nm,70nm,60nm,50nm,40nm,30nm,20nm,10nm,9nm,8nm,7nm,6nm,5nm,4nm,3nm,2nm或小于1nm的直径。在具体实施例中,所述纳米结构包括在所述孔以内的二聚体或三聚体。在具体实施例中,所述纳米结构包括纳米天线。在具体实施例中,所述纳米结构包括纳米棒。在具体实施例中,所述纳米结构包括纳米环。在具体实施例中,所述纳米结构包括纳米塞。在具体实施例中,所述纳米结构包括纳米栅。在具体实施例中,所述孔还包括凝胶材料。在具体实施例中,所述凝胶材料包括水凝胶。在具体实施例中,所述固体载体包括流动池的表面。
本文还提出一种制造阵列的方法,包括获得包括平表面的固体载体,所述表面包含多个孔,所述孔通过间隙区域彼此分开;在固体载体上涂覆金属膜;对所述金属膜进行热退火处理,由此在所述多个孔中的每一个中形成多个纳米结构。在具体实施例中,所述纳米结构采用等离子体共振材料形成。在具体实施例中,所述方法进一步包括抛光平表面,以基本上从间隙区域移除纳米结构,并将纳米结构保持在孔中。在具体实施例中,所述方法进一步包括用凝胶材料涂覆至少一部分固体载体,从而将凝胶材料沉积在多个孔中。在具体实施例中,所述纳米结构包括从以下材料组成的组中选择的材料:金(Au),银(Ag),锡(Sn),铑(Rh),钌(Ru),钯(Pd),锇(Os),铱(Ir),铂(Pt),钛(Ti)和铝(Al),铬(Cr),铜(Cu),p型掺杂硅,n型掺杂硅和砷化镓。所述等离子体共振材料可以包括金属合金。例如,所述等离子体共振材料可以包括锌铟锡氧化物(ZITO)或氧化钽(例如TaO5)。
本文还提出一种检测核酸的方法,包括:提供包括平表面的固体载体,所述表面包括多个孔,所述孔通过间隙区域彼此分开;所述多个孔中的每一个中的多个纳米结构;凝胶材料形成覆盖所述多个纳米结构的层;以及,凝胶材料中的靶标核酸库;利用结合至所述靶标核酸的至少一个荧光标记的探针接触所述固体载体;以及,检测在所述固体载体上的荧光信号,以区别结合至所述至少一个探针的靶标核酸。在具体实施例中,所述纳米结构采用等离子体共振材料形成。在具体实施例中,所述纳米结构包括从以下材料组成的组中选择的材料:金(Au),银(Ag),锡(Sn),铑(Rh),钌(Ru),钯(Pd),锇(Os),铱(Ir),铂(Pt),钛(Ti)和铝(Al),铬(Cr),铜(Cu),p型掺杂硅,n型掺杂硅和砷化镓。在具体实施例中,所述纳米结构位于所述孔的底部。在具体实施例中,所述纳米结构沿着所述孔的壁定位。在具体实施例中,所述间隙区域基本上不具有纳米结构。在具体实施例中,所述孔还包括凝胶材料。在具体实施例中,所述凝胶材料包括水凝胶。在具体实施例中,所述固体载体包括流动池的表面。在具体实施例中,荧光标记的探针包括荧光标记的核苷酸。在具体实施例中,荧光标记的探针包括荧光标记的寡核苷酸。在具体实施例中,检测包括检测在每个特征中的寡核苷酸探针到靶标核酸的杂交。在具体实施例中,检测包括检测在每个特征中的核苷酸或寡核苷酸探针到靶标核酸的合并。
结合附图并在下面的描述中阐述了一个或多个实施例的细节。从说明书和附图以及权利要求中,其他特征、目的和优点将是显而易见的。
附图说明
图1示出根据实施例形成的结构化基底的一部分的横截面。
图2是示出制造根据实施例的结构化基底的方法的流程图。
图3是示出制造根据实施例的包括纳米压印光刻(NIL)材料的结构化基底的方法的流程图。
图4示出图3所示的方法的不同步骤。
图5示出图3所示的方法的不同步骤。
图6是示出制造根据实施例的包括形成纳米结构的NIL材料的结构化基底的方法的流程图。
图7示出图6所示的方法的不同步骤。
图8A示出可用于一个或多个实施例的纳米结构的透视图。
图8B示出可用于一个或多个实施例的纳米结构的透视图。
图8C示出可用于一个或多个实施例的纳米结构的透视图。
图8D示出可用于一个或多个实施例的纳米结构的透视图。
图8E示出可用于一个或多个实施例的纳米结构的透视图。
图9A示出可用于一个或多个实施例的纳米结构的截面图。
图9B示出可用于一个或多个实施例的纳米结构的截面图。
图9C示出可用于一个或多个实施例的纳米结构的截面图。
图9D示出可用于一个或多个实施例的纳米结构的截面图。
图10A示出可用于一个或多个实施例的纳米结构的平面图。
图10B示出可用于一个或多个实施例的纳米结构的平面图。
图10C示出可用于一个或多个实施例的纳米结构的平面图。
图10D示出可用于一个或多个实施例的纳米结构的平面图。
图11是示出制造根据实施例的结构化基底的方法的流程图。
图12示出制造图11的结构化基底期间的沉积步骤的侧视图。
图13是图12的沉积步骤期间的反应腔的放大横截面视图。
图14示出制造图11的结构化基底期间的另一沉积步骤的侧视图。
图15是图13的沉积步骤期间的反应腔的放大横截面视图。
图16是根据实施例形成的反应腔的放大视图。
图17是根据实施例形成的反应腔的放大视图。
图18是根据实施例形成的反应腔的放大视图。
图19是示出制造根据实施例的检测光发射的方法的流程图。
图20是具有反应位点阵列的结构化基底的平面视图。
图21是在第一检测步骤期间的结构化基底的平面视图。
图22是在第二检测步骤期间的结构化基底的平面视图。
图23是示出制造根据实施例的结构化基底的方法的流程图。
图24是图23所示的方法的不同步骤的侧视图。
图25是示出图23所示的方法的不同步骤的侧视图,其中,所述结构化基底包括分离的反应位点。
图26是使用类似图23的方法的方法形成的工作基底的扫描电子显微镜(SEM)图像。
图27是使用类似图23的方法的方法形成的工作基底的扫描电子显微镜(SEM)图像。
图28是示出制造根据实施例的结构化基底的方法的流程图。
图29是图28所示的方法的不同步骤的侧视图。
图30是使用类似图28的方法的方法形成的工作基底的SEM图像。
图31是示出制造根据实施例的结构化基底的方法的流程图。
图32是图31所示的方法的不同步骤的侧视图。
图33是使用类似图31的方法的方法形成的工作基底的SEM图像。
图34是示出制造根据实施例的结构化基底的方法的流程图。
图35是图34所示的方法的不同步骤的侧视图。
图36是示出制造根据实施例的结构化基底的方法的流程图。
图37是图36所示的方法的不同步骤的侧视图。
图38是使用类似图36的方法的方法形成的工作基底的SEM图像。
图39是使用类似图36的方法的方法形成的工作基底的放大SEM图像。
图40是使用类似图36的方法的方法形成的、在提供等离子体共振材料之后的工作基底的SEM图像。
图41是使用类似图36的方法的方法形成的、在提供等离子体共振材料之后的工作基底的放大SEM图像。
图42是根据实施例形成的成像系统的示意图。
图43是根据实施例形成的包括多个测微荧光计的读取头的透视图。
图44是根据实施例的具有均匀嵌入的纳米颗粒阵列的结构化基底的侧视图。
具体实施方式
本申请包括与2013年12月23日提交的题为“ENHANCING DNA CLUSTERFLUORSCENCE USING LOCALIZED SURFACE PLASMON RESONANCE”的美国临时申请第61/920,244号,以及2014年12月23日提交的题为“STRUCTURED SUBSTRATES FOR IMPROVINGDETECTION OF LIGHT EMISSIONS AND METHODS RELATING TO THE SAME”的国际申请第PCT/US2014/072256号中描述的主题相似的主题,其全部内容通过引用并入本文。
本申请的主题也可以适用于或包括在美国专利申请公开第2014/0242334、2014/0079923以及2011/0059865号和美国专利第8,895,249号中描述的主题类似的主题。这些公开和专利中的每一篇通过引用整体并入本文。
本文阐述的一个或多个实施例被配置为直接或间接地增强来自反应位点阵列的光发射,使得光发射可以由例如成像系统或装置检测。为此,实施例可以增加生物物质所经历的激发光的强度、增加由生物物质所产生的光发射的强度和/或控制光发射的方向性中的至少一种,以便可以检测光发射。光发射的方向性控制和/或强度增加可部分地由位于相应反应位点的一个或多个纳米结构引起。可以相对于存在于没有(多个)纳米结构的反应位点处的电磁能量的量来测量增加的量。
反应位点阵列可以沿着结构化基底沉积。结构化基底可以例如是具有用于在反应位点旁边引导反应物的通道的流动池(flow cell)。光发射可以由成像系统检测,该成像系统可以包括例如在结构化基底旁边扫描或扫视的物镜,以检测来自反应位点的光发射。在美国申请公开第2012/0270305A1号和第2013/0261028A1号中描述了能够检测来自本文所述的结构化基底的光发射的示例性系统,其各自的全部内容通过引用并入本文。替选地,结构化基底可以与诸如固态成像装置(例如,CMOS)的成像装置集成。在这类实施例中,成像装置可以具有与反应位点对准的一个或多个光传感器,以采集来自反应位点的光发射。这些实施方案描述于美国临时申请第61/914,275号和国际申请第PCT/US14/69373号中,其各自的全部内容通过引用并入本文。
至少一个实施例提供的技术效果可以包括增大来自生物物质的发射体的信号强度。信号强度的增大可以通过增加信号被检测到的可能性来降低错误率。另一技术效果可包括降低信噪比,从而实现更快的扫描速度、并减少执行方案的总时间。例如,相对于边合成边测序技术,期望测序仪器上的扫描速度更快,但是更快的扫描速度导致每个簇的在成像相机上收集到光子更少。采集到的光子越少,信噪比通常会降低,并且更难以确信地指定基准。此外,在一些测序仪器上,低NA光学器件导致固有地更大和更暗的信号,潜在地产生更高的错误率。本文所述的实施例可增加被捕获到的光子的数量。至少一些实施例的另一个技术效果包括制造结构化基体的方法,其比至少一些已知方法更可靠,并且比至少一些已知方法更具成本效益。
如本文所用,“生物物质”或“化学物质”包括生物分子、感兴趣的样品、感兴趣的分析物、和其它(多个)化学化合物。生物物质或化学物质可用于检测、识别或分析其他(多个)化合物,或用作研究或分析其他(多个)化合物的中间体。在特定实施例中,生物物质是核酸、或更具体是具有共同序列的核酸的群落。在特定实施例中,生物或化学物质包括生物分子。如本文所用,“生物分子”包括生物聚合物、核苷、核酸、多核苷酸、寡核苷酸、蛋白质、酶、多肽、抗体、抗原、配体、受体、多糖、碳水化合物、多磷酸盐、细胞、组织、器官,或其片段,或任何其它(多个)生物活性化合物,例如上述物质的类似物或模拟物。
作为另一个实例,生物或化学物质可以包括在偶联反应中用于检测另一反应的产物的酶或试剂,例如用于检测焦测序反应中的焦磷酸盐的酶或试剂。用于焦磷酸盐检测的酶和试剂描述于例如美国专利公开第2005/0244870A1号中,其全部内容并入本文。
生物或化学物质可以是天然存在的或合成的,并且位于指定区域或空间内。在一些实施例中,生物或化学物质可结合至固相或凝胶材料。生物分子、样品和生物或化学物质也可以包括药物组合物。在某些情况下,生物分子、样品和感兴趣的生物或化学物质可称为靶标、探针或分析物。
实施例可以特别适用于增强荧光标记的核酸的发光。作为示例,实施例可以通过涉及染料标记的核苷酸的合成反应在测序中提供DNA簇的荧光增强。实施例可以在边合成边测序期间增加来自荧光标记的信号强度。信号强度的增加可以通过减少在长测序运行期间由低强度簇和簇丢失引起的测序误差,而提高总体测序性能。
多种实施例利用一个或多个纳米结构在反应位点放大电磁能量。对于利用多个纳米结构(例如,两个或更多个纳米结构)的实施例,多个纳米结构可以被称为集成放大器(ensemble amplifier)。如本文所用,术语“纳米结构”和“纳米颗粒”可互换使用,以指具有在约1nm至约1000nm范围内的最大尺寸(例如,高度、宽度、直径)的结构,包括1nm到1000nm之间的任何整数或非整数值。在具体实施例中,纳米颗粒是金属颗粒或硅颗粒。在一些实施例中,纳米颗粒核心是直径为20-200nm的球形或近似球形颗粒。在一些实施例中,这一范围为约1nm至约50nm(例如约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50nm)。
各向异性纳米结构(例如,非球形结构)可以具有长度和宽度,或者在一些实施例中可以具有直径。在一些实施例中,各向异性纳米结构的长度是纳米结构的最大尺寸。在一些实施例中,各向异性纳米颗粒的长度是平行于在其中制造纳米颗粒的孔的平面的尺寸。在一些实施例中,各向异性纳米颗粒的长度是垂直于在其中制造纳米颗粒的孔的平面的尺寸。在各向异性的纳米结构的情况中,纳米结构可以具有在约50nm至约750nm范围内的宽度或直径。在其他实施例中,纳米结构具有约350nm或更小的宽度或直径。在其他实施方式中,纳米颗粒具有250nm或更小的宽度或直径,并且在一些实施方式中,具有100nm或更小的宽度或直径。在一些实施例中,宽度或直径在15nm至300nm之间。
在一些实施例中,纳米颗粒具有约10-750nm的长度。在一些实施例中,纳米结构具有预选的形状,并且可以是例如纳米管、纳米线、纳米球或包括上述尺寸的任何形状(例如二维的三角形、正方形、矩形或多边形,或者三维的立方体、金字塔形、圆柱形、球形、盘形或半球形)。纳米结构的一些实例包括例如蝶形纳米天线、纳米球、纳米金字塔、纳米壳、纳米棒、纳米线、纳米环、纳米塞、纳米栅等。预制的具有纳米结构的二聚体和三聚体也可以加载到孔中,并具有精确控制纳米颗粒的间距的优点。
可以在表面上制造或者预先形成纳米结构,然后载入反应腔(例如纳米孔)中。这样的结构的例子包括在纳米孔底部制造的等离子体纳米塞,在纳米孔中的蝶形和空腔天线,可以在其上形成纳米孔的金属纳米栅、在纳米孔中回流的纳米结构,或上述的一些或全部的组合。一个例子可以是纳米孔中的金属纳米塞,通过电子束蒸发工艺在壁上形成纳米结构。放大器或构建体(二聚体、N聚体)也可以位于反应腔内。这样的方法允许对纳米结构的间距进行精确的亚纳米级控制,并且可以使用自下而上的自组装来大批量形成。
在一表面上的任何两个纳米结构之间的间距可以是任何距离。在一些实施例中,所述间距可以是入射光能量的波长的倍数,所述入射光能量例如荧光光谱中的特定发射或激发波长。所述间距可以是例如1λ、2λ、3λ、4λ或入射光能量的所选波长(λ)的另一倍数。因此,以使用532nm的发射波长(λ)作为示例,纳米结构之间的间距可以是约532nm(1λ)、约1064nm(2λ)或者发射波长的另一倍数。在一些实施例中,所述间距可以是入射光能量的波长的分数,所述入射光能量例如荧光光谱中的特定发射或激发波长。所述间距可以是例如1λ、1/2λ、1/3λ、1/4λ或入射光能量的选定波长的另一倍数。因此,以使用532nm的发射波长(λ)为例,纳米结构之间的间距可以是约532nm(1λ)、266nm(1/2λ)、133nm(1/3λ)或发射波长的另一分数。
在一些实施方式中,纳米结构可以被称为“等离子体纳米结构”或“纳米等离子体结构”。这些术语可以互换使用,并且指代表现出结构的等离子体共振特征的任何独立结构,包括(但不限于)两种纳米结构、纳米结构和纳米结构的组合或结合。
如本文所使用的术语“纳米天线”包括纳米结构或多个纳米结构(或集成放大器),其起到放大电磁能量(例如光能量)的作用。如本文所使用的,纳米天线(或集成放大器)不一定表现出等离子体共振特性。在一些实施例中,纳米天线基本上不包括等离子体共振材料。因此,在一些实施例中,提出了由非金属材料制成的、但展现出对电磁能量的放大特性的纳米天线。本文提出的纳米结构可以具有任何合适的形状和尺寸,以产生期望的能量放大。纳米天线的一些示例性形状包括例如蝶形纳米天线、纳米球、纳米金字塔、纳米壳、纳米棒、纳米线、纳米环、纳米塞、纳米栅等。应该认识到,许多已知方法中的任何一种都适合于在固体载体上制造和/或沉积纳米天线。用于制造纳米天线的方法在本领域中是已知的,并且包括例如在本文中描述的用于纳米颗粒制造和沉积的方法。
纳米结构可以包括适用于本文所述的方法和组合物中的任何材料,例如,展现出表面等离子体共振(SPR)的任何类型的材料。在某些优选实施例中,纳米颗粒包括等离子体共振材料。实例包括但不限于金属纳米结构。例如,纳米结构可包括金属,例如金(Au)、银(Ag)、锡(Sn)、铑(Rh)、钌(Ru)、钯(Pd)、锇(Os)、铱(Ir)、铂(Pt)、钛(Ti)和铝(Al)、铬(Cr)、铜(Cu)或任何其他合适的金属中的一个或多个。所述等离子体共振材料可以包括金属合金。例如,所述等离子体共振材料可以包括锌铟锡氧化物(ZITO)或氧化钽(例如TaO5)。纳米结构可以由单一材料形成,例如单一金属形成。另外地或可选地,纳米结构可以由两种或多种不同材料(例如两种或多种金属)的组合形成。例如,纳米结构可以包括诸如Sn/Au或Ag/Au的金属/金属混合物。可选地或另外地,可以应用竖直分层的纳米结构,例如金属-绝缘体-金属类型的多层结构。示例包括p型掺杂硅、n型掺杂硅和砷化镓。在特定实施例中,纳米结构可以由等离子体共振材料和/或金属材料涂覆的聚合物形成。
在固体载体上形成纳米结构可以使用现有技术中已知的多种方法中的一种而进行。纳米结构可以使用自下而上的等离子体纳米结构和纳米天线在测序基底上的自组装而形成。例如,可以使用多种用于沉积材料层的方法中的任何一种,例如Gaspar等人描述的那些方法(Scientific Reports,2013,3,1469),其通过引用全文并入本文,可用于形成纳米结构的层制造工艺包括光刻、蚀刻(例如反应离子蚀刻)、溅射、蒸发、浇铸(例如旋涂)、化学气相沉积、电沉积、外延、热氧化、物理气相沉积等。在一些实施例中,纳米结构可以使用阴影技术形成。在一些实施例中,可以使用纳米光刻(如纳米压印光刻(NIL))来形成纳米结构。
在本文所述的示例性实施例中,纳米结构可以预先形成并且以胶状组合物与沉积在表面上的凝胶材料混合。可选地或另外地,纳米结构可以首先沉积在表面上,随后在纳米结构上沉积凝胶材料。在其他实施方案中,可以将凝胶材料沉积在表面上,并将纳米结构沉积在凝胶材料上。
在一些实施例中,纳米结构形成在固体表面的孔(或凹形特征部)中。可以将诸如Sn/Au的原材料的膜沉积在包含纳米孔的固体表面上,随后进行热退火。在一些实施例中,随着薄膜聚结成离散的颗粒,可利用热退火来促进纳米结构的形成。纳米颗粒的尺寸可以是起始膜厚度的函数。热退火之后的进一步抛光步骤可以仅在孔中产生纳米结构,而使间隙区域基本上没有纳米结构。间隙区域中的纳米结构可通过例如化学和/或机械抛光移除。在每个纳米孔中观察到纳米颗粒大小的分布,从而实现广谱荧光增强。
在一些实施方案中,可以沿着表面上的孔(或凹形特征)的壁形成纳米结构,例如纳米结构。可以使用本领域已知的多种方法中的任何一种来制造纳米结构。例如,可以使用溅射沉积来沉积Au。在一个实施例中,约65nm Au层的共形沉积可以在反应离子蚀刻(RIE)工艺之后进行。剩余的Au层沿着纳米孔的壁定位,在每个纳米孔中形成纳米环。
术语“激发光”和“光发射”意味着电磁能量,并被用于区分电磁能量的来源。激发光通常由距离反应位点一定距离的光源(例如激光)提供。例如,对于包括反应腔的实施例,光源可以位于反应腔的外部。然而,光发射通常由反应位点内或反应位点处的发射体产生。发射体可以是例如荧光团。特定实施例可以被配置为放大在300nm至750nm之间的任何波长(例如,300nm、301nm、302nm、303nm、304nm、305nm、306nm、307nm、308nm……745nm、746nm、747nm、748nm、749nm和750nm)的电磁能量。如本文所使用,术语“波长”不应被限制为单个波长,除非明确说明构成“单个波长”或“仅一个波长”。相反,术语“波长”将涵盖位于所需或目标波长附近的窄范围的波长(例如,532nm±10nm,532nm±5nm,660nm±10nm,660nm±5nm),除非另外明确说明。
每个集成放大器的纳米结构可以相对于彼此配置,以指定方式放大电磁能量。例如,分隔相应的整体放大器的纳米结构的距离可以基于期望被放大的电磁能量。集成放大器的纳米结构可以被配置用于特定波长(例如窄波段)。举例来说,一个或多个实施例可被配置为放大具有532nm波长的电磁能量。一个或多个实施例可被配置为放大具有660nm波长的电磁能量。在一些实施例中,集成放大器可以能够放大多个波长或更宽范围的波长。
一个或多个实施例可以包括优先响应某些光的偏振的集成放大器。例如,第一集成放大器可以被配置为响应第一偏振光,第二集成放大器可以被配置为响应第二偏振光。优先响应可以基于例如相应的集成放大器的偶极矩。
举例来说,当第一集成放大器被第一偏振光照亮时,由第一集成放大器提供的光发射可以为第一集成放大器提供最大信号强度。然而,当通过第一偏振光照射第二集成放大器(其具有与第一集成放大器不同的配置)时,由第二集成放大器提供的光发射可以例如是第二集成放大器的最大信号强度的约40%或更小。类似地,当第二集成放大器被第二偏振光照亮时,由第二集成放大器提供的光发射可以为第二集成放大器提供最大信号强度。然而,当通过第二偏振光照射第二集成放大器时,由第一集成放大器提供的光发射可以例如是第一集成放大器的最大信号强度的约40%或更小。
在许多情况下,第一和第二集成放大器可以同时地、同期地、或在相同的成像序列期间被照射,使得单个图像检测来自第一集成放大器和第二集成放大器的光发射。在这样的实施例中,优先响应激发光的集成放大器可以比不优先响应激发光的集成放大器提供更大的信号强度。使用不同的激发光的后续(subsequent)可以被捕捉到。
图1是根据实施例形成的结构化基底100的一部分的横截面。结构化基底100包括基底本体102,其具有活性侧104。活性侧104包括多个反应位点106以及在反应位点106之间延伸的侧表面105。反应位点106由基底本体102的间隙区域118分隔开。间隙区域118是沿着活性侧104的区域,或者使得反应位点106彼此分离的基底本体102的一部分。侧表面105沿着间隙区域118延伸。在一些实施例中,多个反应位点106形成反应位点106的密集阵列,使得间隙区域118例如以小于1000nm的距离分开。在特定实施例中,相邻的反应位点106之间的中心到中心的间距119可以小于1000nm。在特定实施例中,中心到中心的间距119可以小于800nm,小于700nm或更具体地,小于500nm。
在图示的实施例中,间隙区域118包括连续的平面的侧表面105,但在其它实施例中,间隙区域118可包括非平面的表面。间隙区域118可以包括与反应位点106的材料不同的表面材料,并且可以在功能上将反应位点106彼此隔离。在图示的实施例中,仅两个反应位点沿着活性侧104示出。然而,应理解,反应位点106可以是反应位点阵列的一部分,该阵列可包括几百、几千、几百万个反应位点。
在图示实施例中,反应位点106是腔室,因此,在下文中称为反应腔106。反应腔106通常是凹形的特征部,其形成沿着活性侧104的低洼或凹陷。反应腔106可例如是孔、坑、通道、凹陷等。然而,应该理解,其他实施例可以包括不位于腔室内的反应位点。例如,反应位点可沿着平面表面分布。这种实施方案描述于美国临时申请第61/920,244号中,其全部内容通过引用并入本文。例如,实施例被配置为具有集成放大器,其对不同的偏振光不同地响应,可具有沿着平面表面的反应区域。
如图1所示,反应腔具有横截面,其垂直于活性侧104截取。横截面可包括弯曲部段、线性部段、角度、拐角。通常,反应腔不需要完全地穿过一个或多个层。例如,每个反应腔106具有至少一个侧壁124,其在活性侧104和反应腔106的底部表面126之间延伸。侧壁124和底部表面126二者由腔室层114限定。在替选实施例中,基层112(或其他层)可限定反应腔106的底部126。
反应腔106开口至活性侧104,使得反应腔106沿着活性侧104可接近。例如,在结构化基底100的制造期间,或者当结构化基底100在分析期间被使用时,反应腔106能够接凝胶材料和/或沿着活性侧104的流体。活性侧104还可以从光源(未示出)接收激发光108,和/或面朝光学元件(未示出),例如物镜,其检测来自反应位点的光发射110。
基底本体102可通过一个或多个叠层形成。在图示实施例中,基底本体102包括基层112和腔室层114。基层112可以例如是玻璃(SiO2)晶片。腔室层114可以是聚合物。然而,基底本体102在替选实施例中可包括其它层。
如本文所使用,术语“层”不限于单个连续的材料体,除非另有说明。例如,每个层可采用具有相同或不同的材料的多个子层形成。另外,每个层可包括位于其中或从中穿过的一个或多个不同材料的特征部。可以使用已知的层形成工艺来形成不同的层,例如光刻、蚀刻、溅射、蒸发、浇铸(例如旋涂)、化学气相沉积、电沉积、外延、热氧化、物理气相沉积等。还可以使用纳米光刻,例如纳米压印光刻(NL)形成一个或多个层。如本文所使用的,术语“工作基底”包括一个或多个叠层,其中,至少一个层被处理以从工作基底形成结构化的基底。
每个反应腔106可以包括至少一个纳米结构116。间隙区域118可基本上不具有纳米结构。然而,在其他实施例中,纳米结构116被分布,以使得一个或多个纳米结构116位于间隙区域118内(如虚线所示)。例如,纳米结构116可以沿基层112均匀或一致地分布,使得在形成腔室层114之后,纳米结构116也位于或嵌入在间隙区域118内。在一些实施例中,嵌入间隙区域118内的纳米结构116对传播到反应腔中的电磁能量或在反应腔内产生的电磁能量没有实质性影响。在其他实施例中,嵌入的纳米结构116可以对传播到反应腔中或在反应腔内产生的电磁能量具有影响。
图44示出这样的示例,其中,结构化基底1150包括纳米结构1154的阵列,其沿着基层1152均分分布。活性侧形成多个腔室1156,其中,纳米结构1154在每个腔室1156中形成集成放大器。这种实施例可降低制造结构化基底的复杂度,其不需要精确地对阵反应腔与纳米结构。
在图1所示的实施例中,每个反应腔106包括多个纳米结构116。然而,应理解,替选实施例可包括仅单个的纳米结构。多个纳米结构可形成集成放大器,其在下文中称为及集成放大器120。集成放大器120定位在每个反应腔106以内,并且被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
如本文所用,“纳米结构的集成”或“集成放大器”包括多个纳米结构,其被配置为进行放大入射在离散位置(例如反应腔)上的电磁能量或放大在离散位置(例如反应腔)处产生的电磁能量中的至少一个。例如,电磁能量可以是从外部环境传播并进入反应腔106中的激发光108,其中,激发光被与生物物质相关的发射体(例如荧光团)吸收。作为另一示例,电磁能量可以是从生物物质发射的光发射110。更具体地,在被激发之后,荧光团可发生电磁能量(例如光发射110),其随后被纳米结构的集成120放大。在一些实施例中,集成放大器120还可以称为纳米天线,因为纳米结构共同地操作以放大并发送光发射110远离反应位点。
集成放大器可包括两个或更多个纳米结构,其一起操作以放大电磁能量。如本文所述,在一些实施例中,集成放大器可被配置为优先地放大一种类型的电磁能量,或具体地,优先放大具有预定波长的电磁能量。例如,集成放大器可对光发射比对激发光具有更大的放大效应,反之亦然。然而,在一些实施例中,集成放大器可放大光发射和激发光两者。
如本文所使用,当集成放大器“被配置为放大电磁能量”时,每个纳米结构可具有一个或多个特性,使得集成放大器共同操作以放大电磁能量。所述特性可以包括例如纳米结构的材料成分,纳米结构的形状,纳米结构的尺寸,和纳米结构相对于总体中的其它纳米结构的位置。例如,相邻纳米结构116之间可以具有距离128,其被配置为放大被限制在其间的电磁能量。在一些实施例中,所产生的对光发射的放大可以是由于局部表面等离子体共振和谐振能量转移过程的组合。
如图1所示,反应腔106可包括设置在反应腔106内的有机材料122。有机材料122可覆盖纳米结构116。在一些实施例中,有机材料122被配置为将生物分子固定在相应的反应腔内。例如,生物分子可以是核酸。尽管未在图1中示出,但是,可以在有机材料122和腔室层114和/或纳米结构116之间施加钝化层。
在特定实施例中,有机材料122包括凝胶材料,例如水凝胶。如本文使用的,术语“凝胶材料”旨在意指半刚性的材料,其对液体和气体是可渗透的。通常,当液体被凝胶材料吸收或接收时,凝胶材料会膨胀,并且,当从凝胶材料中移除液体时(例如,通过干燥),凝胶材料会收缩。示例性的凝胶材料包括但不限于具有凝胶结构的那些,如琼脂糖;聚合物网状结构,如明胶;或交联的聚合物结构,例如聚丙烯酰胺,SFA(参见例如美国专利申请公布第2011/0059865 A1号,其通过引用并入本文)或PAZAM(参见例如美国临时专利申请第61/753,833号,其通过引用并入本文)。特别有用的凝胶材料将符合其驻留的反应腔的形状。一些有用的凝胶材料可以(a)符合其驻留的反应腔的形状,并且(b)具有基本上不超过其驻留的反应腔的体积的体积。
在特定实施例中,有机材料122具有被配置为仅容纳单一的分析物的体积,使得空间排斥(steric exclusion)防止捕获多于一个的分析物或使反应腔接种。空间排斥对于大的分析物,例如核酸,可以是特别有用的。更具体而言,反应腔可以暴露有机材料(例如,凝胶材料)的表面,所述有机材料的表面具有等于或小于将被接种在基底上的靶标核酸的排斥体积的直径的面积。靶标核酸的排斥体积及其直径可以例如由靶标核酸的长度来确定。确定核酸的排斥体积和排斥体积的直径的方法描述于例如美国专利第7,785,790号;Rybenkov等,Proc.Natl.Acad.Sci.U.S.A.90:5307-5311(1993);Zimmerman等,J.Mol.Biol.222:599-620(1991),或Sobel等,Biopolymers31:1559-1564(1991),其中每个都通过引用并入本文。空间排斥的条件在美国专利序列第13/661,524号和美国专利第7,785,790号中记载,其中每个通过引用并入本文,并且可以容易地用于本申请的结构化基底。
在一些实施例中,例如是使用体积排斥的实施例中,可以在启动放大过程之前,将靶标核酸的库递送到含有凝胶材料的反应腔中。例如,靶标核酸可以在条件下递送至结构化基底,以利用靶标核酸在基底中接种凝胶材料。可选地,可以洗涤结构化基底以移除未接种凝胶材料的靶标核酸以及任何其它对于随后加工或使用结构化基底不希望的材料。
尽管如此,将可以理解,在其他实施方案中,暴露的凝胶材料的面积可以显着大于输送到放大位点的靶标核酸的排斥体积的直径。因此,特征面积可以足够大以至于不会发生空间排斥。
返回图1,在一些实施例中,纳米结构116沿基层112形成,使得纳米结构116从基层112突出并进入反应腔106中。在一些实施例中,纳米结构116延伸穿过腔室层114的一部分。在其它实施例中,底部表面126可由基层122的一部分限定,以使得纳米结构116不延伸穿过腔室层114。
在通过检测器检测光发射的方法期间,可响应于激发光108而产生光发射。在替选实施例中,激发光108不被提供,替代地,激发光由耦合至生物分子129的发射体产生。在一些实施例中,增益场130沿着一个纳米结构116存在,或位于两个或更多个纳米结构116之间。增益场130可表示响应于激发光和/或光发射而通过纳米结构116形成高强度电场的空间。对于一些应用,纳米结构116放大激发光108,以使得发射体由激发光更多地激励,并且提供用于检测的更大的信号强度。在其它实施例中,纳米结构116不放大激发光108,但是放大光发射110,使得光发射110提供用于检测的更大的信号强度。然而,在一些实施例中,纳米结构116可以能够放大激发光108和光发射110二者,以使得发射体经历更大强度的激发光108,并且发射体提供更大强度的光发射110。因此,本文所述的实施例可提供由成像系统或设备更易于检测的更大的信号强度。例如,本文所述的实施例可提供相对于不具有这种纳米结构的位点而言的更大的信号强度。
本申请描述用于制造或形成用于检测或分析指定反应的结构化基底的多种方法。至少一些方法在附图中示出为多个步骤。然而,应理解,实施例不限制附图中所示的步骤。可省略、修改步骤和/或可增加其它步骤。作为示例,尽管本文所述的一些实施例可以包括仅两个层,但是其它实施例可包括三个、四个或更多的层。另外,本文所述的步骤可以组合,步骤可以同时地进行,步骤可以并行地进行,步骤可以分为多个子步骤,步骤可以按照不同的顺序进行,或者步骤(或一系列步骤)可以按照相反的方式重复进行。另外,尽管本文描述了不同的方法,但应理解,在其它实施例中,不同的方法(或不同的方法的步骤)可以组合。
结构化基底可以使用例如可用于制造集成电路的、在微制造期间的和/或用于制造纳米技术的一个或多个工艺形成。光刻(例如光蚀刻)是可用于制造本文所述的结构化基底的一类技术或工艺。在具体的实施例中,一个或多个层使用纳米压印光刻(NIL)形成。示例性的光刻技术或工艺更加详细地被描述于Marc J.Madou的Fundamentals of Microfabrication and Nanotechnology:Manufacturing Techniques for Microfabrication and Nanotechnology,卷II,第3版,第I部分(2~145页)中,其通过引用整体并入本文。
用于制造结构化基底的一个或多个工艺还可以包括减法技术,其中,从工作基底移除材料。这些工艺包括化学技术,例如干法化学蚀刻、物理/化学蚀刻、气相蚀刻、化学加工(CM)、各向异性湿化学蚀刻、湿法光刻;电化学技术,例如电化学蚀刻(ECM)、电化学研磨(ECG)、反应离子蚀刻(RIE)、光电化学蚀刻等;热能技术,例如激光加工、电子束加工、放电加工(EDM);以及机械技术,例如物理干法蚀刻、溅射蚀刻,离子铣削、水流加工(WJM)、磨料水射流加工(AWJM)、磨料射流加工(AJM)、磨料磨削、在线电解修改(ELID)研磨、超声波钻孔、聚焦离子束(FIB)铣削等。上面的列表不是限制性的,可以使用其他的减法技术或方法。示例性的减法技术或方法在Marc J.Madou的Fundamentals of Microfabrication and Nanotechnology:Manufacturing Techniques for Microfabrication and Nanotechnology,卷II,第3版,第II部分(第148-384页)中更详细地记载,其通过引用整体并入本文。
用于制造结构化基底的一个或多个方法还可以包括加法技术,其中,材料增加至工作基底。这些工艺包括物理气相沉积(PVD)、蒸发(例如热蒸发)、溅射、离子镀、离子团束沉积、脉冲激光沉积、激光烧蚀沉积、分子束外延、化学气相沉积(CVD)(大气压CVD(LPCVD)、低压CVD(VLPCVD)、超低压CVD(VLPCVD)、超高真空CVD(UHVCVD)、金属有机物CVD(MOCVD)、激光辅助化学气相沉积(LCVD)、等离子增强CVD(PECVD)、原子层沉积(ALD))、外延(例如液相外延、固相外延)、阳极氧化、热喷涂沉积、电镀、注入、扩散、熔体渗入、热氧化、激光溅射沉积、反应注射成型(RIM)、自组装单分子层(SAMs)、溶胶-凝胶添加、旋涂、聚合物喷涂、聚合物干膜层压、铸造、等离子体聚合、丝网印刷、喷墨印刷、机械微打点、微接触印刷、立体光刻或微光形成、电化学形成工艺、电沉积、喷雾热解、激光束沉积、电子束沉积、等离子喷涂沉积、微成型、LIGA(其是X射线光刻、电沉积和成型的德语首字母缩写)等。上面的列表不是限制性的,可以使用其他的加法技术或工艺。示例性的加法技术或方法在Marc J.Madou的Fundamentals of Microfabrication and Nanotechnology:Manufacturing Techniques for Microfabrication and Nanotechnology,卷II,第3版,第III部分(第384-642页)中详细记载,其通过引用全部并入本文。如本文所使用,当用于一对象时,术语“示例性的”指用作示例。该术语并不表示它所修改的对象是优选的。
图2是示出制造结构化基底的方法200的流程图。方法200包括在202处提供具有基侧的基层(或工作基底)。基层可以是仅一层材料或包括一个或多个子层。基侧可具有平面表面,其被配置为在其上直接沉积另一层。然而,应理解,在于其它层结合之前,基侧可包括非平面的特征部。在具体的实施例中,基层包括玻璃(SiO2)晶片,但可以使用其它材料。
在204处,方法200还可以包括沿着基层的基侧形成纳米结构的阵列。在204处的所述形成可包括多个处理步骤。例如,在204处的所述形成可包括沿着所述基层的基侧提供(例如通过沉积、生长或其它加法技术)特征层。在204处,所述形成可包括将基层的子层成形(例如通过刻蚀或另一减法技术)形成纳米结构。子层还可以称为特征层,因为纳米结构可从子层形成。特征层可以包括能够成形为单独的特征部的材料,所述单独的特征部可以至少部分地形成纳米结构的基部。材料可包括纯材料(例如金)或材料的合金。特征层还可以包括多个材料的子层(例如金或铬),其在彼此的旁边叠置。可选地,一个或多个材料是等离子体共振材料。
在具体实施例中,在204处的所述形成包括刻蚀特征层以形成纳米体。纳米体可以按照子阵列或集合布置,其中每个子阵列(或集合)可成为集成放大器。在其它实施例中,纳米体贯穿基层均匀地或一致地分布,如图44所示。在这种实施例中,一些纳米体将被嵌入,而其它将被设置在反应腔内。
在一些实施例中,通过刻蚀工艺形成的纳米体可不经过进一步的修改而构成能够放大电磁能量的纳米结构。在其它实施例中,然而,进一步的处理步骤对形成纳米结构可以是必要的。例如,特征层可包括聚合物(或非等离子体共振材料的其它材料),其可以被成形以形成用于构成纳米结构的纳米体。薄层或薄膜可基本上增加到纳米体的外侧表面上以形成纳米结构。在另外其它的实施例中,纳米结构可局部地布置在选取的位置处。方法500(图11)描述了这一工艺。
在206处,方法200还可以包括沿着基层的基侧形成腔室层。腔室层被配置为包括反应腔。对于不包括反应腔的实施例,腔室层可称为位点层。如本文所使用,表述“沿着基侧”或“沿着基层”包括直接接触基层的腔室层或包括通过一个或多个中间层与基层隔开的腔室层。如本文所使用,空间相对性术语,例如“顶”、“上”、“下”等在本文中用于方便地描述以将一元件或特征彼此区别开。空间相对性术语不要求结构化结构在使用或工作期间必须具有相对于重量的特定取向。例如,在一些实施例中,结构化基底的活性侧可朝向与重力方向相反的方向。可替选地,在其它实施例中,结构化基底的活性侧可朝向与重力方向相同的方向。不管结构化基底相对于重力的取向如何,最上侧的表面(诸如液体在操作期间沿其流动的侧表面)可以被称为顶部表面。
在206处,所述形成可包括提供被配置为具有反应腔的阵列的腔室层。在206处,所述形成可包括多个步骤。在一些实施例中,所述腔室层包括预先形成的反应腔。每个反应腔可与相应的纳米结构的子阵列或集合(例如两个或更多个纳米结构)对准。可选地,所述腔室层可被刻蚀,以移除腔室层的一部分,并且暴露相应的反应腔内的纳米结构。
在其它实施例中,反应腔可以在腔室层定位在基层的上方或联接至基层的同时被成型。例如,在形成了纳米结构之后,可以沿着基层的基侧沉积NIL材料,并且覆盖纳米结构。NIL材料可使用例如旋涂技术或通过沿着基侧沉积液滴而沉积。NIL材料可包括能够使用NIL技术被印刷的材料。例如,NIL材料可包括聚合物。NIL材料可随后利用具有特征图案的模具(也称为模板)压印或盖印,其在NIL层中形成反应腔。在一些实施例中,模具是透明的,以允许紫外(UV)或可见光从中传播通过。在这些实施例中,NIL材料可包括在模具被压入NIL材料中的同时通过UV或可见光固化的可光固化聚合物。相应地,NIL材料可固化(例如硬化)以形成反应腔。这一方法可以与步进-闪光压印光刻(SFIL)技术相同和类似。在其它实施例中,NIL材料可通过施加热能量和/或压力而固化。NIL技术等方法在Marc J.Madou的Fundamentals of Microfabrication and Nanotechnology:Manufacturing Techniques for Microfabrication and Nanotechnology,第II卷,第3版,第I部分(113~116页)以及Lucas等的“Nanoimprint Lithography Based Approach for the Fabrication ofLarge-Area,Uniformly Oriented Plasmonic Arrays”Adv.Mater.2008,20,1129–1134中被描述,每个通过引用整体并入本文。
每个反应腔可与相应的纳米结构的子阵列对准。可以优先蚀刻NIL材料,以暴露相应反应腔内的多个纳米结构。无论制造方法如何,纳米结构的子阵列都可以形成相应的反应腔的集成放大器。集成放大器被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
可选地,所述方法200还可包括在208处提供反应腔内的有机材料。有机材料可覆盖纳米结构。在一些实施例中,有机材料穿跨过活性侧而设置,包括间隙区域。有机材料可随后通过抛光活性侧而移除。在抛光活性侧之后,每个反应腔可包括相应的有机材料,其与其它反应腔的其它有机材料隔开。在具体实施例中,有机材料是凝胶材料,例如本文所述的那些(例如,PAZAM,SFA或其化学修饰的变体,例如SFA的叠氮化形式(叠氮基-SFA))。
方法200可还包括附加步骤,例如制备待与指定方法的流体和样品相互作用的结构化基底的表面。作为另一示例,方法200可包括在210处安装流体盖体至腔室层的活性侧。流体盖体可限定在流体盖体和活性侧之间的流体通道。包括流体盖体的实施例描述于美国临时申请61/914,275和国际申请PCT/US14/69373中,其各自的全部内容通过引用并入本文。
图3示出了制造结构化基底280(图5所示)的方法220的流程图。方法220参考图4和图5描述。方法220可包括与方法200(图2)的步骤相同或相似的一个或多个步骤。方法220包括在222处提供具有基侧242的基层240(或工作基底)。在224处,方法220还可以包括沿着基侧242形成纳米结构246的阵列244。例如,特征层245可(通过沉积方法)设置至基层240的基侧242。特征层245可被刻蚀以形成纳米结构246的阵列244。阵列244可包括纳米结构246的子阵列248。如图4所示,邻近的子阵列248通过间隔250沿着基侧242隔开。然而,在其它实施例中,特征层245被刻蚀使得纳米结构246的阵列跨过基层240均匀地延伸(见例如图44)。在这种实施例中,当结构化基底完成时,一些纳米结构246可被覆盖或嵌入,而另一些纳米结构246可设置在相应的反应腔内。通过使用一致性的纳米结构246的阵列,在制造期间对准反应腔不是必要的(或者可以更简单)。在其它实施例中,纳米结构246跨过基层240以大致随机的方式形成。
每个子阵列248可包括多个纳米结构246,当结构化基底280(图5)完全形成时,多个纳米结构一起形成集成放大器。例如,每个子阵列248的纳米结构246的尺寸、形状和相对位置被调整,以使得纳米结构246放大电磁能量。在图示的实施例中,纳米结构246示出为具有相同的形状和尺寸的直立柱。然而,应理解,纳米结构246可在其它实施例中具有不同的形状。另外,单个子阵列248的纳米结构246不需要具有相同的形状和/或相同的尺寸。
在226中,NIL材料252可沿着基层240的基侧242设置。NIL材料252可覆盖纳米结构246的阵列244。NIL材料252可以是粘性材料,使得NIL材料252围绕并填充在这些纳米结构246之间的空的空间。NIL材料252可以包括例如聚合物。在图示的实施例中,NIL材料252被设置为沿着基侧242的NIL层。在其它实施例中,NIL材料可以被设置为液滴阵列,当在压印操作期间被压缩时,NIL材料有效地覆盖基侧242的至少部分。
在228处,反应腔256的阵列254可被压印到NIL材料252中。在228处,压印可以包括将模具258施加到NIL材料252。模具258可具有包括特征图案的非平面侧260。这些特征的尺寸、形状和相对位置被确定,以便以预定方式成形NIL材料252,从而形成反应腔256。当模具258被应用于NIL材料252时,形成堆叠的组件262,其包括模具258、NIL材料252、纳米结构246和基层240。
在228处,压印还可以包括固化NIL材料252以固化NIL材料252的形状。例如,固化过程可以包括向堆叠组件262施加UV光或可见光264。NIL材料252可以包括能够在暴露于UV或可见光264之后固化的光聚合物。然而,可以使用固化或硬化NIL层252的替代方法。例如,可将热能(例如热量)或压力施加到NIL材料252以固化NIL材料252并形成反应腔256。
关于图5,在固化过程之后,NIL材料变成具有反应腔256的阵列254的固化的NIL层253。固化的NIL层253可以构成包括反应腔256的腔室层,例如腔室层114(图1)。每个反应腔256可以与纳米结构246的相应的子阵列248对准,使得反应腔256位于相应的子阵列248上方。如图4所示,纳米结构246可以位于固化的NIL层253的填充区域266内。填充区域266包括由NIL层253的固化材料围绕的纳米结构246。在这个阶段,填充区域266可以限定反应腔256的底部表面268。还显示,在此阶段,反应腔256可以被间隙区域270分开,间隙区域270分开反应腔256。对于纳米结构246沿基层240均匀间隔的实施例,一个或多个纳米结构246可位于间隙区域270内。
方法220还可以包括在230处移除填充区域266以暴露相应反应腔256内的纳米结构246的至少部分。例如,可以应用优先蚀刻工艺移除围绕纳米结构246的NIL层253的材料,而基本不损坏或移除纳米结构246。在移除期间,在230处,每个反应腔256的底部表面268被降低,使得底部表面268接近基层240。在一些实施例中,填充区域266内的NIL层253可以被完全蚀刻,使得基层240形成底部面268的至少一部分。在其它实施例中,类似于图1的结构化基底100,NIL层253的一部分可在蚀刻工艺之后保留。在这样的实施例中,纳米结构246可以延伸穿过NIL层253(或腔室层)。在移除过程中,在230处,也可以蚀刻间隙区域270,如所示的,使得间隙区域270相对于基层240的高度减小。高度从271A降低至272B。
如上文所述,每个反应腔256内的纳米结构246可以形成相应的反应腔256的集成放大器272。集成放大器272被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
在图5的底部示出结构化基底280。结构基底280包括活性侧282,并具有反应腔256和分隔反应腔256的间隙区域270。可选地,所述方法200还可包括在232处在反应腔256内提供有机材料。在提供有机材料274之前,可以处理工作基底用于接收有机材料274。例如,可以设置钝化层,并且在钝化层(例如氧化钽等)上设置硅烷层。钝化层和硅烷层二者都可以覆盖纳米结构246。在232处,所述设置可以包括将有机材料旋涂到工作基底上。然而,还可以使用其它加法技术。可选地,可以培育具有钝化层、硅烷层和有机材料的工作基底。
如图5所示,有机材料274可以覆盖反应腔256中的纳米结构246。在一些实施例中,有机材料274设置跨过整个的活性侧282,使得有机材料274覆盖间隙区域270的表面。有机材料274可随后通过抛光活性侧282而移除。在抛光活性侧282之后,每个反应腔256可在其中包括有机材料274,其与相邻的反应腔256中的其它有机材料274隔开。每个反应腔256内的有机材料274围绕集成放大器272的纳米结构246。有机材料274可被配置成支撑和/或保持能够提供光发射的生物或化学物质,例如染料标记的核酸。
图6是示出制造或制备结构化基底的方法300的流程图。在一些实施例中,方法300包括与方法200(图2)和220(图3)的步骤相似或相同的步骤。图7中示出了方法300的不同阶段。方法300可以包括在302处提供具有基侧322的基层(或工作基底)320,并且,在304处提供沿着基层320的基侧322的NIL材料324。在一些实施例中,NIL材料324可以设置有NIL层。在其它实施例中,NIL材料324被设置为沿着基侧322的分离的液滴。
方法300还可以包括在306处压印NIL材料324。在压印之后,NIL材料324可以是具有基部326(由虚线表示)和纳米体330的阵列328的固化的NIL层324,纳米体330从基部326突出。在一些实施例中,纳米体330被布置成形成子阵列,但是在其他实施例中,纳米体330沿着基层320(例如图44中所示的纳米结构1154)均匀分布。基部326在相邻纳米体330之间延伸。纳米体330可以具有多种形状。在图示的实施例中,纳米体330是伸出远离NIL层324的基部326的细长柱。在替代实施例中,基部326在压印之后不形成。相反,只有纳米体330可以在压印之后形成。
方法300还可以包括在308处提供沿着NIL材料324并且特别是纳米体330的等离子体共振层334。所述在308处的提供还可以被称为沉积或生长。在一些实施例中,等离子体层334可以是薄膜或涂层。所述在308处的提供还可以通过使用一个或多个加法技术执行。例如,在308处的提供可包括PECVD、ALD、蒸发、溅射、旋涂等方法中的至少一种。等离子体共振层334包括覆盖纳米体330的等离子体共振材料(例如金,银,硅等)。因此,可以形成纳米结构332,其中每个纳米结构332包括相应的纳米体330和覆盖或围绕相应的纳米体330的等离子体共振层334的一部分。
可选地,方法300可以包括在步骤310处提供钝化层336。钝化层336被配置为保护下方的层,例如等离子体共振层334,使其在使用结构化基底期间免于损坏。
在312处,方法300可以包括沿着包括多个反应腔340的操作侧341形成腔室层338。在一些实施例中,腔室层338可以使用例如NIL技术形成,其中NIL材料被压印并固化以形成反应腔340。在图7中,仅示出单个反应腔340,但应理解,可以形成反应腔340的阵列。
可选地,方法300可以包括在步骤314处提供硅烷层(未示出)。硅烷层可以被配置成促进有机材料和/或生物或化学物质之间的偶联。举例来说,在314处的提供可以通过气相沉积来完成。在一些实施例中,硅烷层可以在其他处理步骤之后或之前提供。在此阶段,基层320、NIL材料324、等离子体共振层334、钝化层336和可选的硅烷层可以形成具有操作侧341的工作基底339。
如果腔室层338使用NIL工艺形成,则纳米结构332之间的空间可以用NIL材料324填充。如上文关于方法220所述,可以通过优先蚀刻移除NIL材料324。在移除NIL材料之后,可以在相应的反应腔340内形成纳米结构332的集成放大器342。在316处,可以将有机材料提供到反应腔340。
在所示实施例中,腔室层338使用NIL工艺形成。然而,应理解,腔室层338可以使用其他的加法和/或减法工艺形成,例如上面所述的那些。
图8-10示出可由一个或多个实施例实施的不同的纳米结构。然而,图8-10所述的纳米结构仅是示例性的,而不旨在限制。其它纳米结构可在替选实施例中使用。在图8A-图8D中,纳米结构定位在相应的圆柱形反应腔内。在其它的实施例中,反应腔可具有不同的形状。例如,反应腔的横截面可以是椭圆形、方形、矩形、其它多边形等。在另外其它的实施例中,纳米结构沿着平面表面定位。
图8A是反应腔404中的纳米塞402的透视图,其也可以被称为纳米孔。纳米塞402可以包括金(Au)。在图示的实施例中,纳米塞402居中地定位在反应腔404内,但其可具有在其他实施例中的其他位置。图8B是可用于一个或多个实施例内的蝶形天线406的透视图。蝶形天线406包括两个单独的纳米结构408,其形状是三角形的并且以二者之间的小间隙而彼此指向。蝶形天线406可以形成集成放大器。图8C示出了包括一系列间隔开的梁411的反应腔412中的纳米栅410。当在纳米栅410的上方形成反应腔412时,纳米栅410可以形成在下层中,并随后在纳米栅410的上方形成反应腔412时暴露。如图所示,纳米栅410不限制在反应腔412内,并延伸超出反应腔412的壁。图8D示出了设置在反应腔416内的多个纳米颗粒414。纳米颗粒414可以分布在反应腔416内的随机位置。纳米颗粒414可以例如通过回流或沉积工艺形成。图8E示出了二聚体420和三聚体422。二聚体420和三聚体422可以单独设置在单个反应腔(未示出)中,而不在其中设置其他纳米结构。或者,二聚体420和三聚体422可共享共同的反应腔。可选地,二聚体420和三聚体422没有设置在反应腔内,而是沿平面(未示出)分布。
图9A-9D示出了具有设置在其中的纳米结构的反应腔的侧面横截面。反应腔可以是例如圆柱形或矩形。在图9A中,示出了包括多个纳米结构432的反应腔430。纳米结构432是可以是圆柱形或方形的柱。在图9B中,示出了包括多个纳米结构436的反应腔434。纳米结构436可以是圆锥形或金字塔形。在图9C中,示出了包括多个纳米结构440的反应腔438。每个纳米结构440可以是圆锥形或金字塔形,并且具有设置在纳米结构440顶部的颗粒部分442。在图9D中,示出了包括多个纳米结构446的反应腔444。纳米结构446构成彼此面对的侧壁。
图10A-10D示出了具有设置在其中的纳米结构的反应腔的平面视图。更具体地,图10A示出围绕中心轴线452的纳米环450。纳米环450在图10A中是圆形的,但在其它实施例中可以具体其它形状(例如多边形)。图10B示出了相对于彼此定位的五个柱454。图10C和10D分别示出了蝶形天线456,458。蝶形天线456,458被配置为优先地响应不同的光偏振。
在图8A-8C、9A-9D和10B-10D中的每一个中,纳米结构可以被配置为形成取向依赖的相应的集成放大器,使得集成放大器优先响应于指定方向的偏振光。这样的集成放大器可以被称为偏振放大器。例如,集成放大器可以被配置为具有基本平行于指定偏振的激发光的偶极矩。由具有这种偏振放大器的反应腔提供的光发射的量取决于激发光的偏振。
在其它实施例中,集成放大器可以被配置为优先响应预定波长的光发射。例如,如果发射体提供等于或接近预定波长的光发射,则集成放大器可以放大光发射。然而,如果发射体提供不等于或接近预定波长的光发射,则集成放大器可仅部分地放大光发射或以可忽略的量放大光发射的量。
图11是示出制造或制备结构化基底的方法500的流程图。该方法可以包括执行一个或多个加法或减法技术,例如上面描述的那些技术。在一些实施例中,方法500包括与方法200(图2)、220(图3)和300(图6)的步骤相似或相同的步骤。图12-15中示出了方法500的不同阶段。方法500包括在502处提供具有操作侧523的工作基底522。工作基底522可以表示未完成或不完整的结构化基底。工作基底522可以类似于本文所述的一个或多个基层和/或其他工作基底。例如,工作基底522可以包括已经使用上述加法和减法技术提供的一个或多个结构(例如,层、特征等)。
操作侧523具有非平面轮廓,其包括侧表面524和向侧表面524开放的接收腔526的阵列。在图示的实施例中,侧表面524平行于接收腔室526。然而,侧表面524不需要是平面的,并且可以包括突起或其他特征。如本文所述,实施例可以利用操作侧523的非平面轮廓在沿着操作侧523的期望位置(诸如在接收腔526内)形成纳米结构。
每个接收腔526都具有沿着侧表面524的开口528。侧表面524包括在相邻开口528之间延伸并分隔开相邻开口的间隙区域。每个接收腔526从相应的开口528延伸一深度530到工作基底5220至底部表面532。如图12所示,接收腔526与阵列平面525相重合。更具体地,阵列平面525可以与每个接收腔526相交。在一些实施例中,阵列平面525平行于形成工作基底522的侧表面524和/或一个或多个层延伸。例如,玻璃晶片527可以形成工作基底522的底层。阵列平面525可以平行于玻璃晶片527延伸。
方法500还可以包括在504处将工作基底522定位在接收取向529中,在一些实施例中,接收取向529也可以被称为第一接收取向。方法500还可以包括在506处将沉积流536引导到工作基底522的操作侧523上。沉积流536可通过沉积源540提供。沉积流536包括特征材料542(如图13所示)。在具体实施例中,沉积流536以基本上线性的方式提供(例如沿着轴线的方向)。如此,在506处的引导操作的特征在于视距沉积。例如,沉积源540是电子束蒸发系统。然而,应理解,可以使用其它的视距沉积源。
在具体实施例中,特征材料542是等离子体共振材料,其沿着操作侧523积累,以直接地形成纳米结构,如本文所述,其放大电磁能量。然而,在其它实施例中,特征材料524可以不是等离子体共振材料。在这种实施例中,特征材料524可用于不直接地形成纳米结构。例如,特征材料542可形成纳米体,并且等离子体材料可随后沉积在等离子体上,以形成能够放大电磁能量的纳米结构。
在图12中,沉积流536显示为多个分离的流。在一些实施例中,沉积流536可以是沿着操作侧523扫描的单一流。例如,沉积源和/或工作基底522可以相对于彼此移动,使得沉积流536沿着操作侧523移动。在另外的实施例中,多个沉积流536可同时施加。可选地,具有孔的掩模可以位于沉积源540和工作基底522之间,以在沉积操作的一部分期间阻挡沉积流536。
在506处,所述引导可以包括当工作基底522处于接收取向529时,相对于工作基底522以非正交的角度544引导沉积流536。例如,在506,所述引导可以包括相对于阵列平面525以非正交角度544引导沉积流536。附加地或替代地,非正交角度544可以相对于侧面524。非正交角度544可以例如在5°和85°之间。在一些实施例中,非正交角度544在10°与75°之间。在特定实施例中,非正交角度544在15°与60°之间。
图13是在工作基底522处于接收取向529(图12)时在506处(即,在沉积工艺期间)引导期间的示例性接收腔526的放大侧视图。如图所示,接收腔526由腔室表面548限定。腔室表面548可以是具有弯曲的轮廓的单一表面,或在角度处接合的分离的表面。例如,腔室表面548包括壁表面550和底部表面532,其包括接收腔526的最大深度。壁表面550可以是单一的圆形或弯曲表面。可替选地,壁表面550可包括多个表面,其例如在接收腔526的角部处接合。壁表面550从与侧表面524交叉的开口边缘554延伸至利用底部表面532形成的角部556。
在506处的引导被配置为利用工作基底522的操作侧523的非平面轮廓来阻挡沉积流536的一部分进入接收腔526并允许沉积流536的其他部分进入接收腔526。例如,如果多个沉积流同时入射在操作侧523,则非平面轮廓将阻挡一个或多个沉积流进入接收腔526。如果沿着操作侧523扫描(例如移动)单个的沉积流,那么非平面轮廓可以在一部分扫描时间内阻挡沉积流。以此方式,特征材料542可沿着腔表面548在选定区域中积累。
例如,在图13中,工作基底522相对于沉积流536的线性路径定位在接收取向529中。在接收取向529中,阴影区域558沿着腔表面548形成。阴影区域558在图13中被表示为沿腔表面548延伸的实线。在示例性实施例中,阴影区域558包括壁表面550的至少一部分和底表面532的至少一部分。
在接收取向529中,入射区域560也沿着腔表面548形成。在示例性实施例中,入射区域560包括壁表面550的至少一部分和底表面532的至少一部分。入射区域560在图13中被表示为沿腔表面548延伸、并且沿侧表面524延伸的虚线。
在沉积过程期间,沉积流536的特征材料542被允许穿过开口528并且在接收腔526内沿着入射区域560积累。然而,特征材料542不会沿着阴影区域558累积。相反,侧表面524阻挡或阻碍沉积流536进入接收腔526并入射在阴影区域558上。因此,在沉积过程之后,在506处,腔表面548的一部分(例如,入射区域560)包括其上的特征材料542,但是另一部分(例如,阴影区域558)没有特征材料542。
在一些实施例中,方法500包括在504处重复定位,并且在506处引导。例如,工作基底522可以以不同的第二接收取向重新定位,并且另一沉积流可以被提供到工作基底522上。在替选实施例中,旋转可以在将沉积流562提供到工作基底522时发生。
图14和15示出了第二沉积过程。在图14和15中,沉积流被称为沉积流562。沉积流562可以包括与特征材料542(图13)相同或不同的特征材料564。在图14和图15中,工作基底522处于不同于第一接收取向529的第二接收取向572。工作基底522可以以任何量或方向移动到第二接收取向572。例如,相对于图12中的工作基底522,工作基底522可以围绕基本上平行于沉积流562的路径延伸的中心轴线570旋转。工作基底522可相对于第一接收取向520旋转例如+/-45、90、135、180度,以定位在第二接收取向572中。工作基底522也可围绕与中心竖直轴线570垂直的其他轴线旋转。例如,工作基底522可围绕垂直于中心轴线570的轴线旋转,以增加或减小非正交角度544。
如图15所示,在第二接收取向572中,在每个接收腔526中形成第二阴影区域566(由实线表示)和第二入射区域568(由虚线表示)。在一些实施例中,第二阴影区域566可以至少部分地与第一入射区域560(图13)重叠,并且第二入射区域568可以至少部分地与第一阴影区域558(图13)重叠。在示例性实施例中,第二阴影区域566包括壁表面550的至少一部分和底表面532的至少一部分。在示例性实施例中,第二入射区域568包括壁表面550的至少一部分和底表面532的至少一部分。
在第二沉积过程期间,沉积流562的特征材料564被允许穿过开口528并且在接收腔526内沿着入射区域568积累。在一些实施例中,如果特征材料542沿着入射区域568定位,则特征材料564可以累积在特征材料542上。在一些实施例中,如果特征材料542沿着入射区域568定位,则特征材料564可以在腔表面548的入射区域568上直接积累。
然而,特征材料564不会沿着第二阴影区域566累积。相反,侧表面524阻挡或阻碍沉积流562进入接收腔526。因此,在第二沉积过程之后,腔表面548的一部分包括沿其的特征材料564,而另一部分没有特征材料564。然而,没有特征材料564的一部分可能已经包括特征材料542。
在一些实施例中,特征材料542可以形成一个纳米结构,并且特征材料564可以形成另一个纳米结构。可选地,在504处的定位和在506处的引导可以重复一次或多次,以在接纳腔526内构件纳米体和/或纳米结构。总体地,每个接收腔526内的纳米结构可以形成如本文所述的集成放大器。
在沿着操作侧523沉积(一个或多个)特征材料之后,在508处,可以移除沿着侧表面524的外来的或不想要的(一个或多个)特征材料。例如,侧表面524可以被抛光以移除(一个或多个)特征材料和/或可以应用另一减法技术移除(一个或多个)特征材料。可选地,在510处,可提供有机材料(未示出),例如本文所述的凝胶材料。有机材料可以覆盖接收腔526中的纳米结构。可选地,在添加有机材料之前,纳米结构可以用本文所述的等离子体共振材料和/或钝化层涂覆。在512处,可以将流动池安装到工作基底。
图16是具有包括纳米结构604、606的集成放大器602的反应腔600的平面图。在一些实施例中,反应腔600和集成放大器602可以例如使用方法500(图11)来制造。例如,纳米结构604可以在第一沉积工艺期间形成,并且纳米结构606可以在重新定位工作基底之后的第二沉积工艺期间形成。纳米结构604、606位于反应腔600的相反侧,并且彼此以在其间的间隙608相对。
在一些实施例中,集成放大器602是偏振放大器,其优先地响应具有预定的偏振的电磁能量。例如,集成放大器602可以被配置为具有基本上平行于激发光的预定偏振的偶极矩μ。当具有预定偏振的电磁能量入射在集成放大器602上时,反应腔600和/或集成放大器602可优先地响应该激发光。更具体地,当集成放大器602的偶极矩μ平行于激发光的偏振时,与集成放大器602的偶极矩μ不平行于激发光的偏振时相比,由反应腔600提供的光发射的信号强度更大。换言之,响应于激发光的由反应腔600提供的光发射的信号强度取决于激发光的偏振。
图17是具有包括纳米结构604-606的集成放大器612的反应腔610的放大视图。在一些实施例中,反应腔610和集成放大器612可以例如使用方法500(图11)和多个不同的接收取向来制造。例如,纳米结构614可以在第一沉积工艺期间形成,纳米结构615可以在第二沉积工艺期间形成,纳米结构616可以在第三沉积工艺期间形成,纳米结构617可以在第二沉积工艺期间形成。在一些实施例中,形成纳米结构614-617的材料是同一种材料。在另外的实施例中,然而,纳米结构614-617中的一个或多个可包括不同的材料。
集成放大器612可具有两个偶极矩μ1和μ2。纳米结构614、616位于反应腔610的相对侧,并且纳米结构615、617位于反应腔610的相对侧。在这种实施例中,集成放大器612可优先地响应于两种不同偏振的激发光。
图18是具有包括纳米结构624-606的集成放大器622的反应腔620的放大视图。在一些实施例中,反应腔620和集成放大器622可以例如使用方法500(图11)和多个不同的接收取向来制造。例如,纳米结构624可以在第一沉积工艺期间形成,纳米结构625可以在第二沉积工艺期间形成,纳米结构626可以在第三沉积工艺期间形成。在示例性实施例中,形成纳米结构624-626的材料是不同的材料。在其它实施例中,然而,材料可以相同。
集成放大器622可具有两个偶极矩μ3和μ4。例如,纳米结构624的一部分定位成与纳米结构625相对,且纳米结构624的另一部分定位成与纳米结构626相对。在这种实施例中,集成放大器622可优先地响应于两种不同偏振的激发光。应理解,然而,优先相应可以是不等同的。例如,当偶极矩μ3平行于激发光的偏振时提供的信号强度可以不同于当偶极矩μ4平行于激发光的偏振时提供的信号强度。信号强度的不同可以由用于形成纳米结构625和626的不同材料而导致。
尽管在图16-18中未示出,但是一个或多个实施例可以包括单个的纳米结构,其由两个或更多个等离子体共振材料形成。另外,一个或多个单个纳米结构可在多个沉积工艺期间形成。例如,纳米结构624的一部分可包括金(Au),且纳米结构624的另一部分可包括银(Ag)。
图19是方法640的流程图。方法640可例如是在其中发生流体和成像步骤的序列的试验方案的方法。在一些实施例中,方法640是检测光发射的方法。方法640参考图20和21描述,其示出反应位点664的阵列662。方法640包括在642处提供具有反应位点664的阵列662的结构化基底。结构化基底可例如与本文所述的结构化基底相似或相同。在示出的实施例中,反应位点664是反应腔,但应理解,其它实施例可包括例如沿着共用的平面表面分布的反映区域。反应位点664可例如与反应腔600(图16)相似。反应位点664中的每一个包括集成放大器668,其是偏振放大器。集成放大器668被配置为优先地响应于具有预定偏振的电磁能量。集成放大器668通过放大电磁能量而优先地响应。
反应位点664的阵列662包括第一和第二子阵列670、672,其分别在图21和图22中显示。第一子阵列670包括反应位点664A,其具有集成放大器668A,并且,第二子阵列672包括反应位点664B,其具有集成放大器668B。第一子阵列670的集成放大器668A被配置为优先地响应于第一偏振的光发射。第二子阵列672的集成放大器668B被配置为优先地响应于第二偏振的光发射。第一和第二光发射可例如具有约90°的区别。然而,该区别可以更小或更大,这取决于集成放大器的应用和配置。
在图示的实施例中,反应位点664A和664B具有等效的集成放大器668。更具体地,每个集成放大器668包括一对纳米结构,其以同样的方式相对于彼此定位。例如,纳米结构具有相同的形状,且彼此直接相对。然而,集成放大器668A和668B具有不同的第一和第二取向,使得集成放大器668A具有偶极矩μ5,并且,集成放大器668B具有偶极矩μ6。偶极矩μ5和μ6相差约90°,但在其他实施例中可以相差其他量。
转到图21,方法640包括在664处利用第一偏振激发光(或具有第一偏振的激发光)照射反应位点664的阵列662。在一些实施例中,当利用第一偏振激发光照射阵列662时,整个的阵列662被照射。更具体地,第一和第二子阵列670、672中的每个可以被照射。在其它实施例中,然而,当利用第一偏振激发光照射阵列662时,仅阵列662的一部分被照射。例如,仅第一子阵列670可以被照射。
在646处,来自第一子阵列670的光发射可以被检测。第一子阵列670中的每个反应位点664A被配置为放大具有第一偏振的激发光。在一些实施例中,放大可导致来自定位在反应位点664A处或其内的生物分子或分析物(例如核酸)的光发射的更高的强度。例如,如果生物分子或分析物包括多个荧光标记,该荧光标记可经历更大强度的激发光,并且随后产生对于激发光的更大的响应。应理解,对于一些实施例,反应位点664A中的一个或多个可以不包括具有荧光标记的生物分子或分析物。例如,如果期望的反应并非发生在反应位点664A处或其内,则反应位点664可不具有能够作出响应的荧光标记。
为了图示目的,图21更清楚地显示反应位点664A的第一子阵列670。在一些实施例中,反应位点664B(由图21中的圆圈表示)可在被具有第一偏振的激发光激发时提供局部响应。例如,反应位点664B可发射一信号强度,其为反应位点664A所提供的平均信号强度的40%或更低,反应位点664A可具有指定的发射体(例如荧光标记)。更具体地,如果来自具有指定的发射体的反应位点664B的平均信号强度是Y,则具有指定的发射体的反应位点664B最多可提供0.4Y。在这种实施例中,成像系统可识别提供不足够或不充分响应的那些位置。在具体实施例中,具有指定发射体的反应位点664B可发射一信号强度,其通常是由反应位点664A提供的平均信号强度的30%以下、20%以下、或10%以下。
参考图22,方法640在648处包括利用第二偏振激发光照射反应位点664的阵列662。如上文所述,在一些实施例中,当利用第二偏振激发光照射阵列662时,整个的阵列662被照射。然而,在其它实施例中,当利用第二偏振激发光照射阵列662时,仅阵列662的一部分被照射。例如,仅第二子阵列672可以被照射。
在650处,来自第二子阵列672的光发射可以被检测。第二子阵列672中的每个反应位点664B被配置为放大具有第二偏振的激发光。所述放大可导致来自定位在反应位点664B处的生物分子或分析物(例如核酸)的光发射具有更高的强度。例如,如果生物分子或分析物包括多个荧光标记,则该荧光标记可经历更高强度的激发光,并且随后产生对于激发光的更大的响应。如上文所示,应理解,在一些实施例中,反应位点664B中的一个或多个可以不包括具有荧光标记的生物分子或分析物。
为了图示目的,图22更清晰地显示反应位点664B的第二子阵列672。在一些实施例中,反应位点664A(由图22中的圆圈表示)可在被具有第二偏振的激发光激发时提供局部响应。例如,反应位点664A可发射一信号强度,其为反应位点664B所提供的平均信号强度的40%或更低,反应位点664B具有指定的发射体(例如荧光标记)。更具体地,如果来自具有指定的发射体的反应位点664B的平均信号强度是Z,则具有指定的发射体的反应位点664A最多可提供0.4Z。在这种实施例中,成像系统可识别提供不足够或不充分响应的那些位置。在具体实施例中,具有指定发射体的反应位点664A可发射一信号强度,其通常是由反应位点664B提供的平均信号强度的30%以下、20%以下、或10%以下。
参考图19-22所示的实施例可以适于高密度阵列。例如,返回图20,反应位点664形成行691或列692。同一行691内的反应位点664可以具有中心到中心的间距684,并且,同一列692内的反应位点664可以具有中心到中心的距离686。在图示实施例中,集成放大器668A、668B在阵列662内彼此相对定位,使得每个反应位点664A(或集成放大器668A)相对于另一反应位点664A(或集成放大器668A)更靠近反应位点664B(或集成放大器668B)。例如,在同一行中的相邻的集成放大器668之间的中心到中心的间隔684可以是例如以纳米(nm)测量的大约X,并且,同一列中的相邻集成放大器668之间的中心到中心的间隔686可以约为X。具有相同的偏振放大器的相邻反应位点664可以具有中心到中心的间距688。如图所示,中心到中心的间距688比中心到中心的间距684、686中的每一个更大。例如,中心到中心的间距688可以是大约1.4X。在另一实施例中,中心到中心的间距688可以至少为大约1.2X、至少约1.3X、至少约1.6X、至少约1.7X、至少约1.8X、至少约1.9X或至少约2X。作为示例,中心到中心的间距684、686可以为大约350nm,并且,中心到中心的间距688可以大约为500nm。在其它实施例中,中心到中心的间距684、686可以大约为200nm、250nm、300nm、400nm、450nm、500nm、600nm、700nm、800nm或更大。尽管在所示实施例中,中心到中心的间距684、686基本相等,但是在其他实施例中,中心间距684、686可以不同。
因此,在一些实施例中,相邻的反应位点,例如在同一列或同一行中的相邻反应位点,可以具有不能由成像系统光学分辨的中心到中心间距。如果这些相邻的反应位点同时被成像,则每个反应位点会同时发射荧光。成像系统可能不能区别这些相邻的反应位点。相反,成像系统可能能够区别具有不同的集成放大器的相邻的反应位点。在这种布置中,具有相同的集成放大器的反应位点可以具有更大的中心到中心的间距。这一较大的中心到中心的间距可以是落入系统的成像分辨率以内的距离。因此,通过包括响应于激发光的不同偏振的集成放大器,一些反应位点(第一反应位点)可以利用在其中激发光具有第一偏振的第一扫描成像,并且,其他反应位置(第二反应位点)可以利用其中激发光具有第二偏振的第二扫描成像。第一和第二反应位点可相对彼此定位,使得第一反应位点之间的中心到中心的间距增大,并且,第二反应位点之间的中心到中心的间距增大。
对于一些实施例,方法640可以包括多次重复的步骤644、646、648、和650。作为示例,步骤644、646、648、650的序列可以重复20次、40次、60次、80次、100次、120次、140次、160次、180次、200次或更多次。方法640可以是如本文所述的边合成边测序(SBS)方案的一部分,其中,步骤644、646、648、650的序列在将被标记的核苷酸并入核酸簇或群落之后而进行。例如,在进行步骤644、646、648、650的序列之前,包含标记试剂(例如,核苷酸)的液体可以沿着反应位点664被引导,以允许核苷酸被添加到核酸。随后的洗涤步骤可以沿着反应位点664引导,以移除未被合并的试剂。在未被合并的试剂被移除之后,可以执行步骤644、646、648、650的序列,以检测光发射并确定哪个核苷酸被簇合并。在检测光发射之后标记可被移除,并且可以开始另一合并和检测核苷酸的循环。
尽管图19-22示出其中存在仅两个子阵列的实施例,但应理解,其它实施例可包括多个子阵列。例如,替代实施例中可具有三个、四个、五个或更多个不同的偏振放大器。
图23-41示出制造和制备包括纳米结构的结构化基底的不同的方法。在一些情况中,纳米结构可形成上文所述的集成放大器。以下以及本申请其它部分所述的结构化基底可用于引导指定的化学反应,用于分析生物或化学物质。在具体实施例中,结构化基底可用于在SBS方案中使用。
对于多种实施例,例如上文和下文所述的那些,应理解,结构化基底的一个或多个位点(例如腔室,或表面上的定位区域)可包括纳米颗粒,其并非相配地相对于彼此定位,使得可以放大光发射和/或激发光。然而,本文所述的方法能够提供结构化的基底,其中,较大数量的位点可以能够放大电磁能量。例如,在一些实施例中,多于50%的位点可具有纳米颗粒,其能够放大电磁能量。在一些实施例中,多于60%或70%的位点可具有能够放大电磁能量的纳米颗粒。在具体实施例中,多于80%或90%的位点可具有能够放大电磁能量的纳米颗粒。
图23是示出制造或制备结构化基底的方法700的流程图。这一方法700可以包括执行一个或多个加法或减法技术,例如上文所述的那些技术。方法700参考图24和图25分开地描述。方法700可以与本文所述的其它制造方法类似,并且可包括其它方法的一个或多个步骤。在示例性实施例中,方法700包括在702处提供具有基侧714的基层712,并且在704处提供沿着基侧714的特征层706。在图24中,特征层716是连续的平面的层,其基本上不具有凹陷,并且延伸贯穿所述基侧714。在图25中,特征层716是非平面的,并且包括指定的凹陷708。指定的凹陷718例如通过上文所述的NIL形成。特征层716可以包括树脂。例如,特征层716可包括EVG或适于NIL的其他材料。
在706处,方法700可包括使用反应离子刻蚀(RIE)形成纳米体720。RIE可用于移除具有指定的化学性质的材料。例如,特征层706可包括碳基的材料。RIE可包括化学反应性的等离子,其被配置为当被施加时移除特征层716的材料。例如,RIE可包括使用氧等离子,以移除特征层716的碳基材料的一部分。然而,应理解,上述仅为一个示例,并且其它实施例中可用于RIE或特征层716。
如图24和25所示,RIE可以提供沿着特征层716的非规则表面,其形成顶峰722和凹陷或低估724。顶峰722和凹陷724可限定纳米体720。顶峰722可通过顶峰到顶峰726的距离与相邻的顶峰分离开。顶峰到顶峰的距离726和纳米体726的尺寸在图24和25中显示为非规则的。在一些实施例中,RIE工艺可被配置为获得平均的顶峰到顶峰距离726。在一些实施例中,RIE工艺可被配置为提供位于指定范围内的大多数顶峰到顶峰距离726。多个参数可以被选择以获得期望的结果。例如,参数可包括用于特征层716的材料、RIE的材料或类型、刻蚀时间、特征层716的厚度和/或凹陷718的间距或分布。
如图25所示,纳米体720可形成组或集成体730,其通过基侧714的区域732与其它的组730间隔开。每个组730包括多个纳米体720。区域732的定位与RIE之前的凹陷718的位置有关。更具体地,凹陷718处的特征层716的降低的厚度导致RIE工艺移除特征层716的全部材料,使得区域732被暴露。然而,如图24所示,特征层716可形成横过基侧714的整体的纳米体720的分布。
在708处,被刻蚀的特征层716可涂覆等离子体共振材料734,例如金(Au)。在710处,钝化层736(例如Ta2O5)可被涂覆在等离子体共振材料734上。如图所示,特征层716的非规则表面可导致钝化层736形成顶峰738和凹陷740。顶峰738和凹陷740可形成纳米结构742,其中,相邻的顶峰738可相应相邻的纳米结构742。如本文所述,电磁能量可通过相邻的纳米结构742放大。
每个顶峰738可通过顶峰到顶峰距离744分开。在图示实施例中,顶峰到顶峰距离744显示为非规则的或非均匀的。然而,顶峰到顶峰距离744的大多数可位于指定的范围内。例如,75%以上的顶峰到顶峰距离744可在0.5X和1.5X之间,其中,X大于或等于1nm,且小于或等于1000nm。作为示例,X可小于900nm、800nm、700nm、600nm或500nm。在具体实施例中,X可小于400nm、350nm、300nm、250nm或200nm。在更加具体的实施例中,X可小于150nm、100nm、75nm、60nm或50nm。在另外更加具体的实施例中,X可小于40nm、30nm、20nm、15nm或10nm。作为具体示例,75%以上的顶峰到顶峰距离726可以在1nm和大约50nm之间。更加具体地,75%以上的顶峰到顶峰距离726可以在1nm和大约25nm之间。在特定实施例中,75%以上的顶峰到顶峰距离726可以在1nm和大约10nm之间。
如图25所示,组730可用于形成反应位点或反应岛732,其中,每个反应位点732是小范围的纳米结构742的组,其由最上层的非规则表面(例如钝化层736、等离子共振层734、或特征层716)形成。反应位点732可通过区域746彼此分开。尽管未被示出,但是方法900还可以包括如上所述的沿着纳米结构742提供有机材料(例如水凝胶)。
图26和图27分别示出结构化基底750、760的SEM图像,其使用类似与方法700的工艺形成。具体地,特征层被提供和形成以包括凹陷,其与(图25的)凹陷718相似,其由间隙区域限定。在RIE工艺之后,凹陷形成区域752和762。然而,间隙区域形成纳米体754、764。图26中的纳米体754小于图27中的纳米体764。纳米体754、764的尺寸和各自的相邻纳米体之间的间隔756、766可以基于多种参数,诸如特征层的材料、RIE处理的持续时间、特征层的厚度以及所使用的RIE等离子体的类型。在纳米体754、765用等离子体共振材料涂覆之后,可以预期,染料标记的生物或化学物质可定位于空间756、766内,并且相邻的纳米颗粒可以形成集成放大器。
图28是示出制造或制备结构化基底的方法800的流程图。方法800可以包括执行一个或多个加法或减法技术,例如上文所述的那些技术。方法800参考图29示出。方法800包括在802处提供工作基底812,其具有由间隙区域815分开的多个腔室或凹陷813。工作基底812还可以使用本文所述的一个或多个工艺形成。例如,工作基底812可包括熔融氧化硅,但也可以使用其它材料。作为另一示例,工作基底812可以通过NIL工艺形成。在804处,可以将涂覆材料814设置在工作基底812上。涂覆材料814可以包括树脂或其他粘性材料816(例如高粘性水凝胶),其具有在其中分散的纳米颗粒818。纳米颗粒818可包括金颗粒或其他等离子体共振材料颗粒。在具体实施例中,涂覆材料814可以被旋涂在工作基底812上,使得涂覆材料814存在与腔室813内,并且沿着所述间隙区域815。在804处,所述设置还可以热退火(例如烘烤)位于工作基底812上的涂覆材料814。
在806处,涂覆材料814可以选择性地被刻蚀,以移除之前的粘性材料816,并且露出纳米颗粒818。可选地,方法可以包括从间隙区域815移除纳米颗粒818。例如,工作基底812可以被抛光。在808处,钝化层820可被施加在纳米颗粒818和间隙区域815上。例如,Ta2O5可溅射至纳米颗粒818和间隙区域815上。因此,结构化基底822可以被提供,其包括多个腔室813,每个腔室具有在其中的多个纳米颗粒818。纳米颗粒818可在腔室813内相对分散,以使得多个纳米颗粒818中的两个或更多个分开一距离,该距离适于放大光发射和/或激发光。
图30是根据方法800形成的结构化基底824的SEM图像。如图所示,结构化基底824包括基层或工作基底826,其具有多个腔室828。每个腔室828包括在其中的多个纳米颗粒830。
图31是示出制造或制备结构化基底的方法850的流程图。方法850参考图32示出。方法850可以包括执行一个或多个加法或减法技术,例如上文所述的那些技术。在一些实施例中,方法850包括与方法500(图11)或本文所述的其它方法中的一个的步骤相似或相同的步骤。方法850包括在852处提供具有操作侧864的工作基底862。工作基底862可以类似于本文所述的一个或多个基层和/或其他工作基底。例如,工作基底862可以包括已经使用上述加法和减法技术提供的一个或多个结构(例如,层、特征等)。
操作侧864具有非平面轮廓,其包括侧表面866和向侧表面866开口的接收腔868的阵列。在图示的实施例中,侧表面866是接收腔868之间的平面。方法850可以包括在854处将沉积流870引导到工作基底862的操作侧864上。沉积流870以相对于操作侧864非正交的角度被引导。沉积流870可通过沉积源(未示出)提供。沉积流870包括特征材料872,例如等离子体共振材料。在具体实施例中,沉积流872以基本上线性的方式提供(例如沿着轴线方向)。如此,在854处的引导操作的特征在于视距沉积。例如,沉积源可以是电子束蒸发系统。然而,应理解,可以使用其它的视距沉积源。
接收腔868包括底部表面874。特征材料872沿着底部表面874和间隙区域875的表面沉积。然而,因为被引导的沉积的非正交的角度和阴影效应,在每个接收腔868中的特征材料872可以被定位成更加靠近接收腔868的一个端部或侧边,如图32所示。
在854处的将沉积流以非正交角度引导到工作基底862之上时,方法850可以包括在856处将所沉积的特征材料872的层转移到纳米颗粒876中。例如,特征材料872的沉积层可以被热退火或回流,以将层转移到纳米颗粒876中。在热退火期间,沉积层可被加热(例如400℃),以使得沉积层结合为离散的纳米颗粒。纳米颗粒的尺寸可以是沉积层的初始厚度的函数。
可选地,在858处,沉积层被从间隙区域875移除,并且在860处,钝化层861(例如,Ta2O5)可以被溅射到纳米颗粒876和工作基底862上。因此,结构化基底880可以被提供,其包括多个纳米颗粒876,所述纳米颗粒被成组地一起位于每一个接收腔868以内。
图33是根据方法850形成的结构化基底890的SEM图像。如图所示,结构化基底890包括工作基底(或腔室层)892,其具有多个腔室894。每个腔室894包括在其中沉积的多个纳米颗粒896。如图所示,纳米颗粒896被定位或分组为更为靠近接收腔894的一侧。
图34是示出制造或制备结构化基底的方法900的流程图。方法900参考图35示出。方法900可以包括执行一个或多个加法或减法技术,例如上文所述的那些技术。例如,方法900包括在902处提供具有基侧915的工作基底(或基层)912。例如,工作基底912可以是玻璃晶片或熔融氧化硅层。在904处,NIL材料914沿着工作基底912的基侧915被提供。例如,NIL材料914可以使用旋涂技术或者通过沿着基层915沉积指定图案的液体而沿着工作基底912沉积。NIL材料914可包括可固化材料917,其能够使用NIL技术被压印,例如聚合物。NIL材料914还包括多个纳米颗粒916,其在可固化材料917内分散。
在906处,NIL材料914可被压印以形成非平面的特征层918。例如,具有模具侧或具有预定轮廓的表面的模具(未示出)可以压入NIL材料914中,使得NIL材料914夹接于模具和基侧915之间。NIL材料914可随后流入模具的空穴中,并具有模具的补充形状。NIL材料914可随后通过光、压力和/或热固化或活化,以形成非平面的特征层918。
非平面的特征层918包括多个凹陷920,其通过间隙区域922分离。在图示实施例中,NIL材料914的一部分保持在凹陷920的底部表面924和基侧915之间。在另外实施例中,然而,模具可以被配置为降低或减少存在于底部表面924和基侧915之间的NIL材料914的量。如图35所示,相对于存在于在底部表面924和基侧915之间延伸的一部分内的纳米颗粒916的数量,更多数量的纳米颗粒916存在于间隙区域922内。
在908处,NIL材料914可以优选地或选择性地被刻蚀,以移除NIL材料914的可固化材料917。例如,RIE工艺可施加至特征层918,以移除可固化材料,并且露出或暴露出沿着基侧915的纳米颗粒916。可选地,钝化层(未示出)可施加至工作基底912之上,以覆盖纳米颗粒916。相应地,结构化基底930可以被提供。
如图35所示,结构化基底930包括致密区域932和稀疏区域934。致密区域932相对于稀疏区域934包括更高密度的纳米颗粒916。通过存在于间隙区域922内的更高数量纳米颗粒916而导致更高密度的纳米颗粒916。如此,致密区域932的位置与特征层918的间隙区域922的位置相关。稀疏区域934与凹陷920的位置相关。致密区域932和/或稀疏区域934的密度可以基于模具(或特征层918的轮廓)的形状或轮廓,以及在NIL材料916内分散的纳米颗粒916的密度。在一些实施例中,致密区域932可包括纳米颗粒916,其定位在各自的顶部,以形成三维结构。可选地,稀疏区域934可通过后续的刻蚀工艺移除,以形成基本上空白面积936。空白面积936可以分离纳米颗粒916的致密区域932。致密区域932可相应沿着基侧915的反应位点。如本文所述,纳米颗粒916可以形成纳米结构,并且,在一些情况下,形成集成放大器,其进行放大传播到相应的反应位点中的电磁能量或者放大在相应的反应位点内产生的电磁能量中的至少一个。
图36是示出制造或制备结构化基底的方法950的流程图。方法950参考图37示出。方法950可以包括执行一个或多个加法或减法技术,例如上文所述的那些技术。例如,方法950包括在952处形成沿着基层962的多个纳米体964。在示例性实施例中,基层962可包括玻璃晶片或熔融氧化硅(SiO2)。基层962可包括其它的子层,例如氧化钛,其可用于形成纳米体964。在一些实施例中,纳米体964使用光刻工艺形成。然而,应理解,纳米体964可使用其它工艺形成。例如,纳米体964可使用NIL工艺形成,例如上文所述的那些。纳米体964可具有例如约100-1000nm的高度966,还可以使用其他高度。在具体实施例中,纳米体964是柱,其可具有100-500nm的最大横截面尺寸。横截面例如可以是圆形或方形的。
在954处,等离子体共振材料968(例如金(Au))可以沿着基层962和纳米体964沉积。例如,等离子体共振材料可以使用电子束蒸发被直接地沉积。等离子体共振材料形成具有指定厚度的等离子共振层968。厚度可以例如在10nm至200nm之间,或者,更具体地,在50nm至150nm之间。然而,还可以使用其它厚度。在956处,工作基底可经历热退火工艺,用以沿着纳米体964将等离子共振层968转变为纳米颗粒970。例如,工作基底可被加热至500℃持续约10分钟。在958处,钝化层972(例如Ta2O5)可被施加。钝化层972可以例如通过溅射涂覆工艺而施加。在一些实施例中,方法950还可以包括提供在钝化层上的其它的层,并且可选地,从增加的层形成凹陷或腔室。
图38示出使用类似方法950的方法形成的纳米柱980的阵列979的第一SEM图像。图39是在比图28的放大程度更大的放大程度下的纳米柱980的阵列979的第二SEM图像。纳米柱980采用熔融氧化硅形成。纳米柱980是圆柱形的,并且具有约800nm的高度和约350nm的直径。图40示出阵列979的第一SEM图像,阵列979处于在纳米柱980上直接沉积100nm的金(Au)并且在500℃下热退火持续约10分钟之后。图41是具有大于图40的放大程度的放大程度的阵列979的第二SEM图像,阵列979处于热退火之后。
在一些情况下,用于向工作基底施加一个层的工艺可以为该层提供可识别的结构化(多个)特征,其与通过其它工艺提供的其它层的结构化(多个)特征是不同的。更具体地,可以识别出层是如何被制造的。例如,可使用扫描电子显微镜(SEM)检查基底的一部分,以识别基底的一个或多个层是如何被制造的。
图42显示示例性成像装置或系统100的示意图,其还可以称为测微荧光剂,用于证实至少一些光学部件的功能布置。成像设备100可以检测来自结构化基底的光发射(例如,荧光发射),所述结构化基底例如本文所述。两个激发源被示出,包括绿光LED(LEDG)和红光LED(LEDR)。来自每个激发源的激发光分别穿过绿光LED会聚透镜(L6)和红光LED会聚透镜(L7)。LED折叠反射镜(M1)将绿色激发辐射反射到二色组合器(F5),二色组合器(F5)反射绿色激发辐射穿过激发滤光器(F2),然后穿过激光二极管分束器(F3),然后穿过激发透射棱镜L2至激发/发射二色器(F4),其反射绿色激发辐射穿过静止物镜组件(L3),并且平动物镜组件(L4)至流动池(FC)的表面。红色激发辐射从红色LED会聚透镜(L7)穿过至二色组合器(F5),之后红色激发辐射沿着与绿色激发辐射相同的路径到达流动池(FC)的表面。如图所示,通过上下(即,沿着Z维度)移动平动物镜组件(L4)而致动聚焦。来自流动池(FC)表面的发射穿过平动物镜组件(L4),然后穿过静止物镜组件(L3)返回到激发/发射二色器(F4),其使发射辐射传递到发射透射透镜组件(L1)到发射滤光器,并然后到达CMOS图像传感器(S1)。另外,激光二极管(LD)经由激光二极管耦合透镜组件(L5)被引导到激光二极管分束器(F3),该激光二极管分束器发射激光二极管辐射通过激发场止动件(FS)、激发透射透镜组件(L2)、激发/发射二色器(F4)、静止物镜组件(L3)和平动物镜组件(L4),抵达流动池(FC)。
如图42的示例性实施例所证实,成像设备1000可以包括分束器和检测器,其中,分束器被定位成将来自激发辐射源的激发辐射引导到物镜,并且引导来自物体的发射辐射到检测器。成像设备1000可选地包括例如LED的激发辐射源。
应理解,图中示出的具体部件是示例性的,并且可以被具有相似功能的一部件替代。例如,各种辐射源中的任意辐射源可用于替代LED。具体地,可用辐射源可以是灯、激光器、半导体光源(SLSs)或激光二极管。LED可以例如从Luminus(Billerica,Mass.)购买。类似地,各种检测器是可用的,包括但不限于电荷耦合设备(CCD)传感器、光电倍增管(PMT)、或互补金属氧化物半导体(CMOS)传感器。特别有用的检测器是可从Aptina Imaging(SanJose,Calif.)获得的500万像素CMOS传感器(MT9P031)。
图42提供了包括两个激发源的成像设备1000的示例性实施例。这一配置对于检测在不同波长下分别被激发的至少两个荧光团是有用的。如果期望,成像设备1000可以被配置为包括多于两个的激发源。例如,成像设备1000可以包括至少2、3、4个或更多个不同的激发源(即,产生波长彼此不同的源)。可替代地或附加地,分束器和光学过滤器可用于扩展从单个辐射源可获得的激发波长的范围。
图43显示在单个的读取头或盒体100中的四个(被称为测微荧光计)的成像设备的示例性布置。四个测微荧光计以错开布局相对于流动池1106的第一和第二通道1102和1104布置。在图示的布置中,两个测微荧光计(相应检测器1110A和1110C)被配置为对第一通道1102的分离区域成像,而另外两个测微荧光剂(相应检测器1110B和1110D)被配置为对第二通道1104的分离区域成像。如图所示,测微荧光计(相应检测器1110A和1110C)相对于测微荧光计(相应检测器1110B和1110D)在X维度上错开,使得两对的测微荧光计可以分别检测相邻的第一和第二通道1102和1104。
在图43所示的示例性实施例中,所述四个辐射源与单一大散热器1114热接触。单一大散热器相对于每个辐射源使用单独的散热器的许多配置提供更大程度的热耗散。然而,如果期望,单独的辐射源可以被热联接至单独的散热器。图43所示的测微荧光计的布置的优势在于提供紧凑的读取头。对于每个测微荧光计中的激发源和检测器的相对位置被交换的实施例,可以获得类似的优势。
具有多个测微荧光计的微量荧光计或读数头可以位于流动池的上方(相对于重力的箭头),如本文所述的多个实施例所示。然而,还可以在流动池的下方定位测微荧光计或读取头。因此,流动池可以在上侧、下侧或这两侧对于所使用的激发和发射辐射的波长是透过性的。另外,在一些实施例中,将测微荧光计定位在流动池的两侧,或者将读取头定位在流动池的两侧是期望的。相对于重力的其它取向也是可以的,包括例如流动池和测微荧光计(或读取头)之间的侧对侧的取向。
测微荧光计或读取头可被配置为检测流动池的单一侧流动池的两个相对的内表面。例如,测微荧光计或读取头可以采用光学补偿器,其被插入或移除以检测流动池的替换性表面。例如使用光学补偿器的用于检测流动池的相对的内表面的示例性方法和设备在美国专利No.8,039,817中记载,其通过引用整体并入本文。补偿器是可选的,例如取决于设备的NA和/或光学分辨率。
如本文所用,术语“固体载体”是指不溶于水性液体的刚性基底。基底可以是无孔的或多孔的。基底可以可选地能够吸收液体(例如由于孔隙),但是通常具有足够的刚性,使得基底在吸收液体时基本上不膨胀,并且在通过干燥移除液体时基本上不收缩。无孔固体载体通常对液体或气体是不可渗透的。固体载体可以可选地对用于改性凝胶的化学物质是惰性的。例如,固体载体可以对用于将分析物(例如核酸)附着到本文所述的方法中的凝胶的化学物质是惰性的。示例性的固体载体包括但不限于玻璃和改性或官能化玻璃、塑料(包括丙烯酸树脂、聚苯乙烯和苯乙烯和其它材料的共聚物、聚丙烯、聚乙烯、聚丁烯、聚氨酯、TeflonTM、环烯烃、聚酰亚胺等)、尼龙、陶瓷、树脂、Zeonor、氧化硅或氧化硅基材料,包括硅和改性的硅、碳、金属、无机玻璃、光纤束和聚合物。
本文提出的方法和组合物的具体实施例利用具有图案化或结构化基底的固体载体。图案化或结构化基底可以包含图案化的凝胶阵列,如美国序列号13/787,396中所述的,其全部内容通过引用并入本文。在具体实施方案中,可以通过用孔(例如微孔或纳米孔)图案化固体载体材料、用凝胶材料(例如PAZAM、SFA或其化学修饰的变体,例如叠氮化形式的SFA(叠氮基-SFA))涂覆图案化的基底,并且例如通过化学或机械抛光来抛光凝胶涂覆的载体,从而将凝胶保留在孔中,但基本上移除或去活孔之间的结构化基底表面上的间隙区域中的所有凝胶。引物核酸可以附着至凝胶材料。然后可以使靶标核酸(例如片段化的人类基因组)的溶液与抛光的基质接触,使得单独的靶标核酸将通过与附着于凝胶材料的引物的相互作用而接种各个孔;然而,由于凝胶材料不存在或失活,靶标核酸将不占据间隙区域。靶标核酸的倍增被限制在孔中,因为间隙区域中的凝胶的缺失或失活阻止了生长的核酸集落向外迁移。这一工艺可方便制造,其是可缩放的,并且利用常规的微米或纳米制造方法。
本文所述的结构化基底中使用的固体载体可以由本文所述的各种材料中的任一种制备,例如,上文定义中的、下文示例中的或紧随在后的。具体可用的材料是玻璃。其它合适的基底材料可以包括聚合物材料、塑料、硅、氧化硅(熔融氧化硅)、硼浮法玻璃、氧化硅、氧化硅基的材料、碳、金属、光纤或光纤束、蓝宝石或塑料材料,例如COC和环氧树脂。具体材料可以基于具体用途所需的特性来选择。例如,对期望的辐射波长透明的材料对于将利用期望波长的辐射的分析技术是有用的,诸如本文所述的一种或多种技术。相反,可能需要选择不通过(例如不透明、吸收或反射)特定波长的辐射的材料。这可以用于形成在制造结构化基底期间使用的掩模,例如本文所述的方法;或用于使用结构化基底进行的化学反应或分析检测,例如本文所述的那些。可以利用的材料的其它性质是对下游过程中使用的某些试剂具有惰性或反应性,如本文所述;或在制造过程的制造过程中易于操作或低成本,如本文所述。可用于本申请的结构化基底或方法中的材料的其它实例记载于美国专利序列第13/661,524号和美国专利公开第2012/0316086A1号,其中每一个通过引用并入本文。
对于一些实施例的特别有用的固体载体位于流动池设备内。示例性流动池、其制造方法及其使用方法记载于美国专利公布第2010/0111768A1、或2012-0270305A1号、或WO05/065814中,其中每一个通过引用并入本文。流动池提供了方便形式用以容纳阵列,所述阵列通过本申请内容的方法产生,并且经历边合成边测序(SBS)或涉及在循环中重复递送试剂的其他技术(例如,具有重复或循环步骤的检测技术或合成技术)。以下进一步详细阐述示例性检测方法。
在一些实施例中,使用具有多个表面的流动池或其他容器。可以使用具有多个表面的容器,使得只有一个表面具有含凝胶的凹形特征(例如孔)。可选地,存在于容器中的两个或更多个表面可以具有含凝胶的凹形特征。流动池的一个或多个表面可被选择性地检测。例如,可以使用本领域已知的方法,例如共焦技术,利用聚焦辐射选择性地对流动池内部的相对表面进行寻址。例如,在美国专利申请公开第2009/0272914A1号或美国专利第5,399,499号中描述了用于选择性地将辐射引导到容器(例如流动池)的多个表面的有用的共焦技术和装置,这些中的每一个通过引用并入本文。
在许多实施例中,间隙区域可以通过抛光固体载体而基本上不含纳米结构,例如通过化学或机械抛光,从而将纳米结构保留在孔中,但从所述孔之间的结构化基底的表面上的间隙区域移除或去活基本上所有的纳米结构。机械抛光可以通过对固体载体的表面施加研磨力来进行。示例性方法包括用珠粒浆料研磨、用片或布擦拭、刮擦等。应理解,用于本文所述的抛光或其他用途的珠子可以是但不必是球形的。另外,珠子可以具有不规则的形状、多边形、卵形、细长形、圆柱形等。珠子的表面可以是光滑的或粗糙的。各种颗粒中的任何一种可以用作本文所述的方法和组合物的珠子。抛光的一个例子包括使用涂覆有3μm氧化硅珠浆(10%w/v水溶液)的无绒(洁净室等级)擦拭物,用以移除间隙的纳米结构。抛光轮/研磨机也可以用于这种浆料。机械抛光也可以使用流体射流或气体射流(例如,空气或惰性气体,如氩气或氮气),用以从间隙区域移除凝胶。
如本文所用,当用于参考分析物时,术语“库(library)”是指具有不同化学组分的分析物的集合。通常,库中的分析物将是具有属或类的共同特征或特性的不同种类,但在其他方面有所不同。例如,库可以包括核苷酸序列不同的核酸种类,但是在具有糖-磷酸骨架方面是相似的。
如本文所用,术语“核酸”和“核苷酸”旨在与其在本领域中的使用一致,并且包括天然存在的物种或其功能类似物。核酸的特别有用的功能类似物能够以序列特异性方式与核酸杂交,或能够用作特定核苷酸序列复制的模板。天然存在的核酸通常具有含磷酸二酯键的骨架。类似结构可以具有包括本领域已知的各种各样的替代骨干链接。天然存在的核酸通常具有脱氧核糖(例如在脱氧核糖核酸(DNA)中发现的)或核糖(例如在核糖核酸(RNA)中发现的)。核酸可含有具有本领域已知的这些糖分的各种类似物中的任一种的核苷酸。核酸可以包括天然或非天然核苷酸。就这一点而言,天然脱氧核糖核酸可具有选自腺嘌呤、胸腺嘧啶、胞嘧啶或鸟嘌呤中的一个或多个碱基,并且,核糖核酸可具有选自尿嘧啶、腺嘌呤、胞嘧啶或鸟嘌呤中的一个或多个碱基。在核酸或核苷酸中可以包括有用的非天然碱基,这在本领域中是已知的。当用于引用核酸时,术语“探针”或“靶标”意欲作为本文所述的方法或组合物的核酸的语义标识符,并不一定限制核酸的结构或功能,超出其的一部分并未被明确指出。术语“探针”和“靶标”可以类似地应用于其他分析物,例如蛋白质、小分子、细胞等。
如本文所用,当用作动词时,术语“涂覆”和“施加”等术语旨在表示在表面上设置层或覆盖件。表面的至少一部分可以设置有层或覆盖件。在一些情况中,整个表面可以设置有层或覆盖件。在替代情况中,表面的至少一部分将设置有层或覆盖件。当用于描述表面和材料之间的关系时,术语“涂覆”意在表示该材料作为表面上的层或覆盖件存在。材料可以密封表面,例如防止液体或气体与表面接触。然而,材料不必形成密封。例如,该材料可以是对于液体或气体中承载的液体、气体、或一种或多种组分是多孔的。可涂覆表面的示例性材料包括但不限于凝胶、聚合物、有机聚合物、液体、金属、第二表面、塑料、氧化硅或气体。
包含核酸阵列的本申请的结构化基底可用于多种目的中的任何一种。核酸的特别理想的用途在于用作与具有互补序列的靶标核酸杂交的捕获探针。一旦与捕获探针杂交,靶标核酸可以例如经由在捕获探针中补入的标记来检测。通过与捕获探针杂交来检测靶标核酸的方法在本领域中是已知的,并且包括例如美国专利第7,582,420、6,890,741、6,913,884或6,355,431号,或者美国专利申请公开第2005/0053980A1、2009/0186349A1、或2005/0181440A1号中描述的那些,其中每一个通过引用并入本文。例如,借助于捕获探针与带有标记的靶标探针的杂交,可以将标记补入捕获探针。在另一示例中,可以通过使靶标探针与捕获探针杂交,使标记补入至捕获探针,使得捕获探针可以通过连接至标记的寡核苷酸(例如通过连接酶活性)或通过添加标记的核苷酸(例如通过聚合酶活性)而延伸。
核酸阵列还可以用于测序程序,例如边合成边测序(SBS)技术。简而言之,可以通过使靶标核酸与一个或多个标记核苷酸、DNA聚合酶等接触来启动SBS。使用靶标核酸作为模板将引物延伸的那些特征将并入可被检测的标记的核苷酸。可选地,标记的核苷酸可以进一步包括可逆终止性质,一旦已经将核苷酸添加至引物,该终止性质终止进一步的引物延伸。例如,可将具有可逆终止子部分的核苷酸类似物加入到引物中,使得随后的延伸不能发生,直到去封闭剂被递送以移除该子部分。因此,对于使用可逆终止的实施例,可以将去封闭剂递送到流通池(在检测发生之前或之后)。洗涤可以在各种递送步骤之间进行。然后,该循环可以重复n次以将引物延伸n个核苷酸,由此检测长度为n的序列。可容易地适用于由本申请所的方法所产生的阵列的示例性SBS方案、流体系统和检测平台在以下公开中被描述:例如Bentley等人的文章Nature 456:53-59(2008)、WO04/018497、WO 91/06678、WO 07/123744、美国专利第7,057,026号、第7,329,492号、第7,211,414号、第7,315,019号或第7,405,281号,以及美国专利申请公开第2008/0108082号,其中每一个通过引用并入本文。
可以使用其他的使用循环反应的测序方案,例如焦磷酸测序。焦磷酸测序检测无机焦磷酸(PPi)的释放,因为特定的核苷酸被并入新生核酸链中(Ronaghi等,AnalyticalBiochemistry 242(1),84-9(1996);Ronaghi,Genome Res.11(1),3-11(2001);Ronaghi等,Science 281(5375),363(1998);美国专利第6,210,891、6,258,568和6,274,320号,其中每一个通过引用并入本文)。在焦磷酸测序中,释放的PPi可以通过ATP硫酸化酶转化为三磷酸腺苷(ATP)来检测,并且,所产生的ATP可以通过荧光素酶产生的光子来检测。因此,可以通过发光检测系统来监视测序反应。用于基于荧光检测系统的激发辐射源对于焦磷酸测序方案不是必需的。可用于将焦磷酸测序法应用于本发明的阵列的有用的流体系统、检测器和方案例如在WIPO专利申请第PCT/US11/57111号、美国专利申请第2005/0191698A1号、美国专利第7,595,883号和美国专利第7,244,559号中被描述,其中的每一个通过引用并入本文。
连接—测序反应也是有用的,包括例如Shendure等,Sience 309:1728-1732(2005)、美国专利第5,599,675号、和美国专利第5,750,341号中描述的那些,其中每一个通过引用并入本文。一些实施例可以包括杂交测序方案,其例如在如Bains等,Journal ofTheoretical Biology 135(3),303-7(1988);Drmanac等,Nature Biotechnology 16,54-58(1998);Fodor等,Science 251(4995),767-773(1995);和WO 1989/10977中被描述,其中每一个通过引用并入本文。在连接测序和杂交测序二者中,存在于含有凝胶的孔(或其他凹形特征)中的核酸经历寡核苷酸递送和检测的重复循环。如本文或本文引用的参考文献中所述的用于SBS方法的流体系统可以容易地适用于递送用于连接测序或杂交测序的试剂。通常,寡核苷酸是荧光标记的,并且可以使用类似于本文或本文引用的参考文献中关于SBS方案描述的那些类似的荧光检测器来检测。
一些实施例可以利用涉及DNA聚合酶活性的实时监测方法。例如,可以通过带有荧光团的聚合酶和γ-磷酸盐标记的核苷酸之间的荧光共振能量转移(FRET)相互作用,或者用零式波导来检测核苷酸合并体。用于基于FRET测序的技术和试剂描述于例如Levene等,Science 299,682-686(2003);Lundquist等,Opt.Lett.33,1026-1028(2008);Korlach等,Proc.Natl.Acad.Sci.USA 105,1176–1181(2008),其公开内容通过引用并入本文。
用于本申请的阵列的另一有用的应用是基因表达分析。基因表达可以使用RNA测序技术检测或定量,例如被称为数字RNA测序的那些。RNA测序技术可以使用本领域已知的测序方法进行,例如上面所述的那些。也可以使用杂交技术检测或定量基因表达,所述杂交技术通过与阵列直接杂交或使用多重分析进行,其产物在阵列上被检测。本申请的阵列也可以用于确定来自一个或多个个体的基因DNA样品的基因型。通过与捕获探针杂交来检测靶标核酸的方法在本领域中是已知的,并且包括例如美国专利7,582,420、6,890,741、6,913,884或6,355,431,或者美国专利申请公开2005/0053980 A1、2009/0186349 A1、或2005/0181440 A1中描述的那些,其中每一个通过引用并入本文。
本申请的阵列的多种应用已经在上文集成检测的情形中说明,其中,靶标核酸的多个复制体存在于每个特征处并一起检测。在替代实施例中,可以在每个特征处检测单个核酸,不管是靶标核酸还是其扩增体。例如,可以将含有凝胶的孔(或其他凹形特征)配置成含有具有待检测的靶标核苷酸序列的单个核酸分子。可以使用多种单分子检测技术中的任一种,包括例如上述的集成检测技术的变型,用以检测增加分辨率的位点或使用更灵敏的标记。可使用的单分子检测方法的其他示例记载于美国专利公开第2011/0312529A1号;美国序列第61/578,684号;和美国序列第61/540,714号中,其中每一个通过引用并入本文。
如本文所用,术语“孔”是指具有完全被表面的(多个)间隙区域包围的表面开口的固体载体中的离散凹形特征。孔的开口处可以有多种形状中的任一种,包括但不限于圆形、椭圆形、正方形、多边形、星形(具有任意数量的顶点)等。与表面正交的孔的横截面可以是弯曲的、正方形的、多边形的、双曲线的、圆锥形的、成角度的等。
如本文所用,术语“凹形特征”当用于固体载体时,指固体载体中的凹陷或凹凹口。示例性凹形特征包括但不限于孔、坑、洞、低洼部、通道或低谷。凹形特征可以可选地具有弯曲横截面(在与固体载体的表面正交的维度上);然而,具有一个或多个线性部分、角度或拐角的横截面也是可能的。具有弯曲和线性部分组合的横截面也是可能的。一般而言,凹形特征不需要完全穿过固体载体,例如代替地具有在基底中的底部表面或者点。
考虑到上述定义,可以理解以下阐述的和权利要求中记载的实施例。
例如,在实施例中,提供了一种结构化基底,其包括具有活性侧的基底本体。所述基底本体包括沿着所述活性侧开口的反应腔和分离所述反应腔的间隙区域。所述结构化基底还包括定位在每一个反应腔内的集成放大器。所述集成放大器包括多个纳米结构,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
在一个或多个方面中,用于每个集成放大器的纳米结构可以具有相对于相应的集成放大器的其他纳米结构的预定位置。集成放大器可以具有基本上相同的纳米结构布置。可选地,所述集成放大器具有偏振配置,使得来自所述集成放大器的响应基于所述电磁能量的偏振,其中,相邻的集成放大器具有不同的偏振配置。
在一个或多个方面,反应腔可以包括第一组反应腔和第二组反应腔。第一组反应腔可相对于第二偏振光优先响应第一偏振光,第二组反射腔可相对于第一偏振光优先响应第二偏振光。
在一个或多个方面中,活性侧可以包括沿着间隙区域延伸的侧表面。侧表面可以是大致平面的。
在一个或多个方面,有机材料可以设置在反应腔内并覆盖纳米结构。有机材料可以被配置为将生物分子固定在相应的反应腔内。可选地,有机材料包括凝胶材料。可选地,有机材料包括水凝胶。可选地,有机材料具有被配置为仅容纳单一的分析物的体积,使得空间排斥作用防止捕获多于一个的分析物或使反应腔接种。可选地,有机材料对于液体是可透过的,并且被配置为附着至核酸。
在一个或多个方面中,基底主体可以包括具有从其突出的纳米结构的基层。基底本位还可以包括相对于基层堆叠的腔室层。腔室层可以被成形为包括反应腔。可选地,所述纳米结构从所述基层延伸、穿过所述腔室层的一部分、并进入相应的反应腔中。
在一个或多个方面中,所述纳米结构采用等离子体共振材料形成。
在一个或多个方面中,所述纳米结构包括以下至少一种:金(Au),银(Ag),锡(Sn),铑(Rh),钌(Ru),钯(Pd),锇(Os),铱(Ir),铂(Pt),钛(Ti),铝(Al),铬(Cr),铜(Cu),p型掺杂硅,n型掺杂硅,砷化镓,锌铟锡氧化物(ZITO)或氧化钽。
在一个或多个方面中,在所述集成放大器中的纳米结构具有材料组分、形状和相对于所述集成放大器中的另一纳米结构的相对位置,使得进行放大传播进入相应的反应腔中的电磁能量或放大在相应的反应腔内产生的电磁能量中的至少一个。
在一个或多个方面中,在所述集成放大器中的所述纳米结构具有材料组分、形状、和相对于所述集成放大器中的另一纳米结构的相对位置,用以放大在相应的反应腔内产生的电磁能量。可选地,所述电磁能量包括荧光发射。
在一个或多个方面中,在所述集成放大器中的所述纳米结构具有组分、形状、和相对于所述集成放大器中的另一纳米结构的相对位置,用以放大传播进入相应的反应腔的电磁能量。
在一个或多个方面中,所述激发光或所述光发射的波长在300纳米(nm)和750nm之间。
在一个或多个方面中,每一个纳米结构可以包括纳米体和围绕所述纳米体的外层,所述纳米体包括纳米压印光刻(NIL)材料。可选地,所述外层包括以下至少一种:金(Au),银(Ag),锡(Sn),铑(Rh),钌(Ru),钯(Pd),锇(Os),铱(Ir),铂(Pt),钛(Ti),铝(Al),铬(Cr),铜(Cu),p型掺杂硅,n型掺杂硅,砷化镓,锌铟锡氧化物(ZITO)或氧化钽。
在一个或多个方面,钝化层可以在纳米体之上延伸。
在一个或多个方面,设备覆盖件可以联接至基底本体,以形成在基底本体的活性侧和设备覆盖件之间的流动通道。流动通道被配置为在其中引导液体流通过,其流动到反应腔中。
在一个或多个方面,反应腔具有相应的底部表面。纳米结构可从相应的反应腔的底部表面朝向活性侧突出。
在一个或多个方面中,每个反应腔可以由至少一个侧壁限定,所述侧壁在反应腔的活性侧和底部表面之间延伸。纳米结构形成至少一个侧壁的至少一部分。可选地,纳米结构从相应的反应腔的底部表面突出。
在一个或多个方面中,间隙区域可以基本上不具有纳米结构。可替代地,间隙区域可以具有嵌入的纳米结构。
在一个或多个方面,纳米结构可以具有高度,其沿着俯仰轴线朝向活性侧延伸。高度可以是至少10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm。
在一个或多个方面,纳米结构可以具有高度,其沿着俯仰轴线朝向活性侧延伸。纳米结构可具有横向于俯仰轴线的横截面尺寸。横截面尺寸可以是至少10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm。
在一个或多个方面,纳米结构可以具有高度,其沿着俯仰轴线朝向活性侧延伸。纳米结构可具有横向于俯仰轴线的横截面尺寸。横截面尺寸可以小于100nm、90nm、80nm、70nm、60nm、50nm、40nm、30nm、20nm或10nm。可选地,横截面尺寸是直径。可选地,横截面尺寸表示穿过所述纳米结构可以获得的最大的横截面尺寸。
在一个或多个方面,纳米结构可以包括在反应腔内的二聚体或三聚体。
在一个或多个方面,集成放大器可以形成蝶形天线。
在一个或多个方面,纳米结构包括纳米棒、纳米环和/或纳米塞。
在一个实施例中,提供了制造结构化基底的方法。所述方法可以包括提供具有基侧的基层,以及沿着所述基层的基侧形成纳米结构。所述方法还可以包括形成在在侧上叠置的腔室层。所述腔室层包括多个反应腔,其中,每一个反应腔包括在其中的多个纳米结构。所述多个纳米结构形成相应的反应腔的集成放大器,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
结构化基底、纳米结构和/或集成放大器的各种特征可以与本文所述的那些类似。
在一个或多个方面,所述方法还包括在反应腔内提供有机材料,使得有机材料覆盖纳米结构。有机材料可以被配置为将生物分子固定在相应的反应腔内。
可选地,所述方法还包括抛光活性侧,以从间隙区域移除有机材料。
在一个或多个方面,所述方法还包括安装设备覆盖件至基底本体,以形成在基底本体的活性侧和设备覆盖件之间的流动通道。流动通道可以被配置为在其中引导液体流通过,其流动到反应腔中。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有基侧的基层,以及沿着所述基层的基侧形成纳米结构。所述方法还包括在纳米结构阵列上提供纳米压印光刻(NIL)层,并将反应腔阵列压印到NIL层中。纳米结构的不同的子阵列位于每个反应腔下方。每一个纳米结构的子阵列可以由相应的NIL层的填充区域围绕。所述方法还包括移除NIL层的相应填充区域,以暴露在相应的反应腔内的纳米结构的子阵列。在每一个反应腔内的纳米结构的子阵列形成相应的反应腔的集成放大器,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
结构化基底、纳米结构和/或集成放大器的各种特征可以与本文所述的那些类似。
例如,在一个或多个实施例中,所述NIL层是顶部NIL层,其中,形成所述纳米结构包括提供底部NIL层,并且压印所述纳米结构。
结构化基底、纳米结构和/或集成放大器的各种特征可以与本文所述的那些类似。
在一个或多个方面,所述方法还包括在反应腔内提供有机材料,使得有机材料覆盖纳米结构。有机材料可以被配置为将生物分子固定在相应的反应腔内。
在一个或多个方面,所述方法还包括抛光活性侧,以从间隙区域移除有机材料。
在一个或多个方面,所述方法还包括安装一设备覆盖件至所述基底本体,以在所述基底本体的活性侧和所述设备覆盖件之间形成流动通道,所述流动通道被配置为引导流动进入反应腔的液体流从中通过。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有基侧的基层,以及沿着所述基侧提供纳米压印光刻(NIL)层。所述方法还包括压印所述NIL层以形成基部和从所述基部突出的纳米体的阵列。所述方法还包括沉积等离子共振膜,其覆盖所述纳米体以形成多个纳米结构。每一个纳米结构包括相应的纳米体和所述等离子共振膜的一部分。所述方法还包括形成包括多个反应腔的腔室层,其中,每一个反应腔包括在其中的多个纳米结构。所述多个纳米结构形成相应的反应腔的集成放大器,其被配置为进行放大传播到相应的反应腔中的电磁能量或者放大在相应的反应腔内产生的电磁能量中的至少一个。
结构化基底、纳米结构和/或集成放大器的各种特征可以与本文所述的那些类似。
例如,腔室层可以包括NIL材料,并且其中形成腔室层的步骤或操作可以包括压印腔室层的NIL材料形成反应腔。
在一个或多个方面,所述方法还包括在反应腔内提供有机材料,使得有机材料覆盖纳米结构。有机材料可以被配置为将生物分子固定在相应的反应腔内。
在一个或多个方面,所述方法还可以包括抛光活性侧,以从间隙区域移除有机材料。
在一个或多个方面,所述方法还可以包括安装设备覆盖件至基底本体,以形成在基底本体的活性侧和设备覆盖件之间的流动通道。流动通道可以被配置为在其中引导液体流通过,其流动到反应腔中。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有侧表面和反应腔阵列的工作基底。每一个反应腔具有沿着所述侧表面的开口,并且从相应的开口延伸一深度至所述工作基底中。所述反应腔与一阵列平面相重合。所述方法还可以包括以相对于阵列平面非正交的角度将沉积流直接引导在工作基底上。所述沉积流包括等离子体共振材料。所述工作基底在每一个反应腔中相对于所述沉积流的路径形成阴影区域和入射区域,使得所述沉积流的等离子体共振材料受所述侧表面的阻挡而不会沉积到所述阴影区域上,并且被允许穿过所述开口并且沿着所述入射区域形成。
在一个或多个方面,反应腔由相应的侧壁和底部表面限定。侧壁延伸远离侧表面朝向相应的底部表面。入射区域可以沿着侧壁的至少一部分延伸。阴影区域可以沿着底部表面的至少一部分延伸。
在一个或多个方面,方法还包括形成用于分析生物分子的包括工作基底的结构化基底。材料可以沿着入射区域沉积,以形成放大电磁能量的纳米结构的至少一部分。
在一个或多个方面,非正交角度是第一非正交角度,阴影区域为第一阴影区域,沉积流为第一沉积流,并且,入射区域为第一入射区域。所述方法还可以包括以相对于阵列平面第二非正交的角度将第二沉积流直接引导在工作基底上,第二非正交角度与第一非正交角度不同。所述工作基底可以在每一个反应腔中相对于所述沉积流的路径形成第二阴影区域和第二入射区域,使得所述第二沉积流的等离子体共振材料受所述侧表面的阻挡而不会沉积到所述第二阴影区域上,并且允许穿过所述开口并且沿着所述第二入射区域形成。
可选地,所述第二入射区域至少一部分与所述第一阴影区域重叠。
可选地,所述第一和第二沉积流的等离子体共振材料是相同的。
可选地,所述第一和第二沉积流的等离子体共振材料是不同的。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括(a)提供具有侧表面和反应腔阵列的工作基底。每一个反应腔具有沿着所述侧表面的开口,并且从相应的开口延伸一深度至所述工作基底中。所述反应腔与一阵列平面相重合。所述方法还包括(b)将工作基底定位在相对于材料源的接收取向中,(c)将来自材料源的沉积流以相对于所述阵列平面非正交的角度引导到工作基底上。所述沉积流包括等离子体共振材料,其中,当工作基底在处于接收取向中时,在每一个反应腔中形成阴影区域和入射区域,使得所述沉积流的等离子体共振材料受所述侧表面的阻挡而不会沉积到所述阴影区域上,并且被允许穿过所述开口并且沿着所述入射区域形成。
在一个或多个方面中,所述方法包括以不同的接收取向重复步骤(a)-(c)至少一个序列。
在一个或多个方面中,所述方法包括以不同的等离子体共振材料重复步骤(a)-(c)至少一个序列。
可选地,步骤(a)-(c)被重复以在所述接收腔中的每一个以内形成具有多个纳米结构的集成放大器。
在一个实施例中,提供了分析能够产生光发射的生物分子的方法。方法包括在提供具有反应位点阵列的结构化基底。每一个反应位点包括形成集成放大器的多个纳米结构,该集成放大器被配置为放大通过集成放大器的纳米结构入射的电磁能量。反应位点阵列包括第一反应位点子阵列和第二反应位点子阵列。第一子阵列的集成放大器被配置为优先地响应于第一偏振激发光。第二子阵列的集成放大器被配置为优先地响应于第二偏振激发光。所述方法还包括用第一偏振激发光照射反应位点阵列,并检测来自第一子阵列的光发射。所述方法还包括用第二偏振激发光照射反应位点阵列,并检测来自第二子阵列的光发射。
在一个或多个方面,结构化基底包括形成反应位点的反应腔。反应腔延伸一深度进入结构化基底中。每个反应腔具有在其中的相应的集成放大器。
在一个或多个方面,所述第一子阵列的集成放大器具有基本上平行于所述第一偏振激发光的偏振的偶极矩,并且,所述第二子阵列的集成放大器具有基本上平行于所述第二偏振激发光的偏振的偶极矩。
在一个或多个方面,光发射包括荧光。
在一个或多个方面,所述反应位点由凝胶材料覆盖,所述凝胶材料被配置为保持生物分子。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有基侧的基层,沿着所述基侧提供特征层,并且通过反应离子蚀刻(RIE)从特征层形成纳米体。所述方法还包括用等离子体共振材料涂覆纳米体,并且在纳米体和等离子体共振材料上提供钝化层。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有多个腔室的工作基底。所述方法还包括沿工作基底提供包括纳米体的特征层。所述特征层填充所述腔室。所述方法还包括通过反应离子蚀刻(RIE)移除腔室内的材料以暴露纳米体,并在纳米体上提供钝化层。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有多个腔室的工作基底,以非正交的角度将沉积流直接沉积到基层上,并将沉积的层转变成纳米体。所述方法还包括从间隙区域移除沉积层,并在纳米体上提供钝化层。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有多个腔室的工作基底,沿着工作基底沉积包括纳米体的纳米压印光刻(NIL)材料,并且压印NIL材料以形成非平面特征层。所述方法还包括选择性地移除材料以形成纳米体并提供钝化层。
在一个实施例中,提供了制造结构化基底的方法。所述方法包括提供具有基层的工作基底,以及沿基层形成纳米体阵列。所述方法还包括沿着纳米体沉积等离子体共振材料,并且对等离子体共振材料热退火,以沿着纳米体形成纳米颗粒。所述方法还包括在纳米颗粒上提供钝化层。
在整个申请中已经引用了多份出版物、专利和/或专利申请。这些出版物的全部公开内容在此通过引用并入本申请中。
如本文所使用的,术语“包含”、“包括”和“具有”等旨在是开放式的,不仅包括所记载的要素,还可涵盖附加的要素。
应理解,以上描述旨在是说明性的而不是限制性的。例如,上述实施例(和/或其方面)可以彼此组合使用。另外,在不脱离其范围的情况下,可以作出许多修改以使特定情况或材料适应本发明主题的教导。本文描述的尺寸、材料类型、各种部件的取向、以及各种部件的数量和位置旨在限定某些实施例的参数,而不是限制性的,并且仅仅是示例性实施例。在回顾以上描述时,在权利要求的精神和范围内的许多其他实施例和修改对于本领域技术人员将是显而易见的。因此,参考所附权利要求以及这些权利要求所规定的等同体的全部范围,确定本发明主体的范围。
如在说明书中所使用的,短语“在示例性实施例中”、“在一些实施例中”、“在具体实施例中”等表示所描述的(多个)实施例是可以根据本申请形成或执行的实施例的示例。这些短语不意图将本发明的主题限制到该实施例。更具体地,本发明主题的其他实施例可以不包括用特定实施例描述的所记载的特征或结构。
随附权利要求记载本申请的一个或多个实施例,并且由此并入到本申请的描述中。

Claims (15)

1.一种制造结构化基底的方法,所述方法包括:
提供具有侧表面和反应腔阵列的工作基底,每一个所述反应腔具有沿着所述侧表面的开口,并且从相应的开口延伸一深度至所述工作基底中,所述反应腔与一阵列平面相重合;以及
将沉积流以相对于所述阵列平面非正交的角度引导至所述工作基底上,所述沉积流包括等离子体共振材料,其中,所述工作基底在每一个反应腔中相对于所述沉积流的路径形成阴影区域和入射区域,使得所述沉积流的等离子体共振材料受所述侧表面的阻挡而不会沉积到所述阴影区域上,并且被允许穿过所述开口并且沿着所述入射区域形成。
2.如权利要求1所述的方法,其中所述反应腔由相应的侧壁和底部表面限定,所述侧壁远离所述侧表面朝向相应的底部表面延伸,所述入射区域沿着所述侧壁的至少一部分延伸,所述阴影区域沿着所述底部表面的至少一部分延伸。
3.如权利要求1所述的方法,还包括形成用于分析生物分子的结构化基底,其包括所述工作基底,沿着所述入射区域沉积的材料形成放大电磁能量的纳米结构的至少一部分。
4.如权利要求1所述的方法,其中,所述非正交的角度是第一非正交角度,所述阴影区域是第一阴影区域,所述沉积流是第一沉积流,并且,所述入射区域是第一入射区域,所述方法还包括将第二沉积流以相对于所述阵列平面的第二非正交角度引导至所述工作基底上,所述第二非正交角度不同于所述第一非正交角度,所述工作基底相对于所述沉积流的路径在每一个反应腔中形成第二阴影区域和第二入射区域,使得所述第二沉积流的等离子体共振材料受所述侧表面的阻挡而不会沉积到所述第二阴影区域上,并且被允许穿过所述开口并且沿着所述第二入射区域形成。
5.如权利要求4所述的方法,其中,所述第二入射区域的至少一部分与所述第一阴影区域重叠。
6.如权利要求4所述的方法,其中,所述第一和第二沉积流的等离子体共振材料是相同的。
7.权利要求4所述的方法,其中,所述第一和第二沉积流的等离子体共振材料是不同的。
8.如权利要求1所述的方法,还包括:
将所述工作基底定位在相对于材料源的接收取向中。
9.如权利要求8所述的方法,还包括,以不同的接收取向,重复以下步骤至少一个序列:提供所述工作基底,定位所述工作基底,以及引导所述沉积流。
10.如权利要求8所述的方法,还包括,利用不同等离子体共振材料,重复以下步骤至少一个序列:提供所述工作基底,定位所述工作基底,以及引导所述沉积流。
11.如权利要求8所述的方法,其中重复以下步骤:提供所述工作基底,定位所述工作基底,以及引导所述沉积流,以在所述接收腔中的每一个以内形成具有多个纳米结构的集成放大器。
12.一种分析能够产生光发射的生物分子的方法,所述方法包括:
提供具有反应位点阵列的结构化基底,每一个反应位点包括多个纳米结构,所述纳米结构形成集成放大器,所述集成放大器被配置为放大通过所述集成放大器的纳米结构入射的电磁能量,其中,所述反应位点阵列包括第一反应位点子阵列和第二反应位点子阵列,所述第一子阵列的集成放大器被配置为优先地响应于第一偏振激发光,所述第二子阵列的集成放大器被配置为优先地响应于第二偏振激发光;并且其中所述结构化基底包括形成所述反应位点的反应腔,所述反应腔以一深度延伸到所述结构化基底中,每一个反应腔具有在其中的相应的集成放大器;
利用所述第一偏振激发光照射所述反应位点阵列;
检测来自所述第一子阵列的光发射;
利用所述第二偏振激发光照射所述反应位点阵列;以及
检测来自所述第二子阵列的光发射。
13.如权利要求12所述的方法,其中,其中,所述第一子阵列的集成放大器具有基本上平行于所述第一偏振激发光的偏振的偶极矩,并且,所述第二子阵列的集成放大器具有基本上平行于所述第二偏振激发光的偏振的偶极矩。
14.如权利要求12所述的方法,其中,所述光发射包括荧光。
15.如权利要求12所述的方法,其中,所述反应位点由凝胶材料覆盖,所述凝胶材料被配置为保持生物分子。
CN202010977928.0A 2015-04-14 2016-04-14 用于改进对光发射的检测的结构化基底及涉及其的方法 Pending CN112229834A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562147440P 2015-04-14 2015-04-14
US62/147,440 2015-04-14
CN201680034513.1A CN108449971B (zh) 2015-04-14 2016-04-14 用于改进对光发射的检测的结构化基底及涉及其的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680034513.1A Division CN108449971B (zh) 2015-04-14 2016-04-14 用于改进对光发射的检测的结构化基底及涉及其的方法

Publications (1)

Publication Number Publication Date
CN112229834A true CN112229834A (zh) 2021-01-15

Family

ID=57126090

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680034513.1A Active CN108449971B (zh) 2015-04-14 2016-04-14 用于改进对光发射的检测的结构化基底及涉及其的方法
CN202010977928.0A Pending CN112229834A (zh) 2015-04-14 2016-04-14 用于改进对光发射的检测的结构化基底及涉及其的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680034513.1A Active CN108449971B (zh) 2015-04-14 2016-04-14 用于改进对光发射的检测的结构化基底及涉及其的方法

Country Status (4)

Country Link
US (3) US10900030B2 (zh)
EP (2) EP3283870B1 (zh)
CN (2) CN108449971B (zh)
WO (1) WO2016168386A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017103721B4 (de) * 2017-02-23 2022-07-21 Karl Storz Se & Co. Kg Vorrichtung zur Erfassung eines Stereobilds mit einer rotierbaren Blickrichtungseinrichtung
US20210001330A1 (en) * 2017-09-08 2021-01-07 President And Fellows Of Harvard College Nanosensor methods and apparatuses for determination of analytes
EP3721211A4 (en) * 2017-12-06 2021-08-18 California Institute of Technology SYSTEM FOR ANALYSIS OF A TEST SAMPLE AND PROCEDURE FOR IT
WO2020033227A2 (en) * 2018-08-06 2020-02-13 Corning Incorporated Array of polymeric hydrogel nanostructures and their uses
TW202100247A (zh) 2019-01-29 2021-01-01 美商伊路米納有限公司 流通槽
JP7442781B2 (ja) 2019-10-29 2024-03-05 国立研究開発法人産業技術総合研究所 プラズモニックセンサ用の部材およびその製造方法
US20210223241A1 (en) * 2020-01-17 2021-07-22 Samsung Electronics Co., Ltd. Aluminum metasurfaces for highly sensitive and enhanced detection of analytes for smartphone diagnostics and methods for making and using the same
JP7345843B2 (ja) 2020-03-04 2023-09-19 国立研究開発法人産業技術総合研究所 マイクロウェル付きナノピラー構造基板、および、その製造方法
CN115605338A (zh) * 2020-04-02 2023-01-13 尼尔技术有限公司(Dk) 超构表面涂层
US11543584B2 (en) * 2020-07-14 2023-01-03 Meta Platforms Technologies, Llc Inorganic matrix nanoimprint lithographs and methods of making thereof with reduced carbon
WO2022101401A1 (en) * 2020-11-16 2022-05-19 Illumina Cambridge Limited Altering flow cell signals
US20230375759A1 (en) * 2022-05-18 2023-11-23 GE Precision Healthcare LLC Aligned and stacked high-aspect ratio metallized structures

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050037365A1 (en) * 2003-08-14 2005-02-17 David Anvar Arrays for multiplexed surface plasmon resonance detection of biological molecules
US7022288B1 (en) * 2002-11-13 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Chemical detection sensor system
US20080240543A1 (en) * 2007-03-30 2008-10-02 Wolfgang Ernst Gustav Budach Calibration and normalization method for biosensors
US20080297802A1 (en) * 2007-05-31 2008-12-04 Canon Kabushiki Kaisha Detecting element, detecting device, and method of producing the detecting element
WO2009022246A1 (en) * 2007-08-10 2009-02-19 Koninklijke Philips Electronics N.V. Sensor array for spr-based detection.
CN101982762A (zh) * 2010-10-29 2011-03-02 吉林大学 基于干涉和衍射激励的表面增强拉曼光谱检测方法
US20120105853A1 (en) * 2009-11-10 2012-05-03 The Regents Of The University Of California Sensing devices and techniques using 3-d arrays based on surface plasmon excitations
CN102774807A (zh) * 2012-07-05 2012-11-14 上海大学 核壳式纳米线阵列拉曼散射增强基底制备方法
CN103364544A (zh) * 2012-04-02 2013-10-23 长庚大学 判断一目标生物分子是否存在于一待测样本中的量测装置及方法
US20140243224A1 (en) * 2013-02-26 2014-08-28 Illumina, Inc. Gel patterned surfaces
CN104198441A (zh) * 2014-09-09 2014-12-10 吉林大学 一种限域型表面等离子体共振传感器、制备方法及其应用
CN104335044A (zh) * 2012-04-02 2015-02-04 力士生物集团公司 用于分子分离、纯化和检测的装置和方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8810400D0 (en) 1988-05-03 1988-06-08 Southern E Analysing polynucleotide sequences
CA2044616A1 (en) 1989-10-26 1991-04-27 Roger Y. Tsien Dna sequencing
US5552278A (en) 1994-04-04 1996-09-03 Spectragen, Inc. DNA sequencing by stepwise ligation and cleavage
US5712171A (en) * 1995-01-20 1998-01-27 Arqule, Inc. Method of generating a plurality of chemical compounds in a spatially arranged array
US5750341A (en) 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
GB9626815D0 (en) 1996-12-23 1997-02-12 Cemu Bioteknik Ab Method of sequencing DNA
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US20050191698A1 (en) 1999-04-20 2005-09-01 Illumina, Inc. Nucleic acid sequencing using microsphere arrays
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US6355431B1 (en) 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6274320B1 (en) 1999-09-16 2001-08-14 Curagen Corporation Method of sequencing a nucleic acid
US6913884B2 (en) 2001-08-16 2005-07-05 Illumina, Inc. Compositions and methods for repetitive use of genomic DNA
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
JP2003521252A (ja) 2000-02-07 2003-07-15 イルミナ インコーポレイテッド ユニバーサルプライミングを用いる核酸検出方法
EP1975251A3 (en) 2000-07-07 2009-03-25 Visigen Biotechnologies, Inc. Real-time sequence determination
EP1354064A2 (en) 2000-12-01 2003-10-22 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
US7057026B2 (en) 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
ES2407681T3 (es) 2002-08-23 2013-06-13 Illumina Cambridge Limited Nucleótidos modificados para la secuenciación de polinucleótidos.
US7595883B1 (en) 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
US8003316B2 (en) * 2002-12-11 2011-08-23 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Polarization-enhanced detector with gold nanorods for detecting nanoscale rotational motion and method therefor
CN101080500A (zh) 2003-02-28 2007-11-28 布朗大学 纳米孔,使用纳米孔的方法,制备纳米孔的方法和用纳米孔表征生物分子的方法
JP2007528692A (ja) 2003-05-28 2007-10-18 メイバン・テクノロジーズ・エルエルシー 分子化合物を認識する方法及び装置
US7670810B2 (en) 2003-06-20 2010-03-02 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
JP2007525571A (ja) 2004-01-07 2007-09-06 ソレクサ リミテッド 修飾分子アレイ
CA2579150C (en) 2004-09-17 2014-11-25 Pacific Biosciences Of California, Inc. Apparatus and method for analysis of molecules
US8535616B2 (en) * 2005-08-02 2013-09-17 Moxtek, Inc. Sub-wavelength metallic apertures as light enhancement devices
US7405281B2 (en) 2005-09-29 2008-07-29 Pacific Biosciences Of California, Inc. Fluorescent nucleotide analogs and uses therefor
EP3373174A1 (en) 2006-03-31 2018-09-12 Illumina, Inc. Systems and devices for sequence by synthesis analysis
WO2008051530A2 (en) 2006-10-23 2008-05-02 Pacific Biosciences Of California, Inc. Polymerase enzymes and reagents for enhanced nucleic acid sequencing
CA2697951A1 (en) * 2007-08-30 2009-03-05 University Of Waterloo Amino acid pairing-based self assembling peptides and methods
US8039817B2 (en) 2008-05-05 2011-10-18 Illumina, Inc. Compensator for multiple surface imaging
WO2010151780A2 (en) * 2009-06-25 2010-12-29 The University Of North Carolina At Chapel Hill Methods and systems for using actuated surface-attached posts for assessing biofluid rheology
WO2011038327A1 (en) 2009-09-28 2011-03-31 Bionanomatrix, Inc. Nanochannel arrays and near-field illumination devices for polymer analysis and related methods
WO2011112465A1 (en) 2010-03-06 2011-09-15 Illumina, Inc. Systems, methods, and apparatuses for detecting optical signals from a sample
US20140154668A1 (en) * 2010-05-21 2014-06-05 The Trustees Of Princeton University Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.
WO2011159942A1 (en) 2010-06-18 2011-12-22 Illumina, Inc. Conformational probes and methods for sequencing nucleic acids
WO2012058096A1 (en) 2010-10-27 2012-05-03 Illumina, Inc. Microdevices and biosensor cartridges for biological or chemical analysis and systems and methods for the same
US8951781B2 (en) 2011-01-10 2015-02-10 Illumina, Inc. Systems, methods, and apparatuses to image a sample for biological or chemical analysis
US20120186167A1 (en) 2011-01-24 2012-07-26 Mohammad Naraghi Building facade surface for seasonal selectiveness of solar irradiation absorption and reflection
US8778848B2 (en) 2011-06-09 2014-07-15 Illumina, Inc. Patterned flow-cells useful for nucleic acid analysis
US10378051B2 (en) 2011-09-29 2019-08-13 Illumina Cambridge Limited Continuous extension and deblocking in reactions for nucleic acids synthesis and sequencing
CA2856163C (en) 2011-10-28 2019-05-07 Illumina, Inc. Microarray fabrication system and method
WO2013096692A1 (en) 2011-12-21 2013-06-27 Illumina, Inc. Apparatus and methods for kinetic analysis and determination of nucleic acid sequences
US8906320B1 (en) * 2012-04-16 2014-12-09 Illumina, Inc. Biosensors for biological or chemical analysis and systems and methods for same
US8994937B2 (en) * 2012-04-18 2015-03-31 Hewlett-Packard Development Company, L.P. Surface enhanced Raman spectroscopy calibration curve generating systems
US9012022B2 (en) 2012-06-08 2015-04-21 Illumina, Inc. Polymer coatings
US8895249B2 (en) 2012-06-15 2014-11-25 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
WO2014121156A1 (en) * 2013-02-01 2014-08-07 Solan, LLC Graphene growth on sidewalls of patterned substrate
US10254225B2 (en) 2013-12-10 2019-04-09 Illumina, Inc. Biosensors for biological or chemical analysis and methods of manufacturing the same
KR102333635B1 (ko) 2013-12-23 2021-11-30 일루미나, 인코포레이티드 광 방출의 검출을 개선시키기 위한 구조화 기판 및 이와 관련한 방법
WO2016026924A1 (en) * 2014-08-21 2016-02-25 Illumina Cambridge Limited Reversible surface functionalization
WO2016201387A1 (en) * 2015-06-12 2016-12-15 Pacific Biosciences Of California, Inc. Integrated target waveguide devices and systems for optical coupling

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022288B1 (en) * 2002-11-13 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Chemical detection sensor system
US20050037365A1 (en) * 2003-08-14 2005-02-17 David Anvar Arrays for multiplexed surface plasmon resonance detection of biological molecules
US20080240543A1 (en) * 2007-03-30 2008-10-02 Wolfgang Ernst Gustav Budach Calibration and normalization method for biosensors
US20080297802A1 (en) * 2007-05-31 2008-12-04 Canon Kabushiki Kaisha Detecting element, detecting device, and method of producing the detecting element
WO2009022246A1 (en) * 2007-08-10 2009-02-19 Koninklijke Philips Electronics N.V. Sensor array for spr-based detection.
US20120105853A1 (en) * 2009-11-10 2012-05-03 The Regents Of The University Of California Sensing devices and techniques using 3-d arrays based on surface plasmon excitations
CN101982762A (zh) * 2010-10-29 2011-03-02 吉林大学 基于干涉和衍射激励的表面增强拉曼光谱检测方法
CN103364544A (zh) * 2012-04-02 2013-10-23 长庚大学 判断一目标生物分子是否存在于一待测样本中的量测装置及方法
CN104335044A (zh) * 2012-04-02 2015-02-04 力士生物集团公司 用于分子分离、纯化和检测的装置和方法
CN102774807A (zh) * 2012-07-05 2012-11-14 上海大学 核壳式纳米线阵列拉曼散射增强基底制备方法
US20140243224A1 (en) * 2013-02-26 2014-08-28 Illumina, Inc. Gel patterned surfaces
CN104198441A (zh) * 2014-09-09 2014-12-10 吉林大学 一种限域型表面等离子体共振传感器、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUN SUK HUH ET AL.: "Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays", BIOSENSORS AND BIOELECTRONICS, vol. 25, no. 05, pages 1240 - 1243, XP026808927 *

Also Published As

Publication number Publication date
US20180119139A1 (en) 2018-05-03
EP3283870B1 (en) 2020-05-06
EP3696536A1 (en) 2020-08-19
US10900030B2 (en) 2021-01-26
EP3283870A1 (en) 2018-02-21
US11466268B2 (en) 2022-10-11
CN108449971A (zh) 2018-08-24
US20230002759A1 (en) 2023-01-05
WO2016168386A1 (en) 2016-10-20
US20210130814A1 (en) 2021-05-06
CN108449971B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN108449971B (zh) 用于改进对光发射的检测的结构化基底及涉及其的方法
US20220098653A1 (en) Structured substrates for improving detection of light emissions and methods relating to the same
US20210013025A1 (en) Wafer level sequencing flow cell fabrication
KR102345900B1 (ko) 보호 라이너를 가지는 광 검출 디바이스 및 그 제조방법
US20130100454A1 (en) Integrated plasmonic sensing device and apparatus
US11747263B2 (en) Flow cells and methods related to same
EP1723232A1 (en) Isolating, positioning, and sequencing single molecules
TWI831827B (zh) 流體槽及與其相關之方法
WO2023011439A1 (en) Sequencing systems and methods utilizing three-dimensional substrates
JP2004286579A (ja) Dna分析用アレイおよびそれを用いたdna分析システムおよび分析方法
Benoit Flow-through microchannel DNA chips

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination