CN112217477A - 一种量子相位波动产生毫米波噪声的装置及方法 - Google Patents

一种量子相位波动产生毫米波噪声的装置及方法 Download PDF

Info

Publication number
CN112217477A
CN112217477A CN202010913131.4A CN202010913131A CN112217477A CN 112217477 A CN112217477 A CN 112217477A CN 202010913131 A CN202010913131 A CN 202010913131A CN 112217477 A CN112217477 A CN 112217477A
Authority
CN
China
Prior art keywords
mode laser
millimeter wave
wave noise
optical coupler
phase fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010913131.4A
Other languages
English (en)
Inventor
陈永祥
王云才
塞韦浩·罗曼·津苏
高震森
黄奕敏
黄海碧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202010913131.4A priority Critical patent/CN112217477A/zh
Publication of CN112217477A publication Critical patent/CN112217477A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B17/00Generation of oscillations using radiation source and detector, e.g. with interposed variable obturator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B29/00Generation of noise currents and voltages

Abstract

本发明涉及一种量子相位波动产生毫米波噪声的装置及方法,所述装置包括:第一单模激光器、第二单模激光器、光耦合器以及单行载流子平衡光电探测器;所述方法,主要利用两个不同中心波长单模激光器作为宽带噪声源,工作在低于阈值电流状态下产生具有量子相位波动的光信号,两个单模激光器的输出通过光耦合器将两束光源进行耦合,光耦合器的输出通过波导集成的单行载流子平衡光电探测器,进行光谱到频谱转换从而产生毫米波噪声。本发明解决了现有噪声源的平坦度差且频谱范围较窄的问题。

Description

一种量子相位波动产生毫米波噪声的装置及方法
技术领域
本发明涉及光电技术领域,更具体地,涉及一种量子相位波动产生毫米波噪声的装置及方法。
背景技术
量子相位波动是指单模激光器工作在阈值电流之下所产生的现象,这种现象会导致激光器光谱的展宽。噪声是信号传输中的主要干扰,在光学领域中,仪器设备或元器件所产生的噪声会大大干扰系统的动态范围、灵敏度等参数,从而降低系统的性能。因此,只要能够处理好噪声的问题,就可以在雷达、通信等工程技术领域中具有更开阔的应用前景。
噪声源的应用广泛,主要用于信号的干扰、通信和雷达系统的测试、接收机的相位跟踪等方面。目前使用最广泛的噪声源可分为天然噪声源和人造噪声源。天然噪声源是天然的辐射体,它们能够稳定地对外输出能量。人造噪声源也叫电子噪声源,包括电阻热噪声,散弹噪声等制作的噪声源。如基于以电阻热噪声为源的噪声源,现已产生输出噪声的工作频段为90GHz~100GHz,但存在着需要制冷且所需仪器体积庞大,输出功率小,耦合困难等问题,这对于实际应用是很不利的;基于以散弹噪声为源的噪声源,如雪崩二极管,现国内学者研制出频率范围为10MHz~50GHz、超噪比为5~19dB的噪声,但很难满足高频的需要且测试方法比较落后,测试器件和研究目的都比较单一的问题。
基于上述的方法为源产生的毫米波噪声,受设备带宽的瓶颈限制,难以在实际中运用。而基于光学的方法产生毫米波噪声,可以解决这个问题。西班牙巴仑西亚理工大学的纳米技术中心Vidal等人利用高斯滤波器对掺铒光纤放大器中放大自发辐射噪声的光谱进行滤波,经过光电探测器进行光谱到频谱的转换,产生20GHz的电噪声(IEEEPhoton.Tech.Lett.,32(10),592-594,2020),但是经过滤波后的掺铒光纤放大器产生放大自发辐射噪声的平坦度较差。美国国家标准与技术研究院Kautz教授提出利用混沌光产生白噪声的设想(J.Appl.Phys.,86(10),5794-5800,1999),随后,电子科技大学江宁教授提出利用延迟自相位调制的光反馈的产生带宽为40GHz的混沌噪声谱(Opt.Express,27(9),12336-12348,2019),太原理工大学张明江教授提出利用光反馈环路结合高非线性光纤产生频率范围超过50GHz的混沌噪声谱(Opt.Letters,45(7),1750-1753,2020)。利用混沌可以产生大功率的白噪声,但存在着频谱范围较窄的功率谱的缺点。
综上所述,当前的噪声源产生的噪声功率谱主要存在平坦度差,带宽窄的特点,因此难以在实际运用中使用。
发明内容
本发明为克服上述现有技术所述的当前的噪声源产生的噪声功率谱主要存在平坦度差,带宽窄的缺陷,提供一种量子相位波动产生毫米波噪声的装置及方法。
所述装置包括:第一单模激光器、第二单模激光器、光耦合器以及单行载流子平衡光电探测器;
所述第一单模激光器的输出端接光耦合器的第一输入端口;所述第二单模激光器的输出端接光耦合器的第二输入端口;所述光耦合器的第一输出端口接单行载流子平衡光电探测器的第一输入端口;所述光耦合器的第二输出端口接单行载流子平衡光电探测器的第二输入端口;所述平衡光电探测器的输出端口输出宽带毫米波噪声信号。
本发明主要利用两个不同中心波长单模激光器作为宽带噪声源,工作在低于阈值电流状态下产生具有量子相位波动的光信号,两个单模激光器的输出通过光耦合器将两束光源进行耦合,光耦合器的输出通过波导集成的单行载流子平衡光电探测器,进行光谱到频谱转换从而产生毫米波噪声。本发明解决了现有噪声源的平坦度差且频谱范围较窄的问题。
优选地,所述第一单模激光器与第二单模激光器为半导体激光器。
优选地,所述第一单模激光器与第二单模激光器工作在低于阈值电流条件下。
优选地,所述第一单模激光器与第二单模激光器产生不同中心频率的量子相位波动,使得激光器的光谱进行频谱的展宽。
优选地,所述单行载流子平衡光电探测器为采用波导集成的单行载流子平衡光电探测器。
本发明所述方法包括以下步骤:
S1:利用第一单模激光器和第二单模激光器产生不同中心波长的量子相位波动的光谱;
S2:将S1产生的具有量子相位波动的光谱输入光耦合器进行耦合;
S3:将光耦合器输出的耦合信号输入单行载流子平衡光电探测器进行拍频,即光谱到电谱的转换,从而输出毫米波噪声信号。
优选地,S3具体为:单行载流子平衡光电探测器将不同中心频率的量子相位波动的光谱进行自卷积产生对应中心频率的电噪声。
优选地,中心频率的计算公式为:
Figure BDA0002664011470000031
其中,c为波速,λ1为第一单模激光器的中心波长,λ2为第二单模激光器的中心波长。
优选地,S3输出的毫米波噪声信号的功率谱的计算公式为:
Figure BDA0002664011470000032
其中,Si(f)为功率谱,
Figure BDA0002664011470000033
表示单行载流子平衡光电探测器的响应度,S(ν1)为第一单模激光器的光谱表达式,S(ν2)为第一单模激光器的光谱表达式。
与现有技术相比,本发明技术方案的有益效果是:
本发明的宽带噪声信号是以单模激光器为源,其在低阈值条件下产生宽光谱且输出强度和相位具有随机性的量子噪声,突破了电子器件带宽的限制,能够产生带宽更宽、功率谱更平坦的电噪声信号。
附图说明
图1为实施例1所述量子相位波动产生毫米波噪声的装置示意图。
图2为单模激光器的光谱示意图。
图3为毫米波噪声信号的功率谱示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1:
本实施例提供一种量子相位波动产生毫米波噪声的装置,如图1所示,所述装置包括第一单模激光器、第二单模激光器、光耦合器以及单行载流子平衡光电探测器。所述第一单模激光器的输出端接光耦合器的第一输入端口;所述第二单模激光器的输出端接光耦合器的第二输入端口;所述光耦合器的第一和第二输出端口接单行载流子平衡光电探测器的第一和第二输入端口;所述平衡光电探测器的输出端口输出宽带毫米波噪声信号。
需要说明的是,所述第一单模激光器与第二单模激光器工作在低于阈值电流条件下,激光器内部产生量子相位波动,使得激光器的光谱进行频谱的展宽。
所述光耦合器内部,两束不同中心频率的单模激光器汇聚一起进行自卷积产生对应中心频率的电噪声。
所述光耦合器使用2×2的光耦合器,其中两个输入端分别连接不同中心波长单模激光器与单模激光器,两个输出端连接单行载流子平衡光电探测器。
所述单行载流子平衡光电探测器为采用波导集成的单行载流子平衡光电探测器。
实施例2:
本实施例提供一种量子相位波动产生毫米波噪声的方法,所述方法基于实施例1所述装置实现。所述方法包括以下步骤:
S1:利用第一单模激光器和第二单模激光器产生不同中心波长的量子相位波动的光谱;
S2:将S1产生的具有量子相位波动的光谱输入光耦合器进行耦合;
S3:将光耦合器输出的耦合信号输入单行载流子平衡光电探测器进行光谱到电谱的转换,从而输出毫米波噪声信号。
其中,S3具体为:单行载流子平衡光电探测器将不同中心频率的量子相位波动的光谱进行自卷积产生对应中心频率的电噪声。
中心频率的计算公式为:
Figure BDA0002664011470000041
其中,c为波速,λ1为第一单模激光器的中心波长,λ2为第二单模激光器的中心波长。
S3输出的毫米波噪声信号的功率谱的计算公式为:
Figure BDA0002664011470000051
其中,Si(f)为功率谱,
Figure BDA0002664011470000052
表示单行载流子平衡光电探测器的响应度,S(ν1)为第一单模激光器的光谱表达式,S(ν2)为第一单模激光器的光谱表达式。
作为一个具体的实施例,本实施例中,两个单模激光器利用温度控制器调谐其中心波长λ1=1549.8nm和λ2=1550.2nm,输出两激光器均工作在低阈值条件下所产生具有量子相位波动现象的光谱,如附图2所示,其光谱表达式为S(ν1)和S(ν2),通过2×2的光耦合器将两束光汇聚在一起后,通过在单行载流子平衡光电探测器中进行自卷积,产生在中心频率fth=50GHz处的电噪声,如附图3所示,fth取决于两个单模激光器的中心波长。
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种量子相位波动产生毫米波噪声的装置,其特征在于,所述装置包括:第一单模激光器、第二单模激光器、光耦合器以及单行载流子平衡光电探测器;
所述第一单模激光器的输出端接光耦合器的第一输入端口;所述第二单模激光器的输出端接光耦合器的第二输入端口;所述光耦合器的第一输出端口接单行载流子平衡光电探测器的第一输入端口;所述光耦合器的第二输出端口接单行载流子平衡光电探测器的第二输入端口;所述平衡光电探测器的输出端口输出宽带毫米波噪声信号。
2.根据权利要求1所述的量子相位波动产生毫米波噪声的装置,其特征在于,所述第一单模激光器与第二单模激光器为半导体激光器。
3.根据权利要求2所述的量子相位波动产生毫米波噪声的装置,其特征在于,所述第一单模激光器与第二单模激光器工作在低于阈值电流条件下。
4.根据权利要求3所述的量子相位波动产生毫米波噪声的装置,其特征在于,所述第一单模激光器与第二单模激光器产生不同中心频率的量子相位波动。
5.根据权利要求1-4任一项所述的量子相位波动产生毫米波噪声的装置,其特征在于,所述单行载流子平衡光电探测器为采用波导集成的单行载流子平衡光电探测器。
6.根据权利要求5所述的量子相位波动产生毫米波噪声的装置,其特征在于,所述光耦合器为2×2的光耦合器。
7.一种量子相位波动产生毫米波噪声的方法,其特征在于,所述方法包括以下步骤:
S1:利用第一单模激光器和第二单模激光器产生不同中心波长的量子相位波动的光谱;
S2:将S1产生的具有量子相位波动的光谱输入光耦合器进行耦合;
S3:将光耦合器输出的耦合信号输入单行载流子平衡光电探测器进行拍频,即光谱到电谱的转换,从而输出毫米波噪声信号。
8.根据权利要求7所述的量子相位波动产生毫米波噪声的方法,其特征在于,S3具体为:单行载流子平衡光电探测器将不同中心频率的量子相位波动的光谱进行自卷积产生对应中心频率的电噪声。
9.根据权利要求8所述的量子相位波动产生毫米波噪声的方法,其特征在于,中心频率的计算公式为:
Figure FDA0002664011460000021
其中,c为波速,λ1为第一单模激光器的中心波长,λ2为第二单模激光器的中心波长。
10.根据权利要求7-9任一项所述的量子相位波动产生毫米波噪声的方法,其特征在于,S3输出的毫米波噪声信号的功率谱的计算公式为:
Figure FDA0002664011460000022
其中,Si(f)为功率谱,
Figure FDA0002664011460000023
表示单行载流子平衡光电探测器的响应度,S(ν1)为第一单模激光器的光谱表达式,S(ν2)为第一单模激光器的光谱表达式。
CN202010913131.4A 2020-09-03 2020-09-03 一种量子相位波动产生毫米波噪声的装置及方法 Pending CN112217477A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010913131.4A CN112217477A (zh) 2020-09-03 2020-09-03 一种量子相位波动产生毫米波噪声的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010913131.4A CN112217477A (zh) 2020-09-03 2020-09-03 一种量子相位波动产生毫米波噪声的装置及方法

Publications (1)

Publication Number Publication Date
CN112217477A true CN112217477A (zh) 2021-01-12

Family

ID=74050138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010913131.4A Pending CN112217477A (zh) 2020-09-03 2020-09-03 一种量子相位波动产生毫米波噪声的装置及方法

Country Status (1)

Country Link
CN (1) CN112217477A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644981A (zh) * 2021-06-24 2021-11-12 广东工业大学 一种产生频谱平坦的毫米波噪声的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170115960A1 (en) * 2015-10-27 2017-04-27 Fundació Institut De Ciències Fotòniques Process for quantum random number generation in a multimode laser cavity
US20180232208A1 (en) * 2011-12-07 2018-08-16 Quintessencelabs Pty Ltd. Integrated quantum-random noise generator using quantum vacuum states of light
US20190050203A1 (en) * 2017-08-11 2019-02-14 Ut-Battelle, Llc Quantum random number generator
CN110850129A (zh) * 2019-10-18 2020-02-28 广东工业大学 一种宽带可控的光子毫米波噪声信号发生器及其信号发生方法
CN111504456A (zh) * 2020-05-19 2020-08-07 宝宇(武汉)激光技术有限公司 一种精细光谱探测装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180232208A1 (en) * 2011-12-07 2018-08-16 Quintessencelabs Pty Ltd. Integrated quantum-random noise generator using quantum vacuum states of light
US20170115960A1 (en) * 2015-10-27 2017-04-27 Fundació Institut De Ciències Fotòniques Process for quantum random number generation in a multimode laser cavity
US20190050203A1 (en) * 2017-08-11 2019-02-14 Ut-Battelle, Llc Quantum random number generator
CN110850129A (zh) * 2019-10-18 2020-02-28 广东工业大学 一种宽带可控的光子毫米波噪声信号发生器及其信号发生方法
CN111504456A (zh) * 2020-05-19 2020-08-07 宝宇(武汉)激光技术有限公司 一种精细光谱探测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王天亮: "毫米波信号光纤传输关键技术的研究", 《中国博士学位论文全文数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644981A (zh) * 2021-06-24 2021-11-12 广东工业大学 一种产生频谱平坦的毫米波噪声的系统和方法
CN113644981B (zh) * 2021-06-24 2022-10-14 广东工业大学 一种产生频谱平坦的毫米波噪声的系统和方法
WO2022267142A1 (zh) * 2021-06-24 2022-12-29 广东工业大学 一种产生频谱平坦的毫米波噪声的系统和方法
US20230261753A1 (en) * 2021-06-24 2023-08-17 Guangdong University Of Technology System and method for generating millimeter wave noise with flat radio frequency spectrum
US11811457B2 (en) 2021-06-24 2023-11-07 Guangdong University Of Technology System and method for generating millimeter wave noise with flat radio frequency spectrum

Similar Documents

Publication Publication Date Title
CN109039464B (zh) 一种基于上变频的微波光子毫米波超宽带信号产生方法及装置
CN101873172B (zh) 一种基于光纤环形谐振腔的毫米波发生装置及其方法
CN110850129B (zh) 一种宽带可控的光子毫米波噪声信号发生器及其信号发生方法
CN110417477B (zh) 一种40GHz毫米波信号的光学产生装置
CN102751644B (zh) 基于受激布里渊散射效应的宽带连续可调谐光电振荡器
CN108199776A (zh) 一种基于光电振荡器的微波光子上变频装置及方法
CN107727367B (zh) 一种激光器频率噪声测量方法及系统
WO2018041126A1 (zh) 基于微环谐振腔的多倍频锁模激光器
CN202695962U (zh) 基于受激布里渊散射效应的宽带连续可调谐光电振荡器
CN108988105A (zh) 一种高功率宽带超平坦微波频率梳的产生装置及其方法
CN114336228B (zh) 一种全光太赫兹振荡器主动频率稳定系统及方法
WO2018072661A1 (zh) 基于单向载流子传输光电探测器的太赫兹发生系统
JP5211117B2 (ja) テラヘルツ連続波発生装置及び方法
CN112217477A (zh) 一种量子相位波动产生毫米波噪声的装置及方法
CN110768668A (zh) 光子噪声信号发生器及其信号发生方法
TWI554819B (zh) 光電式微波產生裝置及方法
CN110850130B (zh) 一种宽带噪声信号发生器及其信号发生方法
CN102411141B (zh) 一种用于混沌激光测距的混沌光发射装置
CN111064526A (zh) 一种宽带光子毫米波噪声信号产生装置及方法
Testa et al. Experimental evaluation of silicon photonics transceiver operating at 120° C for 5G antenna array systems
CN110830120A (zh) 一种宽带噪声源的产生装置及其信号产生方法
Sharma et al. IS OWC WDM System Performance Optimization at 40 Gbps Bit Rate with Improved Link Distance of 10000 km
CN111555809B (zh) 一种光生毫米波噪声发生器
CN107733641A (zh) 高速高可调带宽量子平衡零差探测器及其控制方法
CN111834869A (zh) 用于高功率窄谱光纤放大的混沌光源全光相位调制种子源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination