WO2018041126A1 - 基于微环谐振腔的多倍频锁模激光器 - Google Patents

基于微环谐振腔的多倍频锁模激光器 Download PDF

Info

Publication number
WO2018041126A1
WO2018041126A1 PCT/CN2017/099605 CN2017099605W WO2018041126A1 WO 2018041126 A1 WO2018041126 A1 WO 2018041126A1 CN 2017099605 W CN2017099605 W CN 2017099605W WO 2018041126 A1 WO2018041126 A1 WO 2018041126A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
port
micro
division multiplexer
laser
Prior art date
Application number
PCT/CN2017/099605
Other languages
English (en)
French (fr)
Inventor
王伟强
张文富
王屹山
赵卫
Original Assignee
中国科学院西安光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院西安光学精密机械研究所 filed Critical 中国科学院西安光学精密机械研究所
Publication of WO2018041126A1 publication Critical patent/WO2018041126A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking

Definitions

  • the invention relates to a mode-locked laser, in particular to an ultra-high frequency-frequency mode-locked laser based on a dissipative four-wave mixing effect, and more particularly to an ultra-high frequency-frequency mode-locked laser based on a microring resonator. And its pulse rate can be freely adjusted in steps of the free spectral range of the intracavity microring resonator.
  • high-speed optical pulse signals can be generated by mode-locked lasers and using high-speed opto-adjusted light waves.
  • the latter scheme is limited by the bandwidth of the optical modulator and the electrical signal generator, which currently can only reach tens of gigahertz, and its cost varies with rate.
  • the increase has been greatly increased.
  • the mode-locked laser does not need high-frequency electronic devices, and has the advantages of simple structure, low cost, high stability, and the like, and has extremely important applications in technical research and industrial fields such as optical communication, optical sensing, and super-continuous spectrum generation.
  • high-frequency multi-frequency mode-locked lasers have extremely important applications in the fields of optical communication, high-resolution photon analog-to-digital conversion, and optical frequency combing.
  • the repetitive frequency of a fiber laser is only a few megahertz to several tens of megahertz, which is not conducive to its application in ultra-high-frequency pulses such as optical communication.
  • ultra-high-frequency pulses such as optical communication.
  • one is to shorten the cavity length of the laser and increase the mode interval of the laser cavity.
  • an ultra-high 10 GHz repetitive optical pulse can be obtained.
  • the second scheme is based on a mode-locked laser that dissipates the four-wave mixing effect.
  • This type of laser can realize the mode-locked pulse of re-frequency above THz, but it often has multiple longitudinal modes instability, which cannot be practically applied, although it is heavy.
  • the frequency can be changed by adjusting the free spectral range of the intracavity filter, but it is difficult to achieve accurate frequency multiplication of the rate.
  • the third method is to use harmonic mode-locking.
  • the passive harmonic mode-locking has been reported to produce optical pulses of several tens of gigahertz.
  • Active harmonic mode-locked lasers can even generate hundreds of gigahertz of optical pulses.
  • Wave-mode-locked lasers are susceptible to interference from different harmonic modes, resulting in time jitter and amplitude fluctuations.
  • active mode-locked lasers are also limited by RF signals and costly; this method can theoretically achieve pulse rate multiplication, but achieve super
  • the high harmonic frequency has a high harmonic order, which is difficult to implement in actual operation, and the control system is extremely strict.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种基于微环谐振腔的多倍频锁模激光器,包括一次通过腔内单模光纤(7)连接的第一波分复用器(12)、掺铒增益光纤(13)、第二波分复用器(14)、光隔离器(2)、偏振控制器(3)、四端口微环谐振腔(4)和光延迟线(6),其中两个波分复用器(12,14)的输入端分别设置有泵浦光源(11,15)。激光器的重频可以微环谐振腔的自由光谱范围为步长进行调节,从而提升目前基于耗散四波混频效率锁模激光器的应用灵活性。

Description

基于微环谐振腔的多倍频锁模激光器 技术领域
本发明涉及一种锁模激光器,具体涉及一种基于耗散四波混频效应的超高重频锁模激光器,更具体的涉及一种基于微环谐振腔的超高重频锁模激光器,且其脉冲速率能以腔内微环谐振腔自由光谱范围为步长自由调节。
背景技术
通常高速光脉冲信号可以由锁模激光器和使用高速光电调整光波产生,后一种方案受限于光调制器和电信号产生器带宽,目前只能达到数十吉赫兹,并且其成本随着速率的提升大幅度的增加。而锁模激光器无需高频电子器件,其具有结构简单、成本低廉、稳定性高等优点,在光通信、光学传感、超连续谱产生等技术研究和工业领域有着极为重要的应用。特别是高重频的多倍频锁模激光器在光通信、高分辨率的光子模数转换、光频梳等领域有着极为重要的应用。
通常光纤激光器的重频只有几兆到几十兆赫兹,不利于其在光通信等需要超高重频脉冲方面的应用。为提升光纤锁模激光器的重频,已有几种解决方案:一是通过缩短激光器的腔长,提升激光腔的模式间隔的方法,利用该方案可以得到超高10GHz重频的光脉冲,然而继续缩短腔长将无法得到足够的腔内增益,因此无法产生实用的光脉冲,且其重频随着激光腔的确定而锁定,无法进行调节。第二种方案是基于耗散四波混频效应的锁模激光器,该类激光器可以实现THz以上重频的锁模脉冲,但其往往存在多纵模不稳定性,无法实际应用,虽然其重频可以通过调节腔内滤波器自由谱范围来改变,但是很难实现速率的精确倍频。第三种方法是采用谐波锁模的方法,已报道的被动谐波锁模可以产生数十吉赫兹的光脉冲,主动谐波锁模激光器甚至可以产生数百吉赫兹的光脉冲,然而谐波锁模激光器容易受到不同谐波模式的干扰,产生时间抖动和幅度波动,此外主动锁模激光器还受限于射频信号,成本高;该方法理论上可以实现脉冲速率的倍频,然而实现超高重频时其谐波阶数很高,在实际操作中很难实现,且对控制系统要求极为严格。
发明内容

Claims (1)

  1. 针对光通信系统、片上光信息处理对超高重频光信号,特别是可以速率可以多倍增长的光信号的需求,本发明提供了一种基于微环谐振腔的重频可倍增的锁模激光器,其产生的光脉冲的重频能够以微环谐振腔自由光谱范围为步长自由调节,该锁模激光器具有结构简单、操作容易、无多纵模不稳定性问题等优点。
    本发明的技术方案是:
    一种基于微环谐振腔的多倍频锁模激光器,其特殊之处是,包括由单模光纤7连接多个光学器件形成的环形激光腔;所述多个光学器件包括光纤放大器1、光隔离器2、偏振控制器3、四端口微环谐振腔4、光延迟线6;所述四端口微环谐振腔4包括衬底41、包层42、第一直波导43、第二直波导44和环形波导45;所述第一直波导43的两端分别为Input端口46和Through端口47;所述第二直波导44的两端分别为Drop端口49和Add端口48;所述光信号从Input端口46进入微环谐振腔4,满足微环谐振腔4谐振条件的频率从Drop端口49输出;所述激光器的输出是从Through端口47输出的未能完全耦合进入微环谐振腔4的部分光信号。
    上述光纤放大器1、光隔离器2、偏振控制器3、四端口微环谐振腔4、光延迟线6可以首尾依次相连。
    上述多个光学器件还包括光分束器5;所述激光器的输出是从Through端口47输出的未能完全耦合进入微环谐振腔4的部分光信号或者是利用光分束器从环形激光腔内提取的部分光信号。
    上述光纤放大器1、光隔离器2、偏振控制器3、四端口微环谐振腔4、光分束器5、光延迟线6可以首尾依次相连。
    上述光纤放大器1为商用短纤掺饵光学放大器;
    或者,为高增益的半导体光放大器;
    或者,包括一个或两个泵浦光源以及依次串连的第一波分复用器12、掺铒增益光纤13、第二波分复用器14;其中,一个泵浦光源输出端接第一波分复用器12或第二波分复用器14的输入端,或者两个泵浦光源输出端分别接第一波分复用器12和第二波分复用器14的输入端;所述第一波分复用器12和第二波分复用器14的输出端分别作为光纤放大器1的两端接入环形激光腔。
PCT/CN2017/099605 2016-08-31 2017-08-30 基于微环谐振腔的多倍频锁模激光器 WO2018041126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610793883.5A CN106229805B (zh) 2016-08-31 2016-08-31 基于微环谐振腔的多倍重频速率锁模激光器
CN201610793883.5 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041126A1 true WO2018041126A1 (zh) 2018-03-08

Family

ID=58074419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099605 WO2018041126A1 (zh) 2016-08-31 2017-08-30 基于微环谐振腔的多倍频锁模激光器

Country Status (2)

Country Link
CN (1) CN106229805B (zh)
WO (1) WO2018041126A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570897A (zh) * 2020-11-17 2021-03-30 华东师范大学重庆研究院 飞秒脉冲簇产生方法及石英微流控芯片制造装置
CN112946342A (zh) * 2021-01-25 2021-06-11 重庆大学 基于电光聚合物和微环谐振器的电压测量系统及测量方法
CN114397261A (zh) * 2021-12-16 2022-04-26 光子集成(温州)创新研究院 一种傅里叶红外光谱仪及其应用
CN115037379A (zh) * 2022-08-10 2022-09-09 之江实验室 基于硅基微环调制器的光子rf倍频芯片及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229805B (zh) * 2016-08-31 2021-10-12 中国科学院西安光学精密机械研究所 基于微环谐振腔的多倍重频速率锁模激光器
KR20210150225A (ko) * 2020-06-03 2021-12-10 삼성전자주식회사 파장 가변 레이저 광원 및 이를 포함하는 광 조향 장치
CN113075831A (zh) * 2021-03-22 2021-07-06 西北工业大学 一种氮化硅微环集成硒化镓薄膜的光频率转换器
CN115173207B (zh) * 2022-06-24 2023-04-07 云南师范大学 基于光开关的激光波长切换的结构及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529598A (zh) * 2016-03-02 2016-04-27 北方工业大学 可调线性啁啾毫米波光发生器
CN105680301A (zh) * 2016-03-14 2016-06-15 中国科学院西安光学精密机械研究所 基于微环谐振腔的可调频率间隔的光频梳产生系统和方法
CN205609949U (zh) * 2016-03-14 2016-09-28 中国科学院西安光学精密机械研究所 基于微环谐振腔的可调频率间隔的光频梳产生系统
CN106229805A (zh) * 2016-08-31 2016-12-14 中国科学院西安光学精密机械研究所 基于微环谐振腔的多倍频锁模激光器
CN206195145U (zh) * 2016-08-31 2017-05-24 中国科学院西安光学精密机械研究所 基于微环谐振腔的多倍频锁模激光器
CN107104353A (zh) * 2017-05-09 2017-08-29 中国科学院西安光学精密机械研究所 一种基于微环谐振腔的自锁定双光频梳产生系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826696A (zh) * 2009-03-02 2010-09-08 北京大学 一种高能量低重复频率的光纤激光器
CN102361211A (zh) * 2011-10-08 2012-02-22 哈尔滨工程大学 基于微腔控制反馈效应的光纤激光器
CN103838055A (zh) * 2014-03-03 2014-06-04 北京航空航天大学 一种基于梳齿反馈调控的光学微腔光频梳产生系统
CN103825174B (zh) * 2014-03-11 2016-10-05 天津理工大学 一种基于石墨烯和硅基微环结构的被动锁模光纤激光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529598A (zh) * 2016-03-02 2016-04-27 北方工业大学 可调线性啁啾毫米波光发生器
CN105680301A (zh) * 2016-03-14 2016-06-15 中国科学院西安光学精密机械研究所 基于微环谐振腔的可调频率间隔的光频梳产生系统和方法
CN205609949U (zh) * 2016-03-14 2016-09-28 中国科学院西安光学精密机械研究所 基于微环谐振腔的可调频率间隔的光频梳产生系统
CN106229805A (zh) * 2016-08-31 2016-12-14 中国科学院西安光学精密机械研究所 基于微环谐振腔的多倍频锁模激光器
CN206195145U (zh) * 2016-08-31 2017-05-24 中国科学院西安光学精密机械研究所 基于微环谐振腔的多倍频锁模激光器
CN107104353A (zh) * 2017-05-09 2017-08-29 中国科学院西安光学精密机械研究所 一种基于微环谐振腔的自锁定双光频梳产生系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570897A (zh) * 2020-11-17 2021-03-30 华东师范大学重庆研究院 飞秒脉冲簇产生方法及石英微流控芯片制造装置
CN112946342A (zh) * 2021-01-25 2021-06-11 重庆大学 基于电光聚合物和微环谐振器的电压测量系统及测量方法
CN114397261A (zh) * 2021-12-16 2022-04-26 光子集成(温州)创新研究院 一种傅里叶红外光谱仪及其应用
CN115037379A (zh) * 2022-08-10 2022-09-09 之江实验室 基于硅基微环调制器的光子rf倍频芯片及其控制方法
CN115037379B (zh) * 2022-08-10 2022-11-25 之江实验室 基于硅基微环调制器的光子rf倍频芯片及其控制方法

Also Published As

Publication number Publication date
CN106229805B (zh) 2021-10-12
CN106229805A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018041126A1 (zh) 基于微环谐振腔的多倍频锁模激光器
CN105428987B (zh) 基于自相似放大器的高功率超短脉冲光学频率梳产生方法
US20150372447A1 (en) Apparatus and method for generating pulse laser
CN109494559B (zh) 孤子光频梳产生装置及操作方法
CN103762496B (zh) 基于全固态飞秒激光器的天文光学频率梳装置
CN107706701B (zh) 一种低相位噪声光频梳产生方法及系统、微波生成方法及系统
CN105470800B (zh) 基于自相似放大器的高功率超短脉冲光学频率梳装置
CN104218438B (zh) 多腔结构光纤激光器及提高光纤激光器重复频率的方法
CN110600973B (zh) 基于非线性光纤有源光反馈产生宽带混沌激光装置及方法
CN108508676B (zh) 基于相位调制和光纤腔孤子的间隔可调光频梳及产生方法
CN107086428B (zh) 一种高峰值功率的窄线宽光纤脉冲激光器及其使用方法
CN102593701A (zh) 一种超连续谱光纤激光器
CN103825171A (zh) 一种基于光子晶体光纤的傅里域锁模光纤激光器
US20130156051A1 (en) Stable mode-locked laser for high repetition rate operation
CN115799966A (zh) 基于光频梳频率提取与自注入锁定的光信号生成方法
US8953240B2 (en) Frequency-chirped semiconductor diode laser phase-locked optical system
Arroyo-Almanza et al. Spectral properties and synchronization scenarios of two mutually delay-coupled semiconductor lasers
CN109787081B (zh) 中红外超短脉冲激光光源
CN108879302B (zh) 一种基于光参量振荡的光频率梳产生器
CN102610986A (zh) 内置饱和吸收体元件的锁模光纤激光器
CN109120394B (zh) 一种时延特征抑制的混沌信号发生装置
CN206195145U (zh) 基于微环谐振腔的多倍频锁模激光器
US11929585B2 (en) Mixer-based microwave signal generation device
CN115425512A (zh) 一种基于单片集成正交双孤子光梳的微波产生方法
Dong et al. A coupled all-optical microwave oscillator with large tuning range based on SBS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845428

Country of ref document: EP

Kind code of ref document: A1