WO2022267142A1 - 一种产生频谱平坦的毫米波噪声的系统和方法 - Google Patents

一种产生频谱平坦的毫米波噪声的系统和方法 Download PDF

Info

Publication number
WO2022267142A1
WO2022267142A1 PCT/CN2021/107723 CN2021107723W WO2022267142A1 WO 2022267142 A1 WO2022267142 A1 WO 2022267142A1 CN 2021107723 W CN2021107723 W CN 2021107723W WO 2022267142 A1 WO2022267142 A1 WO 2022267142A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
optical
millimeter
spectrum
light
Prior art date
Application number
PCT/CN2021/107723
Other languages
English (en)
French (fr)
Inventor
王云才
黄奕敏
孙粤辉
高震森
程昱
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US18/022,976 priority Critical patent/US11811457B2/en
Publication of WO2022267142A1 publication Critical patent/WO2022267142A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/508Pulse generation, e.g. generation of solitons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/006Devices for generating or processing an RF signal by optical means

Definitions

  • the present invention relates to the field of signal generators, and more particularly, to a system and method for generating millimeter-wave noise with flat spectrum.
  • a noise generator is an important device that can test device parameters and detect system performance.
  • the noise signal output by it has the characteristics of wide frequency band, flat power spectrum, and controllable power.
  • noise generator At the heart of the noise generator is the noise source.
  • Common noise sources of existing noise generators include: noise generated by physical devices such as resistors, Schottky diodes, field effect transistors, bipolar transistors, Zener diodes, and avalanche diodes.
  • noise generated by physical devices such as resistors, Schottky diodes, field effect transistors, bipolar transistors, Zener diodes, and avalanche diodes.
  • resistors such as resistors, Schottky diodes, field effect transistors, bipolar transistors, Zener diodes, and avalanche diodes.
  • Chinese invention patent CN110098555B discloses "ultra-broadband white noise source based on parallel connection of multi-channel multi-mode chaotic lasers".
  • electronic noise source its structure is relatively simple and easy to implement; and the present invention adopts the method of photoelectric conversion, effectively avoids the bottleneck of electronic bandwidth, can greatly improve the bandwidth of generating white noise; the power of the present invention to generate white noise depends on Depending on the power of the chaotic laser and the responsivity of the photodetector 4. Therefore, the power of ultra-bandwidth white noise is adjustable and the maximum output power is higher, but the noise generated by this method also has the disadvantage of uneven spectrum; in addition, this method requires more lasers and complex structures.
  • the present invention provides a system and method for generating millimeter-wave noise with flat spectrum to solve the technical defects of uneven frequency spectrum and insufficient bandwidth of current millimeter-wave noise generators.
  • a system for generating millimeter-wave noise with a flat spectrum comprising a first light emitting module, a second light emitting module, an optical coupler, and a photodetector; the transmission of noise optical signals output by the first light emitting module and the second light emitting module To the input end of the optical coupler, the optical coupler couples the noise optical signal and inputs it to the input end of the photodetector, and the photodetector performs beat frequency to realize the mapping conversion from spectrum to spectrum , output flat millimeter wave noise.
  • the optical noise signal is used as the noise source, and compared with electronic noise sources such as diodes, noise with a flat spectrum can be generated in the millimeter wave band.
  • this application proposes to use multiple noise sources with Gaussian spectrum to beat frequency to generate broadband millimeter-wave noise. The amplitude of the generated optical noise signal is larger and the spectrum is flatter.
  • the first light emitting module outputs a noise optical signal with a central wavelength of ⁇ 0 , a linewidth of B, and a Gaussian spectrum; the second light emitting module outputs a central wavelength of ⁇ 1 , ⁇ 2 , ..., ⁇ n (n ⁇ 2), n beams of noise optical signals with a linewidth of B and a Gaussian spectrum.
  • the first light emitting module includes a first ASE light source and a first optical filter, the output end of the first ASE light source is electrically connected to the input end of the optical filter, and the optical filter The output end is electrically connected with the input end of the optical coupler.
  • the second light emitting module includes a second ASE light source and a spectroscopic processor, the output end of the second ASE light source is electrically connected to the input end of the spectroscopic processor, and the output port of the spectroscopic processor It is electrically connected with the input end of the optical coupler.
  • the optical splitter includes an optical splitter, a second optical filter and an optical splitter coupler; the number of the second optical filter is set to several, and the second ASE light source is electrically connected to the input end of the optical splitter The output end of the optical splitter is electrically connected to the input end of several second optical filters, and the output end of several second optical filters is electrically connected to the input end of the optical splitter The output end of the optical coupler is electrically connected with the input end of the optical coupler.
  • the splitting processor includes an arrayed waveguide grating and a dense lightwave multiplexing module
  • the second ASE light source is electrically connected to the input end of the arrayed waveguide grating
  • the output end of the arrayed waveguide grating is connected to the The input end of the intensive optical multiplexing module is electrically connected
  • the output end of the intensive optical multiplexing module is electrically connected to the input end of the optical coupler.
  • a method for generating spectrally flat millimeter-wave noise, applied to a system for generating spectrally flat millimeter-wave noise comprising the following steps:
  • the first optical transmitting module outputs a noise optical signal with a Gaussian spectrum, and transmits it to the optical coupler 3;
  • the second light emitting module outputs n beams of noise optical signals with a Gaussian spectrum, and transmits them to the optical coupler 3;
  • S3 Optically coupling the noise generated by the first light emitting module and the second light emitting module into the optical coupler, and transmit the coupled optical signal to the photodetector;
  • S4 The photodetector beats the frequency to realize the mapping conversion from the spectrum to the spectrum, and outputs flat millimeter wave noise.
  • step S2 when the second light emitting module outputs two beams of noise light, the central wavelengths of the two beams of light are ⁇ 1 and ⁇ 2 respectively, and the line widths are both B, resulting in a flat mm that covers a to b GHz Wave noise; where, a and b are equal to c/( ⁇ 1 - ⁇ 0 ) and c/( ⁇ 2 - ⁇ 0 ) respectively, c is the speed of light, and the flatness m of the millimeter wave noise generated satisfies the formula:
  • step S2 when the second light emitting module outputs n beams of noise light, it is assumed that the central wavelengths of the n beams of light are respectively ⁇ 1 , ⁇ 2 , ..., ⁇ n (n ⁇ 3), resulting in coverage a to b GHz flat millimeter-wave noise, where a and b are equal to c/( ⁇ 1 - ⁇ 0 ) and c/( ⁇ n - ⁇ 0 ) respectively, c is the speed of light, and the flatness m of the millimeter-wave noise generated satisfies the formula:
  • the noise light output by the second light emitting module is noise light having a Gaussian spectral shape.
  • the present invention provides a system and method for generating millimeter-wave noise with a flat spectrum.
  • Optical noise signals are used as a noise source.
  • noise with a flat spectrum can be generated in the millimeter-wave band.
  • this application proposes to use multiple noise sources with Gaussian spectrum to beat frequency to generate broadband millimeter-wave noise. The amplitude of the generated optical noise signal is larger and the spectrum is flatter.
  • Fig. 1 is a schematic diagram of a system in which the optical processor of the present invention is an optical splitter, a second optical filter and an optical coupler;
  • Fig. 2 is a schematic diagram of a system in which the splitting processor of the present invention is an arrayed waveguide grating and a dense lightwave multiplexing module;
  • Fig. 3 is a flow chart of the method of the present invention.
  • Fig. 4 is the spectrogram of the output light of the first light emitting module of the present invention.
  • Fig. 5 is the spectrogram of the output light of the second light emitting module of the present invention.
  • Fig. 6 is the flat millimeter wave noise figure that the photodetector of the present invention outputs
  • Fig. 7 is a numerical simulation diagram of a system in which the optical processor of the present invention is an optical splitter, a second optical filter, and an optical coupler;
  • Fig. 8 is a numerical simulation diagram of a system in which the splitting processor of the present invention is an arrayed waveguide grating and a dense lightwave multiplexing module;
  • first light emitting module 2. second light emitting module; 3. optical coupler; 4. photodetector; 11. first ASE light source; 12. first optical filter; 21.
  • a kind of system that produces the millimeter wave noise of spectral flatness comprises the first light emitting module 1, the second light emitting module 2, optical coupler 3, photodetector 4;
  • the first light emitting module 1 and The noise optical signal output by the second light emitting module 2 is transmitted to the input end of the optical coupler 3, and the optical coupler 3 couples the noise optical signal and inputs it to the input end of the photodetector 4, so
  • the photodetector 4 beats the frequency to realize the mapping conversion from the spectrum to the spectrum, and outputs flat millimeter wave noise.
  • the optical noise signal is used as the noise source, and compared with electronic noise sources such as diodes, noise with a flat spectrum can be generated in the millimeter wave band.
  • this application proposes to use multiple noise sources with Gaussian spectrum to beat frequency to generate broadband millimeter-wave noise. The amplitude of the generated optical noise signal is larger and the spectrum is flatter.
  • the first optical transmitting module 1 outputs a noise optical signal with a central wavelength of ⁇ 0 , a linewidth of B, and a Gaussian spectrum; the second optical transmitting module 2 outputs a central wavelength of ⁇ 1 , ⁇ 2 , ..., ⁇ n (n ⁇ 2), n beams of noise optical signals with line width B and Gaussian spectrum.
  • the first light emitting module 1 includes a first ASE light source 11 and a first optical filter 12, the output end of the first ASE light source 11 is electrically connected to the input end of the first optical filter 12 , the output end of the first optical filter 12 is electrically connected to the input end of the optical coupler 3 .
  • the second light emitting module 2 includes a second ASE light source 21 and a spectroscopic processor, the output end of the second ASE light source 21 is electrically connected to the input end of the spectroscopic processor, and the spectroscopic processor The output end of the optical coupler is electrically connected with the input end of the optical coupler 3 .
  • the splitting processor includes a splitter 221, a second optical filter 222 and a splitting coupler 223; the number of the second optical filter 222 is set to 2, and the second ASE light source 21 and the splitting
  • the input ends of the optical splitter 221 are electrically connected, the output ends of the optical splitter 221 are electrically connected to the input ends of the two second optical filters 222, and the output ends of the two second optical filters 222 are electrically connected to the two second optical filters 222.
  • the input end of the optical splitter 223 is electrically connected, and the output end of the optical splitter 223 is electrically connected to the input end of the optical coupler 3 .
  • a system for generating millimeter-wave noise with a flat spectrum includes a first light emitting module 1, a second light emitting module 2, an optical coupler 3, and a photodetector 4; the first light emitting module 1 and The noise optical signal output by the second light emitting module 2 is transmitted to the input end of the optical coupler 3, and the optical coupler 3 couples the noise optical signal and inputs it to the input end of the photodetector 4, so The photodetector 4 beats the frequency to realize the mapping conversion from the spectrum to the spectrum, and outputs flat millimeter wave noise.
  • the optical noise signal is used as the noise source, and compared with electronic noise sources such as diodes, noise with a flat spectrum can be generated in the millimeter wave band.
  • this application proposes to use multiple noise sources with Gaussian spectrum to beat frequency to generate broadband millimeter-wave noise. The amplitude of the generated optical noise signal is larger and the spectrum is flatter.
  • the first optical transmitting module 1 outputs a noise optical signal with a central wavelength of ⁇ 0 , a linewidth of B, and a Gaussian spectrum; the second optical transmitting module 2 outputs a central wavelength of ⁇ 1 , ⁇ 2 , ..., ⁇ n (n ⁇ 2), n beams of noise optical signals with line width B and Gaussian spectrum.
  • the first light emitting module 1 includes a first ASE light source 11 and a first optical filter 12, the output end of the first ASE light source 11 is electrically connected to the input end of the first optical filter 12 , the output end of the first optical filter 12 is electrically connected to the input end of the optical coupler 3 .
  • the second light emitting module 2 includes a second ASE light source 21 and a spectroscopic processor, the output end of the second ASE light source 21 is electrically connected to the input end of the spectroscopic processor, and the spectroscopic processor The output end of the optical coupler is electrically connected with the input end of the optical coupler 3 .
  • the splitting processor includes an arrayed waveguide grating 224 and a dense optical multiplexing module 225
  • the second ASE light source 21 is electrically connected to the input end of the arrayed waveguide grating 224
  • the arrayed waveguide grating 224 The output end is electrically connected to the input end of the intensive light multiplexing module 225
  • the output end of the intensive optical multiplexing module 225 is electrically connected to the input end of the optical coupler 3 .
  • a method for generating spectrally flat millimeter-wave noise is applied to a system for generating spectrally flat millimeter-wave noise, including the following steps:
  • the first optical transmitting module 1 outputs a noise optical signal with a central wavelength of ⁇ 0 , a linewidth of B, and a Gaussian spectrum, and transmits it to the optical coupler 3;
  • the second optical transmitting module 2 outputs n beams of noise optical signals with center wavelengths ⁇ 1 , ⁇ 2 , ..., ⁇ n (n ⁇ 2), line width B, and Gaussian spectrum, and transmits them to the optical coupler 3;
  • the photodetector 4 beats the frequency to realize the mapping conversion from the spectrum to the spectrum, and outputs flat millimeter wave noise.
  • step S2 when the second light emitting module 2 outputs two beams of noise light, the central wavelengths of the two beams of light are ⁇ 1 and ⁇ 2 respectively, and the line widths are both B, resulting in a flat Millimeter wave noise; where a and b are equal to c/( ⁇ 1 - ⁇ 0 ) and c/( ⁇ 2 - ⁇ 0 ) respectively, c is the speed of light, and the flatness m of the millimeter wave noise generated satisfies the formula:
  • step S2 when the second light emitting module 2 outputs n beams of noise light, it is assumed that the central wavelengths of the n beams of light are respectively ⁇ 1 , ⁇ 2 , ..., ⁇ n (n ⁇ 3), generating coverage a to Flat millimeter-wave noise at b GHz, where a and b are equal to c/( ⁇ 1 - ⁇ 0 ) and c/( ⁇ n - ⁇ 0 ) respectively, c is the speed of light, and the flatness m of the millimeter-wave noise generated satisfies the formula:
  • the noise light output by the second light emitting module 2 is noise light having a Gaussian spectral shape.
  • the first optical transmitting module 1 outputs a noise optical signal with a central wavelength of ⁇ 0 , a linewidth of B, and a Gaussian spectrum
  • the second optical transmitting module 2 outputs a central wavelength of ⁇ 1 , ⁇ 2 , a noisy optical signal with a linewidth of B and a Gaussian spectrum.
  • the first light emitting module 1 includes a first ASE light source 11, a first optical filter 12, and the second light emitting module 2 includes a second ASE light source 21, a beam splitter 221, a second optical filter 222, an optical coupling Device 3.
  • the first ASE light source 11 and the second ASE light source 21 are amplified spontaneous emission (ASE) broad-spectrum incoherent light sources, the number of the second optical filter 222 is set to 2, and the central wavelength of the first optical filter 12 is 1550nm, the center wavelengths of the two second optical filters 222 are 1550.72nm and 1551.12nm respectively, generating millimeter-wave noise with a frequency range of 90-140GHz, and the flatness of the spectrum is 1dB. At this time, the generated millimeter-wave noise
  • the flatness m and spectral line width B satisfy the following formula:
  • the spectral line width B that can be solved by the above formula should be 0.2718nm, i.e. the first optical filter 12 and The spectral linewidth of the second optical filter 222 is 0.2718nm.
  • the first ASE light source 11 passes through the first optical filter 12 to generate a Gaussian spectrum with a center wavelength of 1550 nm and a line width of 0.2718 nm.
  • the second ASE light source 21 splits the optical signal into two paths, and one path of the optical signal passes through A second optical filter 222 produces a Gaussian spectrum with a central wavelength of 1550.72nm and a linewidth of 0.2718nm, and another optical signal passes through another second optical filter 222 to produce a central wavelength of 1551.12nm and a linewidth of 0.2718nm Gaussian spectrum
  • the optical signal through the two second optical filters 222 is coupled into the optical coupler 3
  • the optical noise signal emitted by the first optical transmitting module 1 and the second optical transmitting module 2 is coupled
  • the coupled optical signal is output from the output end of the optical coupler 3, and input to the input end of the photodetector 4, and beat frequency is performed on the photodetector 4 to realize the spectrum to The spectrum is
  • the first optical transmitting module 1 outputs a noise optical signal with a central wavelength of ⁇ 0 , a linewidth of B, and a Gaussian spectrum
  • the second optical transmitting module 2 outputs a central wavelength of ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , five beams of noise optical signals with a line width of B and a Gaussian spectrum
  • the first light emitting module 1 includes a first ASE light source 11 and a first optical filter 12
  • the second light emitting module 2 includes a second ASE light source 21 , an arrayed waveguide grating 224 , and a dense light wave multiplexing module 225 .
  • the first ASE light source 11 enters the input end of the optical coupler 3 after passing through the first optical filter 12 .
  • the arrayed waveguide grating 224 has a central wavelength of 1550.72 nm, a wavelength interval of 0.1 nm, a channel bandwidth of B and a Gaussian filter shape.
  • the channel bandwidth B of the arrayed waveguide grating 224 should be 0.065nm.
  • the optical noise signal generated by the arrayed waveguide grating 224 is coupled through the intensive optical multiplexing module 225, and the coupled optical signal is output from the output end of the intensive optical multiplexing module 225, and input to the optical coupler 3
  • the coupled signal is input to the input end of the photodetector 4, and the photodetector 4 is photographed. frequency to realize the mapping conversion from spectrum to spectrum, and finally output the millimeter-wave electrical noise with a spectrum flatness of 1dB in the range of 90-140GHz. Its MATLAB numerical simulation is shown in Figure 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种产生频谱平坦的毫米波噪声的系统和方法,方法包括以下步骤:第一光发射模块输出光谱呈高斯形状的噪声光信号,并传输至光耦合器;所述第二光发射模块输出光谱呈高斯形状的n束噪声光信号,并传输至光耦合器;第一光发射模块和第二光发射模块产生的噪声光耦合到所述光耦合器中,并将耦合后的光信号传输至光电探测器;光电探测器进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声,利用光噪声信号作为噪声源,相较于电子噪声源,能够在毫米波段产生频谱平坦的噪声。相较于自发辐射噪声,本申请提出利用多束具有高斯型光谱的噪声光源进行拍频产生宽带毫米波噪声,所产生光噪声信号的幅度更大,频谱更加平坦。

Description

一种产生频谱平坦的毫米波噪声的系统和方法 技术领域
本发明涉及信号发生器领域,更具体地,涉及一种产生频谱平坦的毫米波噪声的系统和方法。
背景技术
噪声发生器是一种能测试器件参数和检测系统性能的重要设备,其输出的噪声信号具有频带宽、功率谱平坦、功率可控等特点。
噪声发生器的核心是噪声源。现有噪声发生器的常用噪声源包括:电阻、肖特基二极管、场效应管、双极性晶体管、齐纳二极管、雪崩二极管等物理器件产生的噪声。然而,受电子器件带宽的限制,产生毫米波段的噪声信号比较困难,是当前研究难点。
穆拉斯塔克曼大学电气和电子工程系Arslan等人利用齐纳二极管研制出3.2GHz的噪声发生器(IEEE Microw.Wirel.Co.Lett,28(4),329-331,2018);德国弗劳恩霍夫研究所Bruch等人利用异质结双极晶体管研制出50GHz的噪声源(IEEE Microw.Wirel.Co.Lett.,22(12),657-659,2012);德国卡尔斯鲁厄理工学院Diebold等人利用异质结高电子迁移率晶体管在W波段(75-110GHz)实现了单片集成有源冷噪声源(IEEE T.Microw.Theory Tech.,62(3),623-630,2014);法国电子、微电子及纳米技术研究院Ghanem博士在55nm SiGe BiCMOS工艺上实现了硅基肖特基二极管噪声源,最高噪声频率可达325GHz(IEEE T.Microw.Theory Tech.,68(6),2268-2277,2020)。但是,这些噪声源输出的噪声功率较小,受到电子带宽的限制,很难达到更高频段。
[根据细则26改正20.08.2021] 
在2008年,日本电信株式会社Ho-Jin Song教授等人通过对掺铒光纤放大器产生的放大自发辐射噪声进行滤波,进而利用单行载流子光电探测器4(UTC-PD)进行拍频,实现了一种宽带平坦的电噪声(IEEE T.Micro.Theory Tech.,56(12),2989-2997,2008)。但是利用放大自发辐射来产生噪声存在输出功率较低的问题。随后,台湾某大学电气工程系许晋玮教授借鉴Ho-Jin Song教授的技术,利用两种不同的光源拍频产生了75~110GHz的白噪声(IEEE Photon.Tech.Lett.,22(11),847-849,2010)。
中国发明专利CN110098555B公开了“基于多路多模混沌激光器并联的超宽带白噪声源”,公开日为2020年09月15日:采用多模混沌激光器并联产生超带宽白噪声,相比于现有的电子噪声源,其结构相对简单且易于实现;且本发明采用光电转换的方法,有效地避开了电子带宽的瓶颈,可以极大地提高产生白噪声的带宽;本发明产生白噪声的功率取决于混沌激光的功率以及光电探测器4的响应度。因此,最终产生超带宽白噪声的功率可调且最大输出功率更大,但是该方法产生的噪声同样存在频谱不平坦的缺点;此外,该方法需要的激光器较多,结构复杂。
发明内容
本发明为解决当前毫米波噪声发生器频谱不平坦及带宽不足的技术缺陷,提供了一种产生频谱平坦的毫米波噪声的系统和方法。
为实现以上发明目的,采用的技术方案是:
一种产生频谱平坦的毫米波噪声的系统,包括第一光发射模块、第二光发射模块、光耦合器、光电探测器;第一光发射模块和第二光发射模块输出的噪声光信号传输至所述光耦合器的输入端,所述光耦合器对噪声光信号进行耦合并如输入至所述光电探测器的输入端,所述光电探测器进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声。
上述方案中,利用光噪声信号作为噪声源,相较于二极管等电子噪声源,能够在毫米波段产生频谱平坦的噪声。相较于利用掺饵光纤放大器的自发辐射噪声,本申请提出利用多束具有高斯型光谱的噪声光源进行拍频产生宽带毫米波噪声,所产生光噪声信号的幅度更大,频谱更加平坦。
优选的,所述第一光发射模块输出中心波长为λ 0、线宽为B、光谱呈高斯形状的噪声光信号;所述第二光发射模块输出中心波长为λ 1、λ 2、…、λ n(n≥2)、线宽为B、光谱呈高斯形状的n束噪声光信号。
优选的,所述第一光发射模块包括第一ASE光源和第一光滤波器,所述第一ASE光源的输出端与所述光滤波器的输入端电性连接,所述光滤波器的输出端与所述光耦合器的输入端电性连接。
优选的,所述第二光发射模块包括第二ASE光源和分光处理器,所述第二ASE光源的输出端与所述分光处理器的输入端电性连接,所述分光处理器的输 出端与所述光耦合器的输入端电性连接。
优选的,所述分光处理器包括分光器、第二光滤波器和分光耦合器;所述第二光滤波器的数量设置为若干,所述第二ASE光源与所述分光器的输入端电性连接,所述分光器的输出端与若干个所述第二光滤波器的输入端电性连接,若干个所述第二光滤波器的输出端与所述分光耦合器的输入端电性连接,所述分光耦合器的输出端与所述光耦合器的输入端电性连接。
优选的,所述分光处理器包括阵列波导光栅和密集型光波复用模块,所述第二ASE光源与所述阵列波导光栅的输入端电性连接,所述阵列波导光栅的输出端与所述密集型光波复用模块的输入端电性连接,所述密集型光波复用模块的输出端与所述光耦合器的输入端电性连接。
一种产生频谱平坦的毫米波噪声的方法,应用于一种产生频谱平坦的毫米波噪声的系统,包括以下步骤:
S1:第一光发射模块输出光谱呈高斯形状的噪声光信号,并传输至光耦合器3;
S2:所述第二光发射模块输出光谱呈高斯形状的n束噪声光信号,并传输至光耦合器3;
S3:第一光发射模块和第二光发射模块产生的噪声光耦合到所述光耦合器中,并将耦合后的光信号传输至光电探测器;
S4:所述光电探测器进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声。
优选的,在步骤S2中,第二光发射模块输出两束噪声光时,两束光的中心波长分别为λ 1和λ 2,且线宽均为B,产生覆盖a至b GHz的平坦毫米波噪声;其中,a和b分别等于c/(λ 10)和c/(λ 20),c为光速,产生毫米波噪声的平坦度m满足公式:
Figure PCTCN2021107723-appb-000001
优选的,在步骤S2中,第二光发射模块输出n束噪声光时,假定n束光的中心波长分别为λ 1、λ 2、…、λ n(n≥3),产生覆盖a至b GHz的平坦毫米波噪声,其中,a和b分别等于c/(λ 10)和c/(λ n0),c为光速,产生毫米波噪声的平坦度 m满足公式:
Figure PCTCN2021107723-appb-000002
Figure PCTCN2021107723-appb-000003
Figure PCTCN2021107723-appb-000004
优选的,在步骤S4中,第二光发射模块输出的噪声光均为具有高斯型光谱形状的噪声光。
与现有技术相比,本发明的有益效果是:
本发明提供一种产生频谱平坦的毫米波噪声的系统和方法,利用光噪声信号作为噪声源,相较于二极管等电子噪声源,能够在毫米波段产生频谱平坦的噪声。相较于利用掺饵光纤放大器的自发辐射噪声,本申请提出利用多束具有高斯型光谱的噪声光源进行拍频产生宽带毫米波噪声,所产生光噪声信号的幅度更大,频谱更加平坦。
附图说明
图1为本发明的分光处理器为分光器、第二光滤波器和分光耦合器的系统示意图;
图2为本发明的分光处理器为阵列波导光栅和密集型光波复用模块的系统示意图;
图3为本发明的方法流程图;
图4为本发明的第一光发射模块输出光的光谱图;
图5为本发明的第二光发射模块输出光的光谱图;
图6为本发明的光电探测器输出的平坦毫米波噪声图;
图7为本发明的分光处理器为分光器、第二光滤波器和分光耦合器的系统数值仿真图;
图8为本发明的分光处理器为阵列波导光栅和密集型光波复用模块的系统数值仿真图;
附图标记说明:1、第一光发射模块;2、第二光发射模块;3、光耦合器;4、光电探测器;11、第一ASE光源;12、第一光滤波器;21、第二ASE光源;221、分光器;222、第二光滤波器;223、分光耦合器;224、阵列波导光栅;225、密集型光波复用模块。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
以下结合附图和实施例对本发明做进一步的阐述。
实施例1
如图1所示,一种产生频谱平坦的毫米波噪声的系统,包括第一光发射模块1、第二光发射模块2、光耦合器3、光电探测器4;第一光发射模块1和第二光发射模块2输出的噪声光信号传输至所述光耦合器3的输入端,所述光耦合器3对噪声光信号进行耦合并如输入至所述光电探测器4的输入端,所述光电探测器4进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声。
上述方案中,利用光噪声信号作为噪声源,相较于二极管等电子噪声源,能够在毫米波段产生频谱平坦的噪声。相较于利用掺饵光纤放大器的自发辐射噪声,本申请提出利用多束具有高斯型光谱的噪声光源进行拍频产生宽带毫米波噪声,所产生光噪声信号的幅度更大,频谱更加平坦。
优选的,所述第一光发射模块1输出中心波长为λ 0、线宽为B、光谱呈高斯形状的噪声光信号;所述第二光发射模块2输出中心波长为λ 1、λ 2、…、λ n(n≥2)、线宽为B、光谱呈高斯形状的n束噪声光信号。
优选的,所述第一光发射模块1包括第一ASE光源11和第一光滤波器12,所述第一ASE光源11的输出端与所述第一光滤波器12的输入端电性连接,所述第一光滤波器12的输出端与所述光耦合器3的输入端电性连接。
优选的,所述第二光发射模块2包括第二ASE光源21和分光处理器,所述第二ASE光源21的输出端与所述分光处理器的输入端电性连接,所述分光处理器的输出端与所述光耦合器3的输入端电性连接。
优选的,所述分光处理器包括分光器221、第二光滤波器222和分光耦合器 223;所述第二光滤波器222的数量设置为2,所述第二ASE光源21与所述分光器221的输入端电性连接,所述分光器221的输出端与2个所述第二光滤波器222的输入端电性连接,2个所述第二光滤波器222的输出端与所述分光耦合器223的输入端电性连接,所述分光耦合器223的输出端与所述光耦合器3的输入端电性连接。
实施例2
如图2所示,一种产生频谱平坦的毫米波噪声的系统,包括第一光发射模块1、第二光发射模块2、光耦合器3、光电探测器4;第一光发射模块1和第二光发射模块2输出的噪声光信号传输至所述光耦合器3的输入端,所述光耦合器3对噪声光信号进行耦合并如输入至所述光电探测器4的输入端,所述光电探测器4进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声。
上述方案中,利用光噪声信号作为噪声源,相较于二极管等电子噪声源,能够在毫米波段产生频谱平坦的噪声。相较于利用掺饵光纤放大器的自发辐射噪声,本申请提出利用多束具有高斯型光谱的噪声光源进行拍频产生宽带毫米波噪声,所产生光噪声信号的幅度更大,频谱更加平坦。
优选的,所述第一光发射模块1输出中心波长为λ 0、线宽为B、光谱呈高斯形状的噪声光信号;所述第二光发射模块2输出中心波长为λ 1、λ 2、…、λ n(n≥2)、线宽为B、光谱呈高斯形状的n束噪声光信号。
优选的,所述第一光发射模块1包括第一ASE光源11和第一光滤波器12,所述第一ASE光源11的输出端与所述第一光滤波器12的输入端电性连接,所述第一光滤波器12的输出端与所述光耦合器3的输入端电性连接。
优选的,所述第二光发射模块2包括第二ASE光源21和分光处理器,所述第二ASE光源21的输出端与所述分光处理器的输入端电性连接,所述分光处理器的输出端与所述光耦合器3的输入端电性连接。
优选的,所述分光处理器包括阵列波导光栅224和密集型光波复用模块225,所述第二ASE光源21与所述阵列波导光栅224的输入端电性连接,所述阵列波导光栅224的输出端与所述密集型光波复用模块225的输入端电性连接,所述密集型光波复用模块225的输出端与所述光耦合器3的输入端电性连接。
实施例3
如图3、图4、图5和图6所示,一种产生频谱平坦的毫米波噪声的方法,应用于一种产生频谱平坦的毫米波噪声的系统,包括以下步骤:
S1:第一光发射模块1输出中心波长为λ 0、线宽为B、光谱呈高斯形状的噪声光信号,并传输至光耦合器3;
S2:所述第二光发射模块2输出中心波长为λ 1、λ 2、…、λ n(n≥2)、线宽为B、光谱呈高斯形状的n束噪声光信号,并传输至光耦合器3;
S3:第一光发射模块1和第二光发射模块2产生的噪声光耦合到所述光耦合器3中,并将耦合后的光信号传输至光电探测器4;
S4:所述光电探测器4进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声。
优选的,在步骤S2中,第二光发射模块2输出两束噪声光时,两束光的中心波长分别为λ 1和λ 2,且线宽均为B,产生覆盖a至b GHz的平坦毫米波噪声;其中,a和b分别等于c/(λ 10)和c/(λ 20),c为光速,产生毫米波噪声的平坦度m满足公式:
Figure PCTCN2021107723-appb-000005
优选的,在步骤S2中,第二光发射模块2输出n束噪声光时,假定n束光的中心波长分别为λ 1、λ 2、…、λ n(n≥3),产生覆盖a至b GHz的平坦毫米波噪声,其中,a和b分别等于c/(λ 10)和c/(λ n0),c为光速,产生毫米波噪声的平坦度m满足公式:
Figure PCTCN2021107723-appb-000006
Figure PCTCN2021107723-appb-000007
Figure PCTCN2021107723-appb-000008
优选的,在步骤S4中,第二光发射模块2输出的噪声光均为具有高斯型光谱形状的噪声光。
实施例4
如图7所示,所述第一光发射模块1输出中心波长为λ 0、线宽为B、光谱呈高斯形状的噪声光信号,所述第二光发射模块2输出中心波长为λ 1、λ 2,线宽为B、光谱呈高斯形状的噪声光信号。所述第一光发射模块1包括第一ASE光源11、第一光滤波器12,所述第二光发射模块2包括第二ASE光源21、分光器221、第二光滤波器222、光耦合器3。
所述第一ASE光源11和第二ASE光源21为放大自发辐射(ASE)宽谱非相干光源,第二光滤波器222的数量设置为2,所述第一光滤波器12的中心波长为1550nm,2个第二光滤波器222中心波长分别为1550.72nm和1551.12nm,产生频率范围在90~140GHz的毫米波噪声,且频谱的平坦度为1dB,此时,所产生的毫米波噪声的平坦度m、光谱线宽B满足如下公式:
Figure PCTCN2021107723-appb-000009
其中a和b为分别为毫米波噪声谱的起始与截止频率,即a=90,b=140,由上式可解得光谱线宽B应为0.2718nm,即第一光滤波器12和第二光滤波器222的光谱线宽为0.2718nm。
所述第一ASE光源11经过第一光滤波器12产生中心波长为1550nm,线宽为0.2718nm的高斯型光谱,所述第二ASE光源21经过分光将光信号分成两路,一路光信号经过一个第二光滤波器222,产生中心波长为1550.72nm,线宽为0.2718nm的高斯型光谱,另一路光信号经过另一个第二光滤波器222产生中心波长为1551.12nm,线宽为0.2718nm的高斯型光谱,将通过两个第二光滤波器222的光信号耦合到所述光耦合器3中,最后,将第一光发射模块1和第二光发射模块2发出的光噪声信号耦合到所述光耦合器3中,耦合后的光信号从光耦合器3的输出端输出,并输入到所述光电探测器4的输入端,在光电探测器4上进 行拍频,实现光谱到频谱的映射转换,最后输出在90~140GHz范围内频谱平坦度为1dB的毫米波电噪声,其MATLAB数值仿真结果如图7所示。
实施例5
如图8所示,所述第一光发射模块1输出中心波长为λ 0、线宽为B、光谱呈高斯形状的噪声光信号,所述第二光发射模块2输出中心波长为λ 1、λ 2、λ 3、λ 4、λ 5、线宽为B、光谱呈高斯形状的五束噪声光信号,所述第一光发射模块1包括第一ASE光源11、第一光滤波器12,所述第二光发射模块2包括第二ASE光源21、阵列波导光栅224、密集型光波复用模块225。
所述第一ASE光源11和第二ASE光源21为放大自发辐射(ASE)宽谱非相干光源,所述第一光滤波器12的中心波长为1550nm,即λ0=1550nm,滤波线宽为B。所述第一ASE光源11通过第一光滤波器12后进入光耦合器3的输入端。所述阵列波导光栅224中心波长为1550.72nm、波长间隔为0.1nm、通道带宽为B且滤波形状为高斯型。选择波长分别为1550.72nm、1550.82nm、1550.92nm、1551.02nm、1551.12nm的通道,其中,λ1=1550.72nm、λ2=1550.82nm、λ3=1550.92nm、λ4=1551.02nm、λ5=1551.12nm。在实施例中,产生频率范围在90~140GHz的毫米波噪声,且频谱的平坦度为1dB,此时,所产生的毫米波噪声的平坦度m、光谱线宽B满足如下公式:
Figure PCTCN2021107723-appb-000010
式中,
Figure PCTCN2021107723-appb-000011
Figure PCTCN2021107723-appb-000012
其中a和b分别为噪声谱的起始与截止频率,即a=90,b=140,且n=5,由上式可解得阵列波导光栅224的通道带宽B应为0.065nm。
所述阵列波导光栅224产生的光噪声信号通过所述密集型光波复用模块225进行耦合,耦合后的光信号从密集型光波复用模块225的输出端输出,并输入到光耦合器3的输入端,所述第一光发射模块1与第二光发射模块2耦合到光耦合器3后,耦合后的信号输入到所述光电探测器4的输入端,在光电探测器4上进行拍频,实现光谱到频谱的映射转换,最后输出在90~140GHz范围内频谱平坦度为1dB的毫米波电噪声,其MATLAB数值仿真如图8所示。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种产生频谱平坦的毫米波噪声的系统,其特征在于,包括第一光发射模块(1)、第二光发射模块(2)、光耦合器(3)、光电探测器(4);第一光发射模块(1)和第二光发射模块(2)输出的噪声光信号传输至所述光耦合器(3)的输入端,所述光耦合器(3)对噪声光信号进行耦合并如输入至所述光电探测器(4)的输入端,所述光电探测器(4)进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声。
  2. 根据权利要求1所述的一种产生频谱平坦的毫米波噪声的系统,其特征在于,所述第一光发射模块(1)包括第一ASE光源(11)和第一光滤波器(12),所述第一ASE光源(11)的输出端与所述第一光滤波器(12)的输入端电性连接,所述第一光滤波器(12)的输出端与所述光耦合器(3)的输入端电性连接。
  3. 根据权利要求2所述的一种产生频谱平坦的毫米波噪声的系统,其特征在于,所述第二光发射模块(2)包括第二ASE光源(21)和分光处理器(22),所述第二ASE光源(21)的输出端与所述分光处理器(22)的输入端电性连接,所述分光处理器的输出端与所述光耦合器3的输入端电性连接。
  4. 根据权利要求3所述的一种产生频谱平坦的毫米波噪声的系统,其特征在于,所述分光处理器(22)包括分光器(221)、第二光滤波器(222)和分光耦合器(223);所述第二光滤波器(222)的数量设置为若干,所述第二ASE光源(21)与所述分光器(221)的输入端电性连接,所述分光器(221)的输出端与若干个所述第二光滤波器(222)的输入端电性连接,若干个所述第二光滤波器(222)的输出端与所述分光耦合器(223)的输入端电性连接,所述分光耦合器(223)的输出端与所述光耦合器的输入端电性连接。
  5. 根据权利要求3所述的一种产生频谱平坦的毫米波噪声的系统,其特征在于,所述分光处理器(22)包括阵列波导光栅(224)和密集型光波复用模块(225),所述第二ASE光源(21)与所述阵列波导光栅(224)的输入端电性连接,所述阵列波导光栅(224)的输出端与所述密集型光波复用模块(225)的输入端电性连接,所述密集型光波复用模块(225)的输出端与所述光耦合器(3)的输入端电性连接。
  6. 一种产生频谱平坦的毫米波噪声的方法,应用于权利要求1所述的一种产生频谱平坦的毫米波噪声的系统,其特征在于,包括以下步骤:
    S1:第一光发射模块(1)输出光谱呈高斯形状的噪声光信号,并传输至光耦合器3;
    S2:所述第二光发射模块(2)输出光谱呈高斯形状的n束噪声光信号,并传输至光耦合器3;
    S3:第一光发射模块(1)和第二光发射模块(2)产生的噪声光耦合到所述光耦合器(3)中,并将耦合后的光信号传输至光电探测器(4);
    S4:所述光电探测器(4)进行拍频,实现光谱到频谱的映射转换,输出平坦毫米波噪声。
  7. 根据权利要求6所述的一种产生频谱平坦的毫米波噪声的方法,其特征在于,在步骤S1和步骤S2中,所述第一光发射模块(1)输出中心波长为λ 0、线宽为B、光谱呈高斯形状的噪声光信号;所述第二光发射模块(2)输出中心波长为λ 1、λ 2、…、λ n(n≥2)、线宽为B、光谱呈高斯形状的n束噪声光信号。
  8. 根据权利要求6所述的一种产生频谱平坦的毫米波噪声的方法,其特征在于,在步骤S2中,第二光发射模块(2)输出两束噪声光时,两束光的中心波长分别为λ 1和λ 2,且线宽均为B,产生覆盖a至b GHz的平坦毫米波噪声;其中,a和b分别等于c/(λ 10)和c/(λ 20),c为光速,产生毫米波噪声的平坦度m满足公式:
    Figure PCTCN2021107723-appb-100001
  9. 根据权利要求6所述的一种产生频谱平坦的毫米波噪声的方法,其特征在于,在步骤S2中,第二光发射模块(2)输出n束噪声光时,假定n束光的中心波长分别为λ 1、λ 2、…、λ n(n≥3),产生覆盖a至b GHz的平坦毫米波噪声,其中,a和b分别等于c/(λ 10)和c/(λ n0),c为光速,产生毫米波噪声的平坦度m满足公式:
    Figure PCTCN2021107723-appb-100002
    Figure PCTCN2021107723-appb-100003
    Figure PCTCN2021107723-appb-100004
  10. 根据权利要求8或9所述的一种产生频谱平坦的毫米波噪声的方法,其特征在于,在步骤S4中,第一光发射模块(1)和第二光发射模块(2)输出的噪声光均为具有高斯型光谱形状的噪声光。
PCT/CN2021/107723 2021-06-24 2021-07-21 一种产生频谱平坦的毫米波噪声的系统和方法 WO2022267142A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/022,976 US11811457B2 (en) 2021-06-24 2021-07-21 System and method for generating millimeter wave noise with flat radio frequency spectrum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110708015.3 2021-06-24
CN202110708015.3A CN113644981B (zh) 2021-06-24 2021-06-24 一种产生频谱平坦的毫米波噪声的系统和方法

Publications (1)

Publication Number Publication Date
WO2022267142A1 true WO2022267142A1 (zh) 2022-12-29

Family

ID=78416206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107723 WO2022267142A1 (zh) 2021-06-24 2021-07-21 一种产生频谱平坦的毫米波噪声的系统和方法

Country Status (3)

Country Link
US (1) US11811457B2 (zh)
CN (1) CN113644981B (zh)
WO (1) WO2022267142A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110305463A1 (en) * 2010-06-15 2011-12-15 Telekom Malaysia Berhad Stable Millimeter Wave Source for Broadband Wireless Signal Transmission Using Optical Fibre
CN103368653A (zh) * 2013-07-22 2013-10-23 太原理工大学 一种类似白噪声的宽带混沌信号的产生方法及装置
CN110830120A (zh) * 2019-10-18 2020-02-21 广东工业大学 一种宽带噪声源的产生装置及其信号产生方法
CN110850129A (zh) * 2019-10-18 2020-02-28 广东工业大学 一种宽带可控的光子毫米波噪声信号发生器及其信号发生方法
CN112217477A (zh) * 2020-09-03 2021-01-12 广东工业大学 一种量子相位波动产生毫米波噪声的装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034678A (en) * 1989-07-14 1991-07-23 Gte Laboratories Incorporated Method of and apparatus for measuring the frequency response of an electrooptic device using an optical white noise generator
JP5271580B2 (ja) * 2008-03-25 2013-08-21 日本電信電話株式会社 高周波数帯雑音発生装置
JP7238422B2 (ja) * 2019-01-22 2023-03-14 株式会社リコー 測距方法、測距装置、車載装置、移動体、測距システム
CN110098555B (zh) 2019-04-26 2020-09-15 太原理工大学 基于多路多模混沌激光器并联的超宽带白噪声源
CN110794416B (zh) * 2019-10-18 2023-04-11 广东工业大学 一种光子毫米波噪声雷达
CN110971193A (zh) * 2019-12-05 2020-04-07 广东工业大学 一种基于fp混沌激光的毫米波噪声信号发生器
CN111064526A (zh) * 2019-12-09 2020-04-24 广东工业大学 一种宽带光子毫米波噪声信号产生装置及方法
US20220221583A1 (en) * 2020-04-13 2022-07-14 Imra America, Inc. Ultra-low phase noise millimeter-wave oscillator and methods to characterize same
US11231278B1 (en) * 2020-10-15 2022-01-25 The Board Of Trustees Of The Leland Stanford Junior University System and method for generating broadband spectrum by phase modulation of multiple wavelengths

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110305463A1 (en) * 2010-06-15 2011-12-15 Telekom Malaysia Berhad Stable Millimeter Wave Source for Broadband Wireless Signal Transmission Using Optical Fibre
CN103368653A (zh) * 2013-07-22 2013-10-23 太原理工大学 一种类似白噪声的宽带混沌信号的产生方法及装置
CN110830120A (zh) * 2019-10-18 2020-02-21 广东工业大学 一种宽带噪声源的产生装置及其信号产生方法
CN110850129A (zh) * 2019-10-18 2020-02-28 广东工业大学 一种宽带可控的光子毫米波噪声信号发生器及其信号发生方法
CN112217477A (zh) * 2020-09-03 2021-01-12 广东工业大学 一种量子相位波动产生毫米波噪声的装置及方法

Also Published As

Publication number Publication date
US20230261753A1 (en) 2023-08-17
CN113644981A (zh) 2021-11-12
CN113644981B (zh) 2022-10-14
US11811457B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
US9385506B2 (en) Wavelength tunable comb source
CN110850129B (zh) 一种宽带可控的光子毫米波噪声信号发生器及其信号发生方法
CN105978630B (zh) 一种基于声光滤波器的多倍频毫米波发生器
CN106532430B (zh) 一种频率和波长双重可调谐的调频连续波光载信号生成系统
KR20190133792A (ko) 통합 wdm 광 송수신기
US8824901B2 (en) Multi-mode optoelectronic oscillator
JPS61261935A (ja) 周波数分割多重化によるロ−カルエリアネツトワ−ク用の光フアイバ−通信方法およびシステム
US8730567B2 (en) Terahertz continuous wave generator
Yamanaka et al. 100 Gb/s CFP coherent transceiver enabled by power-optimized DSP
WO2022267142A1 (zh) 一种产生频谱平坦的毫米波噪声的系统和方法
CN106207724B (zh) 一种可调谐单频光纤激光器及其实现方法
CN101877801A (zh) 基于半导体光放大器的波分复用无源光网络光线路终端
KR20050040141A (ko) 광송신 모듈과 그를 이용한 파장 분할 다중 방식 광원
CN110830120A (zh) 一种宽带噪声源的产生装置及其信号产生方法
You et al. All-optical photonic signal processors with negative coefficients
JP5271580B2 (ja) 高周波数帯雑音発生装置
CN113098609B (zh) 一种40GHz毫米波信号的光学产生装置
KR20110136681A (ko) 광 섬유를 사용하여 광대역 무선 시그널을 전송하기 위한 안정적인 밀리미터파 소스
CA2233291C (en) Optical communication system
Pascual et al. Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation
JP2002335055A (ja) 光電ハイブリッド型ミリ波発生器
CN112383361B (zh) 实现自振荡多载波光纤光源的方法及多载波光纤光源系统
CN112865913B (zh) 一种基于移动前传的放大饱和rsoa光源装置
CN118472788A (zh) 一种基于混沌微环光频梳的多路宽带白噪声产生方法
CN108051923A (zh) 用于分布式拉曼测温系统的光纤多波长脉冲光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946630

Country of ref document: EP

Kind code of ref document: A1