CN108199776A - 一种基于光电振荡器的微波光子上变频装置及方法 - Google Patents

一种基于光电振荡器的微波光子上变频装置及方法 Download PDF

Info

Publication number
CN108199776A
CN108199776A CN201810128150.9A CN201810128150A CN108199776A CN 108199776 A CN108199776 A CN 108199776A CN 201810128150 A CN201810128150 A CN 201810128150A CN 108199776 A CN108199776 A CN 108199776A
Authority
CN
China
Prior art keywords
mach
frequency
zehnder
signal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810128150.9A
Other languages
English (en)
Other versions
CN108199776B (zh
Inventor
董玮
王悦
张歆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810128150.9A priority Critical patent/CN108199776B/zh
Publication of CN108199776A publication Critical patent/CN108199776A/zh
Application granted granted Critical
Publication of CN108199776B publication Critical patent/CN108199776B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5563Digital frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Abstract

一种基于光电振荡器的微波光子上变频装置及方法,属微波光子学技术领域。由激光源、第一耦合器、第一环行器、第一高非线性色散位移光纤、掺铒光纤放大器、第一光电探测器、第二耦合器、第一马赫曾德尔调制器、第一微波信号源、第一直流稳压电源、光滤波器、第二马赫曾德尔调制器、第二直流稳压电源、第二环行器、第二高非线性色散位移光纤、第二光电探测器、微波放大器、双平行马赫曾德尔调制器、第三直流稳压电源、第四直流稳压电源、第五直流稳压电源、光隔离器和频谱分析仪组成。高非线性光纤的布里渊频移值fb=9.2GHz,可以将频率为fm的信号上变频到fm+18.4GHz,从而将一个低质量低频率的中频信号转换成高质量高频率的高频信号。

Description

一种基于光电振荡器的微波光子上变频装置及方法
技术领域
本发明属于微波光子学技术领域,具体涉及一种基于光电振荡器的微波光子上变频装置及方法。
背景技术
高频谱纯度、低相位噪声的微波/毫米波信号源在无线通信、光载射频传输(RoF)、雷达等系统中发挥着非常重要的核心作用,所以近年来研究如何生成高质量的微波信号的信号源成为了研究的热点。传统的产生微波信号的方法是通过电学手段产生,而电学器件的电子瓶颈效应和调谐带宽等问题,使得电学方法产生微波信号逐渐研究至瓶颈。而光子学领域的光子技术具有处理速率高、在光纤中传输损耗低、带宽大等优点,所以近年来利用光学手段结合已有的电学手段的方法及理论生成微波毫米波信号得到了广泛的关注。
随着通信事业的发展,信息传输量日益增加,在低频已出现频率拥挤的现象,所以探究高质量高频微波信号成为了研究的重心。要将已调中频信号载波转换到毫米波频段就需要上变频器,因此毫米波上变频器在毫米波通信中扮演了很重要的角色。
发明内容
本发明的目的是提供一种基于光电振荡器的微波光子上变频方法及装置。利用光电振荡器的原理不需要任何高Q值滤波器的帮助,可以将一个低质量、低频率的中频信号转换成高质量、高频率的信号。
本发明所提出的上变频装置结构如图1所示,由激光源、第一耦合器、第一环行器、第一高非线性色散位移光纤、掺铒光纤放大器、第一光电探测器、第二耦合器、第一马赫曾德尔调制器、第一微波信号源、第一直流稳压电源、光滤波器、第二马赫曾德尔调制器、第二直流稳压电源、第二环行器、第二高非线性色散位移光纤、第二光电探测器、微波放大器、双平行马赫曾德尔调制器(DPMZM)、第三直流稳压电源、第四直流稳压电源、第五直流稳压电源、光隔离器和频谱分析仪组成。
激光源输出的光信号fc进入到第一耦合器中,第一耦合器把光信号分成第一支路和第二个支路两个光信号,第一支路光信号从第一环行器的Ⅰ端口进入并由Ⅱ口输出,进入到第一高非线性色散位移光纤中,发生受激布里渊散射效应产生反向的斯托克斯波并由第一环行器的Ⅱ端口进入,从第一环行器的Ⅲ端口输出的斯托克斯波和激光器输出的光信号被掺铒光纤放大器放大之后进入到第一光电探测器,在第一光电探测器中耦合拍频,产生一个频率等于布里渊频移(频率为fb)的微波信号,这个微波信号进入第二马赫曾德尔调制器;
第二支路光信号进入到第二耦合器中,被分成第三支路和第四支路两个光信号,第三支路光信号进入到第一马赫曾德尔调制器中,被第一微波信号源输出的频率为fm的微波信号所调制,设置第一直流稳压电源的电压,使第一马赫曾德尔调制器工作在正交偏置点上,第一马赫曾德尔调制器输出的边带被光滤波器滤出下边带fc-fm,然后这个下边带进入到第二马赫曾德尔调制器中作为光载波,被第一光电探测器输出的频率为fb电信号所调制,设置第二直流稳压电源使得第二马赫曾德尔调制器工作在最小传输点,即工作在载波抑制的双边带调制状态,使第二马赫曾德尔调制器输出频率为fc-fm-fb和fc-fm+fb(图3(b))的两个边带信号,这两个边带信号通过Ⅰ端口进入第二环行器,然后经Ⅱ端口输出进入到第二高非线性色散位移光纤中作为泵浦光;
双平行马赫曾德尔调制器由第一子马赫曾德尔调制器、第二子马赫曾德尔调制器、第三母马赫曾德尔调制器组成(如图2)。第一子马赫曾德尔调制器和第二子马赫曾德尔调制器作为两个子调制器嵌入在第三母马赫曾德尔调制器上。第一子马赫曾德尔调制器具有第一射频输入端、第一延迟器、第二延迟器、第一直流偏置端;第二子马赫曾德尔调制器具有第二射频输入端、第三延迟器、第四延迟器和第二直流偏置端;第三母马赫曾德尔调制器只有第三直流偏置端。在图2的结构中可以看出双平行马赫曾德尔调制器的控制部分需要三个直流驱动和四个延时器。第三直流稳压电源与第一直流偏置端相连,第四直流稳压电源与第二直流偏置端相连,第五直流稳压电源与第三直流偏置端相连;第三直流稳压电源、第四直流稳压电源和第五直流稳压电源为双平行马赫曾德尔调制器提供直流偏压。双平行马赫曾德尔调制器设置参数情况如下:输入光场为第四支路输出的光信号,第一射频输入端所加的射频信号为第二光电探测器输出的经过微波放大器的射频信号,而第二射频输入端对地短接;第一直流偏置端的电压和第二直流偏置端电压分别为:πVDC1/Vπ=πVDC2/Vπ=π/2,Vπ是调制器的半波电压,使它们均工作在正交偏置工作点上,设置第一延迟器、第二延迟器、第三延迟器、第四延迟器分别为0,-π/2,π/2,0,并令第三直流偏置端所加的电压VDC3=0V,改变这些参数使得双平行马赫曾德尔调制器处于单边带调制的工作状态,即可以得到双平行马赫曾德尔调制器的输出光场中包含载波项和一阶下边带;
第四支路光信号进入到双平行马赫增德尔调制器中,系统刚开始工作时,系统内的噪声信号加载到双平行马赫增德尔调制器的第一射频输入端,去调制双平行马赫增德尔调制器,由于噪声信号和小信号具有随机性,双平行马赫曾德尔调制器会产生一系列的调制下边带(图3(a)),这些下边带通过光隔离器进入到第二高非线性色散位移光纤中,与第二环形器Ⅱ端口输出的泵浦光(图3(b))在第二高非线性色散位移光纤中相互作用发生受激布里渊散射效应,在受激布里渊散射效应的过程中,第二马赫曾德尔调制器输出的两个边带信号fc-fm-fb和fc-fm+fb作为泵浦光会分别在距离其频率间隔为fb的下频率和上频率处各自产生一个增益谱和损耗谱。由于两个泵浦波的频率间距刚好相差2fb,且两个边带幅度相同,所以上边带产生的增益谱和下边带产生的损耗谱刚好抵消,而频率为fc-fm-fb的下边带会放大频率为fc-fm-2fb附近的小的噪声边带,频率为fc-fm+fb的上边带会衰减频率为fc-fm+2fb附近的小的噪声边带(图3(c)),被放大的频率为fc-fm-2fb附近的小的噪声边带通过Ⅱ端口进入到第二环行器,然后由Ⅲ端口输出到第二光电探测器,由第二光电探测器转化为频率为fm+2fb的电信号后,经微波放大器输入到双平行马赫曾德尔调制器去调制第四支路光信号,调制之后的信号继续通过光隔离器进入到第二高非线性色散位移光纤,与第二马赫曾德尔调制器输出的信号发生受激布里渊散射效应,产生一个更强的边带频率为fc-fm-2fb(图3(d))。通过正反馈,频率为fc-fm-2fb的信号会越来越强直到闭环增益减少到1,最终频率为fc-fm-2fb和fc的信号在第二光电探测器拍频,经微波放大器后在频谱分析仪上能够显示频率为fm+2fb的电信号(图3(e)),从而实现将一个低质量、低频率的中频信号转换成高质量、高频率的高频信号。
本发明装置选用波长在1550nm的光波作为载波,双平行马赫曾德尔调制器工作的光波长为1525nm~1605nm,带宽为30GHz~60GHz,其中第一子马赫曾德尔调制器和第二子马赫曾德尔调制器的半波电压为5.5V,第三母马赫曾德尔调制器的半波电压为15V;第一高非线性色散位移光纤、第二高非线性色散位移光纤长度为500m~2000m,两段光纤是同一公司生产的、长度相同的,受激布里渊频移量fb为9GHz~11GHz;隔离器的隔离度大于40dB;第一马赫曾德尔调制器和第二马赫曾德尔调制器的工作光波长为1525nm~1605nm,带宽分别为40GHz和20GHz;第一微波信号源的输出频率范围为1GHz~40GHz;第一光电探测器的带宽为40GHz;第二光电探测器的带宽为60GHz;微波放大器的带宽为40GHz,放大倍数大于20dB;第一耦合器、第二耦合器的分光比为1:0.5~2;频谱分析仪的带宽为60GHz;第一直流稳压电源、第二直流稳压电源、第三直流稳压电源、第四直流稳压电源和第五直流稳压电源的输出电压的幅度在1V~20V可调。
不同的高非线性光纤的受激布里渊频移量的数值略有差异,通常在9GHz~11GHz,本发明高非线性光纤的布里渊频移值是9.2GHz,第一微波信号源输出的频率为fm的信号就可以被上变频到频率为fm+18.4GHz。
本发明装置所述的器件特点:
(1)基于受激布里渊增益谱和损耗谱补偿技术实现上变频,输出信号的频率为fm+2fb,可以把输入信号上变频到更高的频率范围。
(2)由于光电振荡器具有选模和正反馈的优点,因此输出的上变频信号的频谱纯度比较好。
附图说明
图1:基于光电振荡器的上变频装置;
图2:双平行马赫-曾德尔调制器的内部结构示意图;
图3:基于光电振荡器的上变频装置的频谱处理图;
图4:基于光电振荡器的上变频装置的输出频谱图;
图5:基于光电振荡器的上变频装置的输出频率调谐图。
具体实施方式
实施例1:
激光源为Santec公司的TSL-510可调激光器,激光器的波长范围为1510nm~1630nm;双平行马赫曾德尔调制器为Photline公司的MXIQ-LN-30-P-P,带宽为40GHz,工作的光波长为1530nm~1580nm,其中第一子马赫曾德尔调制器和第二子马赫曾德尔调制器的半波电压为5.5V,第三母马赫德尔调制器的半波电压为15V;第一高非线性色散位移光纤和第二高非线性色散位移光纤均为长飞科技有限公司的高非线性色散位移光纤:长度均为1000m;光隔离器的隔离度大于40dB;第一马赫曾德尔调制器为Photline公司的强度调制器MX-LN-40-PFA-PFA,带宽为40GHz,半波电压Vπ为5.5V;第二马赫曾德尔调制器为Photline公司的MXAN-LN-20,半波电压Vπ为5.5V,带宽为20GHz;第一微波信号源为安捷伦公司的微波信号发生器E8257D,输出频率范围为100kHz~70GHz;第一光电探测器是Optilab公司的PD-40-M的带宽为40GHz;第二光电探测器是Finisar公司生产的XPDV2120RA,带宽为60GHz。微波放大器是Photline公司的DR-DG-20-HO,带宽为40GHz,放大倍数大于20dB;第一耦合器、第二耦合器均为Snow-Sea公司的FBT Fiber Optic Splitter/FBT Fiber,分光比为1:1;频谱分析仪是安捷伦公司的E5052B连同安捷伦公司的上变频器E5053,测量信号范围带宽为10MHz~110GHz;第一直流稳压电源、第二直流稳压电源、第三直流稳压电源、第四直流稳压电源和第五直流稳压电源均为固纬公司的GPS-4303C,输出电压幅度在1V~20V可调。
连接好系统之后,打开设备的开关,使所有的设备处于工作状态。激光源输出波长为1550nm(对应频率大约为fc=193.4144890THz)的光载波信号进入到第一耦合器中,第一耦合器把光信号分成第一支路和第二个支路两个光信号,第一支路光信号从第一环行器的Ⅰ端口进入并由Ⅱ口输出,进入到第一高非线性色散位移光纤中,发生受激布里渊散射效应产生反向的斯托克斯波由第一环行器的Ⅱ口进入,从第一环行器Ⅲ口输出的斯托克斯波和激光器输出的光信号被掺铒光纤放大器放大之后进入到第一光电探测器,在第一光电探测器中耦合拍频,产生频率等于布里渊频移(其频率为fb=9.2GHz)的微波信号,这个微波信号进入第二马赫曾德尔调制器;第二支路光信号进入到第二耦合器中,被分成第三支路和第四支路两个光信号,第三支路进入到第一马赫曾德尔调制器中,被第一微波信号源输出的频率为fm=25GHz的微波信号所调制,设置第一直流稳压电源的电压为使第一马赫曾德尔调制器工作在正交偏置点上,第一马赫曾德尔调制器输出的边带被光滤波器滤出下边带fc-fm=fc-25GHz,然后这个下边带作为载波进入到第二马赫曾德尔调制器,被第一探测器输出的电信号频率为fb=9.2GHz信号所调制,设置第二直流稳压电源5.5V,第二马赫曾德尔调制器工作在载波抑制的双边带工作状态,仅输出上、下两个一阶边带,最终上下两个边带就作为泵浦波,其频率分别为:fc-fm-fb=fc-34.2GHz和fc-fm+fb=fc-15.8GHz。这两个边带通过第二环行器Ⅰ端口进入,然后经Ⅱ端口输出进入到第二高非线性色散位移光纤作为泵浦光;第二耦合器输出的第四支路光信号进入到双平行马赫曾德尔调制器中,设置双平行马赫曾德尔调制器第三直流稳压电源的电压和第四直流稳压电源的电压均为Vπ是调制器的半波电压,使它们均工作在正交偏置工作点上,设置第一延迟器、第二延迟器、第三延迟器、第四延迟器分别为0,-π/2,π/2,0,并令第五直流偏置电源端电压为0V,可以得到双平行马赫曾德尔调制器的输出光场中包含载波项和一阶下边带,此时双平行马赫曾德尔调制器处于单边带调制的工作状态。
设备刚开始工作时,整个系统会有一些噪声,这些噪声去调制双平行马赫曾德尔调制器,由于噪声信号和小信号具有随机性,双平行马赫曾德尔调制器会产生一系列的调制下边带,这些下边带通过光隔离器进入到第二高非线性色散位移光纤中作为受激布里渊散射效应的信号光。
在受激布里渊散射效应的过程中,第二马赫曾德尔调制器输出的两个边带频率为fc-fm-fb=fc-34.2GHz和fc-fm+fb=fc-15.8GHz作为泵浦信号分别在距离其频率间隔为fb=9.2GHz的下频率和上频率处各自产生一个增益谱和损耗谱。由于两个泵浦波的频率间距刚好相差2fb=18.4GHz,且两个边带幅度相同,所以上边带作为泵浦光产生的增益谱和下边带作为泵浦光产生的损耗谱刚好抵消,而频率为fc-fm-fb=fc-34.2GHz的下边带作为泵浦光会放大频率为fc-fm-2fb=fc-43.4GHz附近的小的噪声边带,频率为fc-fb=fc-15.8GHz的上边带也作为一个泵浦光去衰减频率fc-fm+2fb=fc-6.6GHz附近的边带,被放大的频率为fc-fm-2fb=fc-43.4GHz附近的小的噪声边带通过Ⅱ端口进入到第二环行器,然后由Ⅲ端口输出到第二光电探测器,由第二光电探测器转化为频率为fm+2fb=43.4GHz的电信号后,经微波放大器输入到双平行马赫曾德尔调制器去调制第四支路光信号,调制之后的信号继续通过光隔离器进入到第二高非线性色散位移光纤,与第二马赫曾德尔调制器输出的信号发生受激布里渊散射效应,产生一个更强的边带频率为fc-fm-2fb=fc-43.4GHz。通过正反馈,频率为fc-fm-2fb=fc-43.4GHz的信号会越来越强直到闭环增益减少到1,最终频率为fc-fm-2fb=fc-43.4GHz和fc的信号在第二光电探测器拍频,经微波放大器后在频谱分析仪上能够显示频率为43.4GHz的电信号,见图4。
当第一微波信号源的频率分别设置为10GHz、20GHz、30GHz和40GHz时,上变频装置输出的微波信号的频率分别为28.4GHz、38.4GHz、48.4GHz、58.4GHz,输出的可调谐信号的频谱图如图5。

Claims (6)

1.一种基于光电振荡器的微波光子上变频装置,其特征在于:由激光源、第一耦合器、第一环行器、第一高非线性色散位移光纤、掺铒光纤放大器、第一光电探测器、第二耦合器、第一马赫曾德尔调制器、第一微波信号源、第一直流稳压电源、光滤波器、第二马赫曾德尔调制器、第二直流稳压电源、第二环行器、第二高非线性色散位移光纤、第二光电探测器、微波放大器、双平行马赫曾德尔调制器、第三直流稳压电源、第四直流稳压电源、第五直流稳压电源、光隔离器和频谱分析仪组成。
2.如权利要求1所述的一种基于光电振荡器的微波光子上变频装置,其特征在于:双平行马赫曾德尔调制器由第一子马赫曾德尔调制器、第二子马赫曾德尔调制器、第三母马赫曾德尔调制器组成;第一子马赫曾德尔调制器和第二子马赫曾德尔调制器作为两个子调制器嵌入在第三母马赫曾德尔调制器上,第一子马赫曾德尔调制器具有第一射频输入端、第一延迟器、第二延迟器、第一直流偏置端;第二子马赫曾德尔调制器具有第二射频输入端、第三延迟器、第四延迟器和第二直流偏置端;第三母马赫曾德尔调制器只有第三直流偏置端;第三直流稳压电源与第一直流偏置端相连,第四直流稳压电源与第二直流偏置端相连,第五直流稳压电源与第三直流偏置端相连;第三直流稳压电源、第四直流稳压电源和第五直流稳压电源为双平行马赫曾德尔调制器提供直流偏压。
3.如权利要求2所述的一种基于光电振荡器的微波光子上变频装置,其特征在于:选用波长在1550nm的光波作为载波,双平行马赫曾德尔调制器工作的光波长为1525nm~1605nm,带宽为30GHz~60GHz,其中第一子马赫曾德尔调制器和第二子马赫曾德尔调制器的半波电压为5.5V,第三母马赫曾德尔调制器的半波电压为15V;第一高非线性色散位移光纤、第二高非线性色散位移光纤长度为500m~2000m,两段光纤长度相同,受激布里渊频移量fb为9GHz~11GHz;隔离器的隔离度大于40dB;第一马赫曾德尔调制器和第二马赫曾德尔调制器的工作光波长为1525nm~1605nm,带宽分别为40GHz和20GHz;第一微波信号源的输出频率范围为1GHz~40GHz;第一光电探测器的带宽为40GHz;第二光电探测器的带宽为60GHz;微波放大器的带宽为40GHz,放大倍数大于20dB;第一耦合器、第二耦合器的分光比为1:0.5~2;频谱分析仪的带宽为60GHz;第一直流稳压电源、第二直流稳压电源、第三直流稳压电源、第四直流稳压电源和第五直流稳压电源的输出电压的幅度在1V~20V可调。
4.一种基于光电振荡器的微波光子上变频方法,其特征在于:基于权利要求1所述装置,激光源输出的光信号fc进入到第一耦合器中,第一耦合器把光信号分成第一支路和第二个支路两个光信号,第一支路光信号从第一环行器的Ⅰ端口进入并由Ⅱ口输出,进入到第一高非线性色散位移光纤中,发生受激布里渊散射效应产生反向的斯托克斯波并由第一环行器的Ⅱ端口进入,从第一环行器的Ⅲ端口输出的斯托克斯波和激光器输出的光信号被掺铒光纤放大器放大之后进入到第一光电探测器,在第一光电探测器中耦合拍频,产生一个频率等于布里渊频移的微波信号,频率为fb,这个微波信号进入第二马赫曾德尔调制器;
第二支路光信号进入到第二耦合器中,被分成第三支路和第四支路两个光信号,第三支路光信号进入到第一马赫曾德尔调制器中,被第一微波信号源输出的频率为fm的微波信号所调制,设置第一直流稳压电源的电压,使第一马赫曾德尔调制器工作在正交偏置点上,第一马赫曾德尔调制器输出的边带被光滤波器滤出下边带fc-fm,然后这个下边带进入到第二马赫曾德尔调制器中作为光载波,被第一光电探测器输出的频率为fb电信号所调制,设置第二直流稳压电源使得第二马赫曾德尔调制器工作在最小传输点,即工作在载波抑制的双边带调制状态,使第二马赫曾德尔调制器输出频率为fc-fm-fb和fc-fm+fb的两个边带信号,这两个边带信号通过Ⅰ端口进入第二环行器,然后经Ⅱ端口输出进入到第二高非线性色散位移光纤中作为泵浦光;
第四支路光信号进入到双平行马赫增德尔调制器中,系统刚开始工作时,系统内的噪声信号加载到双平行马赫增德尔调制器的第一射频输入端,去调制双平行马赫增德尔调制器,由于噪声信号和小信号具有随机性,双平行马赫曾德尔调制器会产生一系列的调制下边带,这些下边带通过光隔离器进入到第二高非线性色散位移光纤中,与第二环形器Ⅱ端口输出的泵浦光在第二高非线性色散位移光纤中相互作用发生受激布里渊散射效应,在受激布里渊散射效应的过程中,第二马赫曾德尔调制器输出的两个边带信号fc-fm-fb和fc-fm+fb作为泵浦光会分别在距离其频率间隔为fb的下频率和上频率处各自产生一个增益谱和损耗谱;由于两个泵浦波的频率间距刚好相差2fb,且两个边带幅度相同,所以上边带产生的增益谱和下边带产生的损耗谱刚好抵消,而频率为fc-fm-fb的下边带会放大频率为fc-fm-2fb附近的小的噪声边带,频率为fc-fm+fb的上边带会衰减频率为fc-fm+2fb附近的小的噪声边带,被放大的频率为fc-fm-2fb附近的小的噪声边带通过Ⅱ端口进入到第二环行器,然后由Ⅲ端口输出到第二光电探测器,由第二光电探测器转化为频率为fm+2fb的电信号后,经微波放大器输入到双平行马赫曾德尔调制器去调制第四支路光信号,调制之后的信号继续通过光隔离器进入到第二高非线性色散位移光纤,与第二马赫曾德尔调制器输出的信号发生受激布里渊散射效应,产生一个更强的边带频率为fc-fm-2fb;通过正反馈,频率为fc-fm-2fb的信号会越来越强直到闭环增益减少到1,最终频率为fc-fm-2fb和fc的信号在第二光电探测器拍频,经微波放大器后在频谱分析仪上能够显示频率为fm+2fb的电信号,从而实现将一个低质量、低频率的中频信号转换成高质量、高频率的高频信号。
5.如权利要求3所述的一种基于光电振荡器的微波光子上变频方法,其特征在于:双平行马赫曾德尔调制器输入光场为第四支路输出的光信号,第一射频输入端所加的射频信号为第二光电探测器输出的经过微波放大器的射频信号,而第二射频输入端对地短接;第一直流偏置端的电压和第二直流偏置端电压分别为πVDC1/Vπ=πVDC2/Vπ=π/2,Vπ是调制器的半波电压,使它们均工作在正交偏置工作点上,设置第一延迟器、第二延迟器、第三延迟器、第四延迟器分别为0,-π/2,π/2,0,并令第三直流偏置端所加的电压VDc3=0V,改变这些参数使得双平行马赫曾德尔调制器处于单边带调制的工作状态,即可以得到双平行马赫曾德尔调制器的输出光场中包含载波项和一阶下边带。
6.如权利要求3所述的一种基于光电振荡器的微波光子上变频方法,其特征在于:高非线性光纤的布里渊频移值fb=9.2GHz,第一微波信号源输出的频率为fm的信号可以被上变频到频率为fm+18.4GHz。
CN201810128150.9A 2018-02-08 2018-02-08 一种基于光电振荡器的微波光子上变频装置及方法 Expired - Fee Related CN108199776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810128150.9A CN108199776B (zh) 2018-02-08 2018-02-08 一种基于光电振荡器的微波光子上变频装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810128150.9A CN108199776B (zh) 2018-02-08 2018-02-08 一种基于光电振荡器的微波光子上变频装置及方法

Publications (2)

Publication Number Publication Date
CN108199776A true CN108199776A (zh) 2018-06-22
CN108199776B CN108199776B (zh) 2020-04-03

Family

ID=62592808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810128150.9A Expired - Fee Related CN108199776B (zh) 2018-02-08 2018-02-08 一种基于光电振荡器的微波光子上变频装置及方法

Country Status (1)

Country Link
CN (1) CN108199776B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039464A (zh) * 2018-08-30 2018-12-18 吉林大学 一种基于上变频的微波光子毫米波超宽带信号产生方法及装置
CN109659797A (zh) * 2019-03-01 2019-04-19 电子科技大学 用于相噪优化的光电振荡器系统
CN110233678A (zh) * 2019-05-15 2019-09-13 上海交通大学 基于硅基集成微波光子接收处理芯片
CN110736876A (zh) * 2019-10-24 2020-01-31 吉林大学 基于微波光子学的宽范围高精度微波频率测量方法及装置
CN111385031A (zh) * 2020-03-24 2020-07-07 中国科学院上海光学精密机械研究所 基于复合轴锁相的星间相干光通信系统
CN111447013A (zh) * 2020-04-07 2020-07-24 吉林大学 基于微波光子学的四阶超宽带信号产生方法及装置
CN112255857A (zh) * 2020-10-19 2021-01-22 重庆连芯光电技术研究院有限公司 一种干涉增强上转换成像装置
CN113391121A (zh) * 2020-03-13 2021-09-14 西安电子科技大学 一种基于频率响应监测实现瞬时测频的方法
CN113472445A (zh) * 2021-06-25 2021-10-01 西北工业大学 基于PDM-DPMZM的双频段RoF系统及调节方法
CN113489551A (zh) * 2021-07-05 2021-10-08 吉林大学 一种厘米波/毫米波超宽带信号产生装置
CN114978332A (zh) * 2022-05-18 2022-08-30 中国矿业大学 频率和相位均可调谐的毫米波信号产生装置及方法
CN114548393B (zh) * 2022-02-25 2024-05-17 太原理工大学 一种大操作空间的储备池计算高速信息处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189745A1 (en) * 2002-04-05 2003-10-09 Nobuhiko Kikuchi Optical single sideband transmitter
CN101232331A (zh) * 2008-01-25 2008-07-30 清华大学 光纤无线电下行链路中的全光副载波调制装置及方法
CN101833221A (zh) * 2010-04-02 2010-09-15 上海交通大学 基于硅基微环谐振腔的全光单边带上变频产生装置
CN101873172A (zh) * 2010-06-22 2010-10-27 浙江大学 一种基于光纤环形谐振腔的毫米波发生装置及其方法
WO2015030891A2 (en) * 2013-06-03 2015-03-05 Massachusetts Institute Of Technology Inductance-tuned electro-optic modulators
CN104618022A (zh) * 2015-01-29 2015-05-13 吉林大学 毫米波信号的光子学产生方法及装置
CN107065390A (zh) * 2017-06-28 2017-08-18 吉林大学 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
CN107144731A (zh) * 2017-07-04 2017-09-08 吉林大学 一种基于高非线性光纤受激布里渊散射效应和幅度比的微波频率测量方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189745A1 (en) * 2002-04-05 2003-10-09 Nobuhiko Kikuchi Optical single sideband transmitter
CN101232331A (zh) * 2008-01-25 2008-07-30 清华大学 光纤无线电下行链路中的全光副载波调制装置及方法
CN101833221A (zh) * 2010-04-02 2010-09-15 上海交通大学 基于硅基微环谐振腔的全光单边带上变频产生装置
CN101873172A (zh) * 2010-06-22 2010-10-27 浙江大学 一种基于光纤环形谐振腔的毫米波发生装置及其方法
WO2015030891A2 (en) * 2013-06-03 2015-03-05 Massachusetts Institute Of Technology Inductance-tuned electro-optic modulators
CN104618022A (zh) * 2015-01-29 2015-05-13 吉林大学 毫米波信号的光子学产生方法及装置
CN107065390A (zh) * 2017-06-28 2017-08-18 吉林大学 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
CN107144731A (zh) * 2017-07-04 2017-09-08 吉林大学 一种基于高非线性光纤受激布里渊散射效应和幅度比的微波频率测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐坤: "基于微波光子技术的光载无线系统研究", 《全国第十三次光纤通信暨第十四届集成光学学术会议》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039464A (zh) * 2018-08-30 2018-12-18 吉林大学 一种基于上变频的微波光子毫米波超宽带信号产生方法及装置
CN109039464B (zh) * 2018-08-30 2021-07-13 吉林大学 一种基于上变频的微波光子毫米波超宽带信号产生方法及装置
CN109659797A (zh) * 2019-03-01 2019-04-19 电子科技大学 用于相噪优化的光电振荡器系统
CN110233678B (zh) * 2019-05-15 2022-03-08 上海交通大学 基于硅基集成微波光子接收处理芯片
CN110233678A (zh) * 2019-05-15 2019-09-13 上海交通大学 基于硅基集成微波光子接收处理芯片
CN110736876A (zh) * 2019-10-24 2020-01-31 吉林大学 基于微波光子学的宽范围高精度微波频率测量方法及装置
CN110736876B (zh) * 2019-10-24 2021-04-30 吉林大学 基于微波光子学的宽范围高精度微波频率测量方法及装置
CN113391121B (zh) * 2020-03-13 2022-08-02 西安电子科技大学 一种基于频率响应监测实现瞬时测频的方法
CN113391121A (zh) * 2020-03-13 2021-09-14 西安电子科技大学 一种基于频率响应监测实现瞬时测频的方法
CN111385031A (zh) * 2020-03-24 2020-07-07 中国科学院上海光学精密机械研究所 基于复合轴锁相的星间相干光通信系统
CN111385031B (zh) * 2020-03-24 2022-05-31 中国科学院上海光学精密机械研究所 基于复合轴锁相的星间相干光通信系统
CN111447013A (zh) * 2020-04-07 2020-07-24 吉林大学 基于微波光子学的四阶超宽带信号产生方法及装置
CN111447013B (zh) * 2020-04-07 2022-09-13 吉林大学 基于微波光子学的四阶超宽带信号产生装置
CN112255857A (zh) * 2020-10-19 2021-01-22 重庆连芯光电技术研究院有限公司 一种干涉增强上转换成像装置
CN113472445A (zh) * 2021-06-25 2021-10-01 西北工业大学 基于PDM-DPMZM的双频段RoF系统及调节方法
CN113472445B (zh) * 2021-06-25 2022-07-05 西北工业大学 基于PDM-DPMZM的双频段RoF系统及调节方法
CN113489551A (zh) * 2021-07-05 2021-10-08 吉林大学 一种厘米波/毫米波超宽带信号产生装置
CN113489551B (zh) * 2021-07-05 2022-09-20 吉林大学 一种厘米波/毫米波超宽带信号产生装置
CN114548393B (zh) * 2022-02-25 2024-05-17 太原理工大学 一种大操作空间的储备池计算高速信息处理系统
CN114978332A (zh) * 2022-05-18 2022-08-30 中国矿业大学 频率和相位均可调谐的毫米波信号产生装置及方法

Also Published As

Publication number Publication date
CN108199776B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN108199776A (zh) 一种基于光电振荡器的微波光子上变频装置及方法
CN104618022B (zh) 毫米波信号的光子学产生方法及装置
CN107065390B (zh) 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
CN104022830B (zh) 利用马赫‑曾德尔调制器产生八倍频毫米波的装置
CN107846254A (zh) 利用集成器件实现微波下变频和移相的光子方法及系统
CN108988105B (zh) 一种高功率宽带超平坦微波频率梳的产生装置及其方法
CN109586798B (zh) 一种可调谐多输出微波信号的光子学产生装置
CN105357159B (zh) 一种九倍频qpsk光载毫米波信号的产生方法和系统
CN103297145A (zh) 全光产生十六倍频毫米波的装置
CN104601240B (zh) 基于硫系玻璃光纤四波混频效应的毫米波生成系统及方法
CN104993358A (zh) 基于受激布里渊散射的单边带光载微波信号产生装置
CN108683058A (zh) 一种高功率超平坦微波频率梳的产生装置及方法
CN114978332B (zh) 频率和相位均可调谐的毫米波信号产生装置及方法
CN102751644A (zh) 基于受激布里渊散射效应的宽带连续可调谐光电振荡器
Li et al. Tunable carrier generation and broadband data upconversion for RoF systems based on stimulated Brillouin scattering
CN100536373C (zh) 一种基于受激布里渊散射的微波光子混频方法及装置
Deng et al. Widely tunable single-passband microwave photonic filter based on DFB-SOA-assisted optical carrier recovery
CN101834670A (zh) 高线性响应的微波光子信号调制与解调装置
CN110707510A (zh) 基于受激布里渊散射的傅里叶域锁模光电振荡器
Zhang et al. Integrated direct single sideband modulation utilizing sideband amplification injection locking effect based on multi-section mutual injection DFB laser
KR100715865B1 (ko) 반도체 광증폭기 마하젠더 간섭계를 이용한 전광 주파수 상향 변환 방법
Li et al. A novel optoelectronic oscillator based on all optical signal processing
Meng et al. Tunable photonic microwave up-converter using opto-electronic oscillator based on monolithic integrated three-section laser
Lin et al. Photonic image-free mixer based on a dual-parallel Mach-Zehnder modulator and fiber dispersion for radio-over-fiber system
Lin et al. Photonic microwave generation based on an OISL by subharmonic modulation from an OEO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200403

CF01 Termination of patent right due to non-payment of annual fee