CN110736876A - 基于微波光子学的宽范围高精度微波频率测量方法及装置 - Google Patents

基于微波光子学的宽范围高精度微波频率测量方法及装置 Download PDF

Info

Publication number
CN110736876A
CN110736876A CN201911015580.0A CN201911015580A CN110736876A CN 110736876 A CN110736876 A CN 110736876A CN 201911015580 A CN201911015580 A CN 201911015580A CN 110736876 A CN110736876 A CN 110736876A
Authority
CN
China
Prior art keywords
frequency
output
intensity modulator
phase
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911015580.0A
Other languages
English (en)
Other versions
CN110736876B (zh
Inventor
董玮
王迪
张歆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201911015580.0A priority Critical patent/CN110736876B/zh
Publication of CN110736876A publication Critical patent/CN110736876A/zh
Application granted granted Critical
Publication of CN110736876B publication Critical patent/CN110736876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • G01R23/167Spectrum analysis; Fourier analysis using filters with digital filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/17Spectrum analysis; Fourier analysis with optical or acoustical auxiliary devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于微波光子学的宽范围高精度微波频率测量方法及装置,属于微波光子学技术领域。由可调激光器、耦合器、相位调制器、强度调制器1、强度调制器2、滤波器、矢量网络分析仪、隔离器、单模光纤1、单模光纤2、环形器1、环形器2、微波信号源1、微波信号源2、直流稳压电源1、直流稳压电源2、光电转换器组成。由矢量网络分析仪测量出幅频特性曲线与相频特性曲线,进而实现未知信号频率的粗略测量和精确测量。本发明采用两个泵浦光,实现增益谱损耗谱抵消,增加多频测量范围;本发明基于布里渊散射相频特性构建相移‑频率函数曲线,通过相移‑频率函数曲线得到待测微波信号的频率值,提高了测量的精度。

Description

基于微波光子学的宽范围高精度微波频率测量方法及装置
技术领域
本发明属于微波光子学技术领域,具体涉及一种基于微波光子学的宽范围高精度微波频率测量方法及装置。
背景技术
随着信息技术的高速发展,传统的电学微波频率测量技术由于“电子瓶颈”的制约,电子系统的频带宽度将会越来越难提高,而且电子系统具有大的体积和重量,高昂的高速器件成本,这些都限制了其在实际中的应用。基于微波光子技术的瞬时频率测量(IFM)应用于通讯、导航、雷达、电子战等系统中,受到广泛的关注和研究。微波光子学结合光子学理论和微波理论,兼顾了微波和光子学的优势,基于微波光子学的微波频率测量技术具有损耗低、工作带宽大、系统体积小、可重构性好、抗电磁干扰等固有优点,因此,利用微波光子学技术构建的微波频率测量系统能够很好地解决传统的电学微波频率测量系统存在的问题。
利用光子辅助技术实现微波频率测量得到了飞速发展,这些技术主要分为:频率到微波功率或光功率的映射、频率到时间的映射、四波混频效应以及受激布里渊效应等。
发明内容
本发明的目的是提供一种基于受激布里渊增益谱损耗谱相抵消和相移谱的微波频率测量方法及装置。
本发明所述的微波光子频率测量装置的结构如图1所示,由可调激光器、耦合器、相位调制器、强度调制器1、强度调制器2、滤波器、矢量网络分析仪、隔离器、单模光纤1、单模光纤2、环形器1、环形器2、微波信号源1、微波信号源2、直流稳压电源1、直流稳压电源2、光电转换器组成。
可调激光器输出的光信号进入到耦合器中,耦合器将光信号分为第一支路和第二两个支路,第一支路的光信号输入到相位调制器中,被矢量网络分析仪输出的一系列等频率间隔的扫频微波信号调制,相位调制器输出的信号经过隔离器进入单模光纤2中,作为受激布里渊散射效应的探测光;隔离器具有单向传输特性,光信号从相位调制器到单模光纤2传输方向的衰减比较小,而从单模光纤2到相位调制器传输方向的衰减则很大,所以从单模光纤2到相位调制器传输方向的光信号经过隔离器后通过的光信号很少,不会对相位调制器产生影响,保证相位调制器处于稳定的工作状态;耦合器输出的第二支路的光信号由1端口输入到环形器1(环形器1的工作方向如图1中所示,即光信号从1端口输入2端口输出,从2端口输入从3端口输出)中,再从2端口输出到单模光纤1中,在单模光纤1中发生受激布里渊散射效应,然后从2端口输入到环形器1中,再由3端口输出进入到强度调制器1中;待测频率为fx的微波信号由微波信号源1输出,并作为强度调制器1的微波信号输入;强度调制器1的直流偏置端与直流稳压电源1相连接,通过直流稳压电源1给强度调制器1施加直流偏置电压,使强度调制器1工作在最小传输点,实现载波抑制双边带调制;强度调制器1输出的载波抑制的双边带调制光信号通过滤波器滤掉下边带,实现抑制载波的单边带调制;然后进入到强度调制器2中,固定频率为VB(VB为布里渊频移)的微波信号由微波信号源2输出,作为强度调制器2的微波信号输入,强度调制器2的直流偏置端与直流稳压电源2相连接,通过直流稳压电源2给强度调制器2施加直流偏置电压,使强度调制器2工作在最小传输点,实现载波抑制双边带调制;调制后的光信号通过环形器2的1端口输入2端口输出,进入单模光纤2中,作为受激布里渊散射效应的泵浦光;当泵浦光与探测光之间的频率间隔为布里渊频移量VB时,受激布里渊散射效应发生,使探测光的幅度发生增益或者衰减,相位也发生相应的变化,探测光的边带平衡被打破,实现相位调制到强度调制的转换;经受激布里渊散射效应处理的探测光从2端口进入到环形器2,再从3端口输出经过光电转换器拍频之后输入到矢量网络分析仪中去,由矢量网络分析仪测量出幅频特性曲线与相频特性曲线,进而实现未知信号频率的粗略测量和精确测量。
系统连接好之后,打开所有的仪器设备开关,使所有的设备处于工作状态,可调激光器输出频率为fc的光信号进入到耦合器中,耦合器将光信号分为第一支路和第二支路;第一支路的光信号输入到相位调制器中,被矢量网络分析仪输出的一系列包含频率为fs的扫频微波信号调制,这些扫频信号的频率间隔设置为
Figure BDA0002245598950000021
为在单模光纤1和单模光纤2中产生受激布里渊散射效应时布里渊增益的线宽),这样能够保证测量时fs落在泵浦光产生的相移谱的单调区间之中;相位调制器输出的信号fc、fc±fs、fc±
Figure BDA0002245598950000022
(如图2(1)所示)经过隔离器进入单模光纤2中,作为受激布里渊散射效应的探测光;耦合器输出的第二支路的光信号通过环形器1的1端口输入并由2端口输出进入到单模光纤1中,fc作为泵浦光,调节可调激光器输出功率,使第二支路光信号功率超过单模光纤1的受激布里渊散射阈值,从而在单模光纤1中发生受激布里渊散射效应,受激布里渊散应产生的光信号从2端口进入到环行器1中,并从环形器1的3端口输出频率为fc+VB的光信号(如图2(2)所示),该光信号进入第一强度调制器1;待测频率为fx的微波信号由第一微波信号源1输出进入第一强度调制器1的射频输入端口,调整与第一强度调制器1相连的第一直流电压源1的输出电压,使第一强度调制器1工作在抑制载波的双边带调制状态,输出频率值为fc+fx-VB和fc+fx+VB的下边带和上边带信号;之后调节滤波器的波长和带宽滤掉下边带,使频率值为fc+fx+VB(如图2(3)所示)的上边带信号进入到强度调制器2中;微波信号源2输出的频率为VB的信号进入强度调制器2的射频输入端口,对频率为fc+fx+VB的上边带信号进行强度调制,强度调制器2的直流偏置端与直流稳压电源2相连接,通过直流稳压电源2给强度调制器2施加直流偏置电压,使强度调制器2工作在最小传输点,实现载波抑制双边带调制,输出频率值为fc+fx+2VB和fc+fx的上、下阶边信号(如图2(4)所示);强度调制器2输出的光信号通过环形器2的1口输入2口输出,进入单模光纤2中,作为受激布里渊散射效应的泵浦光;当泵浦光与探测光的频率差值为布里渊频移量时,受激布里渊散射效应发生,探测光的边带平衡被打破,实现相位调制到强度调制的转换(如图2(4)所示),由于频率为fc+fx+2VB和fc+fx的两个泵浦光的频率间隔为2VB,泵浦光fc+fx的损耗谱与泵浦光fc+fx+2VB的增益谱完全抵消;由于布里渊增益损耗补偿,频率为fc+fx-VB的增益谱和频率为fc+fx+3VB的损耗谱之间的间隔为4VB(如图2(5)所示);同时由于布里渊散射效应,探测光幅度增加或衰减的同时探测光的相位也发生相应变化,经受激布里渊散射效应处理的频率为fc+fx-VB和fc+fx+3VB的光信号从环形器2的3端口输出经过光电转换器拍频之后输入到矢量网络分析仪中,能得到与待测频率为fx的微波信号对应的幅频特性和相频特性曲线(如图2(5)所示)。
为了实现精确测量需要分段构建相移-频率特性曲线,分段的相移-频率特性曲线的构建方法如下:使微波信号源1从图1所示装置能够测量的最小频率f0开始,以微小步进(1MHz~5MHz)增加至频率为f1=f0+1/2ΔVB(如图3(1)所示),通过图1所示装置在矢量网络分析仪中得到一系列与第一微波信号源1输出信号对应的相频特性数据,建立当扫频信号fs=f0-VB+1/4ΔVB时的微波信号源1输出信号频率fx与相频特性数据的相移-频率曲线(如图3(2)所示);然后再使微波信号源1的输出信号频率从f1变化到f1+1/2ΔVB,同样建立扫频信号fs=f1-VB+1/4ΔVB时微波信号源1输出信号频率fx与相频特性数据的相移-频率曲线;之后重复上述步骤,依次建立其它频带(如从f1+1/2ΔVB变化到f1+ΔVB、f1+ΔVB变化到f1+3/2ΔVB……)相移-频率曲线,进而得到多个频带的相移-频率曲线。
进行正式测量时,通过微波信号源1输入未知信号fx,根据网络分析仪上的幅频特性曲线第一峰值的频率值加上布里渊频移量VB粗略地得到未知信号的频率fx′,从而确定精确测量时对应的相移-频率曲线的频带,根据网络分析仪上读出的fs的相移数值,在对应频带的相移-频率曲线获得未知信号fx的精确频率。
本发明选用波长为1530nm~1565nm的可调谐激光器作载波光源;耦合器为5:5的耦合器;强度调制器1、2的带宽为20GHz;相位调制器的带宽为38GHz;单模光纤1、2长度为500m~2000m,受激布里渊频移量VB为9GHz~11GHz;隔离器的隔离度大于40dB;光电转换器的带宽为40GHz;矢量网络分析仪的频率范围为50MHz~40GHz;微波信号源1、2的输出频率范围为1GHz~70GHz;直流稳压电源1、2的输出电压的幅度在1V~20V可调;可调光滤波器的可调带宽为50pm-800pm。
本发明所述的装置的特点:
(1)采用两个泵浦光,实现增益谱损耗谱抵消,增加多频测量范围。
(2)基于布里渊散射相频特性构建相移-频率函数曲线,通过相移-频率函数曲线得到待测微波信号的频率值,提高了测量的精度。
附图说明
图1:微波信号频率测量装置示意图;
图2:微波信号频率测量装置的频谱处理图;
图3:微波信号频率测量装置的原理图;
图4:单频测量时矢量网络分析仪测得的幅频特性和相频特性;
图5:待测微波信号频率为12.00GHz~12.05GHz范围内的相移-频率函数曲线;
图6:多频测量时矢量网络分析仪测得的幅频特性;
具体实施方式
实施例1:
可调激光器为Santec公司的TSL-510可调激光器,激光器的波长范围为1510nm~1630nm;耦合器为5:5的耦合器;强度调制器1和强度调制器2均采用Photline公司的MXAN-LN-20,带宽为20GHz,实验前测得最小工作点偏置电压为6.7V;相位调制器为Photline公司的MPZ-LN-40带宽为38GHz;隔离器的隔离度大于40dB;单模光纤1和单模光纤2采用相同的长飞科技有限公司的单模光纤,长度为14km,在光载波波长为1550nm时,受激布里渊频移量VB=10GHz,测得受激布里渊增益谱线宽测量为ΔVB=100MHz;微波信号源1、微波信号源2采用安捷伦公司的微波信号发生器E8257D,输出频率范围为100kHz~70GHz;光电转换器是Optilab公司的PD-40-M,带宽为40GHz;安立公司的矢量网络分析仪Anritsu 37269C,输出微波信号频率范围为40MHz~40GHz;直流稳压电源为固纬公司的GPS-4303C,输出电压幅度在1V~20V可调;第一环形器和第二环形器均为深圳市智源光通讯技术公司的CIR-3-1550-900um-1m-FC/APC;可调光滤波器为Yenista公司的Yenista XTM-50,可调带宽为50pm-800pm。
系统连接好之后,打开所有的仪器设备开关,使所有设备处于工作状态,首先可调谐激光器输出频率为fc=193.414THz(对应波长为1550nm)的光信号,光信号经过5:5耦合器被分为第一支路和第二支路,第一支路的光信号输入到相位调制器中,被矢量网络分析仪发出的一系列等频率间隔的扫频微波信号调制,这一系列扫频信号中包含频率为fs的信号,矢量网络分析仪输出的扫频微波信号频率间隔设置50MHz(为
Figure BDA0002245598950000051
ΔVB为在单模光纤1和单模光纤2中产生受激布里渊散射效应时布里渊增益的线宽)。经过隔离器进入单模光纤2中,作为受激布里渊散射效应的探测光。耦合器输出的第二支路的光信号通过环形器1的1口输入2口输出进入到单模光纤1中,光载波fc作为泵浦光,调节可调激光器输出功率,使第二支路光信号功率超过单模光纤1的受激布里渊散射阈值,将在单模光纤1中发生受激布里渊散射效应,经受激布里渊散射效应产生的频率为fc+10GHz(10GHz为单模光纤1的受激布里渊频移)的光信号从2端口进入到环行器1中,从环形器1的3端口输出进入强度调制器1中,待测频率为fx=12GHz的微波信号由微波信号源1输出,进入强度调制器1的射频输入端口,调整直流电压源1的输出电压为6.7V,使强度调制器1工作在抑制载波的双边带调制状态,强度调制器1输出的下边带信号的频率为fc-2GHz,上边带信号频率为fc+22GHz,之后调节滤波器滤掉频率为fc-2GHz的下边带信号。频率为fc+22GHz的上边带信号输入到强度调制器2中,被频率为10GHz的信号强度调制,强度调制器2的直流偏置端与直流稳压电源2相连接,调整直流电压源2的输出电压为6.7V,使强度调制器工作在最小传输点,实现载波抑制双边带调制。强度调制器输出频率为fc+12GHz和fc+32GHz的光信号通过环形器2的1端口输入2端口输出,进入单模光纤2中,作为受激布里渊散射效应的泵浦光。当泵浦光与探测光之间发生受激布里渊散射效应时,探测光的边带平衡被打破,实现相位调制到强度调制的转换。由于布里渊散射效应,频率为fc+12GHz的泵浦光使其增益区的探测光幅度增强,使其损耗区的探测光幅度衰减,频率为fc+32GHz的泵浦光使其增益区的探测光幅度增强,使其损耗区的探测光幅度衰减,在探测光幅度增强或衰减的同时探测光的相位也由于受激布里渊散射效应的相移特性发生相应变化,经受激布里渊散射效应处理的探测光从环形器2的3端口输出经过光电转换器拍频之后输入到矢量网络分析仪中,观察到幅频特性和相频特性曲线;在幅频特性曲线中,可以观察到两个峰值,如图4(2)所示,通过第一个峰值频率2.012GHz加上布里渊频移值(10GHz)可以粗略测出待测未知信号频率为f′x=12.012GHz,接下来进行精确测量。由于已经粗略测出待测未知信号频率为f′x=12.012GHz,在本实施例里只需构建包含频率值为12.012GHz在内的相移-频率特性曲线,因此构建12.00GHz~12.05GHz范围内的频带曲线,同时计算得到需要对频率为2.025GHz(12GHz-VB+1/4ΔVB)的探测光信号,构建相移-频率曲线的具体方法如下:将微波信号源1输出的信号频率值从12.00GH以2MHz的步进逐渐增加到12.05GH,通过图1所示装置在矢量网络分析仪中得到相频特性曲线如4(1)所示,记录并保存扫频信号频率为2.025GHz的信号对应的相频特性数据,得到频率值从12GHz~12.05GHz变化时对应的相移-频率特性曲线,得到如图5曲线所示。数据记录完成进行正式测量,因为已知待测信号的粗略测量值为12.012GHz,对应的频带为12GHz~12.05GHz,从图4(1)中可以得到探测光频率为2.025GHz时相移为-108.7°,再对应到图(5)中的曲线可以根据纵坐标的相移值-108.7°读出对应的横坐标的频率值为12.006GHz,即待测信号的频率。12GHz~12.05GHz内的测量过程和测量结果说明了提出的频率测量系统能够精确的测量未知微波信号的频率。重复上述的测量步骤,测量其它未知微波信号的频率。
同理频率为fx1=15GHz,fx2=25GHz,fx3=35GHz,fx4=45GHz的频率同时输入,实现多频测量结果如图6所示。然后,取网络分析仪上第一个峰值,粗略地计算未知信号的频率,获得相应的频带信息,利用相应的相移-频率曲线实现精确频率测量。

Claims (3)

1.一种基于受激布里渊增益谱损耗谱相抵消和相移谱的微波频率测量装置,其特征在于:是由可调激光器、耦合器、相位调制器、第一强度调制器1、第二强度调制器2、滤波器、矢量网络分析仪、隔离器、第一单模光纤1、第二单模光纤2、第一环形器1、第一环形器2、第一微波信号源1、第二微波信号源2、第一直流稳压电源1、第二直流稳压电源2、光电转换器组成;
可调激光器输出的光信号进入到耦合器中,耦合器将光信号分为第一支路和第二两个支路,第一支路的光信号输入到相位调制器中,被矢量网络分析仪输出的一系列等频率间隔的扫频微波信号调制,相位调制器输出的信号经过隔离器进入第二单模光纤2中,作为受激布里渊散射效应的探测光;
耦合器输出的第二支路的光信号由1端口输入到第一环形器1中,再从2端口输出到第一单模光纤1中,在第一单模光纤1中发生受激布里渊散射效应,布里渊频移为VB;然后从2端口输入到环形器1中,再由3端口输出进入到强度调制器1中;待测频率为fx的微波信号由微波信号源1输出,并作为第一强度调制器1的微波信号输入;第一强度调制器1的直流偏置端与第一直流稳压电源1相连接,通过第一直流稳压电源1给第一强度调制器1施加直流偏置电压,使第一强度调制器1工作在最小传输点,实现载波抑制双边带调制;第一强度调制器1输出的载波抑制的双边带调制光信号通过滤波器滤掉下边带,实现抑制载波的单边带调制;然后进入到第二强度调制器2中,固定频率为VB的微波信号由第二微波信号源2输出,作为第二强度调制器2的微波信号输入,第二强度调制器2的直流偏置端与第二直流稳压电源2相连接,通过第二直流稳压电源2给第二强度调制器2施加直流偏置电压,使第二强度调制器2工作在最小传输点,实现载波抑制双边带调制;调制后的光信号通过第二环形器2的1端口输入2端口输出,进入第二单模光纤2中,作为受激布里渊散射效应的泵浦光;当泵浦光与探测光之间的频率间隔为布里渊频移量VB时,受激布里渊散射效应发生,使探测光的幅度发生增益或者衰减,相位也发生相应的变化,探测光的边带平衡被打破,实现相位调制到强度调制的转换;经受激布里渊散射效应处理的探测光从2端口进入到环形器2,再从3端口输出经过光电转换器拍频之后输入到矢量网络分析仪中去,由矢量网络分析仪测量出幅频特性曲线与相频特性曲线,进而实现未知信号频率的粗略测量和精确测量。
2.如权利要求1所述的一种基于受激布里渊增益谱损耗谱相抵消和相移谱的微波频率测量装置,其特征在于:选用波长为1530nm~1565nm的可调谐激光器作载波光源;耦合器为5:5的耦合器;第一强度调制器1和第二强度调制器2的带宽为20GHz;相位调制器的带宽为38GHz;第一单模光纤1和第二单模光纤2的长度为500m~2000m,受激布里渊频移量VB为9GHz~11GHz;隔离器的隔离度大于40dB;光电转换器的带宽为40GHz;矢量网络分析仪的频率范围为50MHz~40GHz;第一微波信号源1和第二微波信号源2的输出频率范围为1GHz~70GHz;第一直流稳压电源1和第二直流稳压电源2的输出电压的幅度在1V~20V可调;可调光滤波器的可调带宽为50pm-800pm。
3.一种基于受激布里渊增益谱损耗谱相抵消和相移谱的微波频率测量方法,其特征在于:权利要求1所述的系统连接好之后,打开所有的仪器设备开关,使所有的设备处于工作状态,可调激光器输出频率为fc的光信号进入到耦合器中,耦合器将光信号分为第一支路和第二支路;第一支路的光信号输入到相位调制器中,被矢量网络分析仪输出的一系列包含频率为fs的扫频微波信号调制,这些扫频信号的频率间隔设置为
Figure FDA0002245598940000021
ΔVB为在单模光纤1和单模光纤2中产生受激布里渊散射效应时布里渊增益的线宽,这样能够保证测量时fs落在泵浦光产生的相移谱的单调区间之中;相位调制器输出的信号
Figure FDA0002245598940000022
经过隔离器进入单模光纤2中,作为受激布里渊散射效应的探测光;耦合器输出的第二支路的光信号通过环形器1的1端口输入并由2端口输出进入到单模光纤1中,fc作为泵浦光,调节可调激光器输出功率,使第二支路光信号功率超过单模光纤1的受激布里渊散射阈值,从而在单模光纤1中发生受激布里渊散射效应,受激布里渊散应产生的光信号从2端口进入到环行器1中,并从环形器1的3端口输出频率为fc+VB的光信号,该光信号进入第一强度调制器1;待测频率为fx的微波信号由第一微波信号源1输出进入第一强度调制器1的射频输入端口,调整与第一强度调制器1相连的第一直流电压源1的输出电压,使第一强度调制器1工作在抑制载波的双边带调制状态,输出频率值为fc+fx-VB和fc+fx+VB的下边带和上边带信号;之后调节滤波器的波长和带宽滤掉下边带,使频率值为fc+fx+VB的上边带信号进入到强度调制器2中;微波信号源2输出的频率为VB的信号进入强度调制器2的射频输入端口,对频率为fc+fx+VB的上边带信号进行强度调制,强度调制器2的直流偏置端与直流稳压电源2相连接,通过直流稳压电源2给强度调制器2施加直流偏置电压,使强度调制器2工作在最小传输点,实现载波抑制双边带调制,输出频率值为fc+fx+2VB和fc+fx的上、下阶边信号;强度调制器2输出的光信号通过环形器2的1口输入2口输出,进入单模光纤2中,作为受激布里渊散射效应的泵浦光;当泵浦光与探测光的频率差值为布里渊频移量时,受激布里渊散射效应发生,探测光的边带平衡被打破,实现相位调制到强度调制的转换,由于频率为fc+fx+2VB和fc+fx的两个泵浦光的频率间隔为2VB,泵浦光fc+fx的损耗谱与泵浦光fc+fx+2VB的增益谱完全抵消;由于布里渊增益损耗补偿,频率为fc+fx-VB的增益谱和频率为fc+fx+3VB的损耗谱之间的间隔为4VB;同时由于布里渊散射效应,探测光幅度增加或衰减的同时探测光的相位也发生相应变化,经受激布里渊散射效应处理的频率为fc+fx-VB和fc+fx+3VB的光信号从环形器2的3端口输出经过光电转换器拍频之后输入到矢量网络分析仪中,能得到与待测频率为fx的微波信号对应的幅频特性和相频特性曲线;
为了实现精确测量需要分段构建相移-频率特性曲线,分段的相移-频率特性曲线的构建方法如下:使微波信号源1从权利要求1所示装置能够测量的最小频率f0开始,以1MHz~5MHz的微小步进增加至频率为f1=f0+1/2ΔVB,通过图1所示装置在矢量网络分析仪中得到一系列与第一微波信号源1输出信号对应的相频特性数据,建立当扫频信号fs=f0-VB+1/4ΔVB时的微波信号源1输出信号频率fx与相频特性数据的相移-频率曲线;然后再使微波信号源1的输出信号频率从f1变化到f1+1/2ΔVB,同样建立扫频信号fs=f1-VB+1/4ΔVB时微波信号源1输出信号频率fx与相频特性数据的相移-频率曲线;之后重复上述步骤,依次建立f1+1/2ΔVB变化到f1+ΔVB、f1+ΔVB变化到f1+3/2ΔVB……其它频带相移-频率曲线,进而得到多个频带的相移-频率曲线;
进行正式测量时,通过微波信号源1输入未知信号fx,根据网络分析仪上的幅频特性曲线第一峰值的频率值加上布里渊频移量VB粗略地得到未知信号的频率fx′,从而确定精确测量时对应的相移-频率曲线的频带,根据网络分析仪上读出的fs的相移数值,在对应频带的相移-频率曲线获得未知信号fx的精确频率。
CN201911015580.0A 2019-10-24 2019-10-24 基于微波光子学的宽范围高精度微波频率测量方法及装置 Active CN110736876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911015580.0A CN110736876B (zh) 2019-10-24 2019-10-24 基于微波光子学的宽范围高精度微波频率测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911015580.0A CN110736876B (zh) 2019-10-24 2019-10-24 基于微波光子学的宽范围高精度微波频率测量方法及装置

Publications (2)

Publication Number Publication Date
CN110736876A true CN110736876A (zh) 2020-01-31
CN110736876B CN110736876B (zh) 2021-04-30

Family

ID=69271128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911015580.0A Active CN110736876B (zh) 2019-10-24 2019-10-24 基于微波光子学的宽范围高精度微波频率测量方法及装置

Country Status (1)

Country Link
CN (1) CN110736876B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610366A (zh) * 2020-05-15 2020-09-01 南京航空航天大学 基于超快光学扫频的宽带微波测量方法及装置
CN113315573A (zh) * 2021-05-28 2021-08-27 重庆邮电大学 一种光学辅助的宽带微波瞬时频率测量方法和装置
CN113391268A (zh) * 2021-04-27 2021-09-14 中国人民解放军空军预警学院 一种微波光子测频实现方法与系统
CN113595629A (zh) * 2021-08-06 2021-11-02 吉林大学 一种基于相移增益比的微波光子频率测量装置
CN114062778A (zh) * 2021-11-25 2022-02-18 中国人民解放军国防科技大学 一种基于受激布里渊散射的高精度多微波频率测量方法
US11313930B1 (en) 2020-11-13 2022-04-26 Rohde & Schwarz Gmbh & Co. Kg Alternation pulsed double resonance detection scheme for gapless detection in atomic vapor quantum sensors
CN114720780A (zh) * 2022-06-09 2022-07-08 杭州微纳智感光电科技有限公司 一种高功率高频微波场强传感方法及装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546007A (zh) * 2011-12-30 2012-07-04 浙江大学 利用布里渊散射实现多频微波信号频率测量的装置及方法
CN103715480A (zh) * 2014-01-20 2014-04-09 吉林大学 一种超高品质因数的单带通可调谐微波光子滤波器
CN103955028A (zh) * 2014-04-29 2014-07-30 中国科学院半导体研究所 一种宽带可调谐单通带微波光子滤波器产生系统
US20140218717A1 (en) * 2012-07-19 2014-08-07 Nanjing University BOTDA System that Combined Optical Pulse Coding Techniques and Coherent Detection
CN104614585A (zh) * 2015-01-04 2015-05-13 西南交通大学 基于受激布里渊效应的多频率高精度微波光子测频方案
CN104677396A (zh) * 2015-03-19 2015-06-03 广西师范大学 动态分布式布里渊光纤传感装置及方法
US20150236784A1 (en) * 2014-01-24 2015-08-20 Kerry VAHALA Stabilized microwave-frequency source
CN106840223A (zh) * 2017-01-16 2017-06-13 上海交通大学 基于布里渊散射的宽带微波瞬时频谱测量装置
CN107065390A (zh) * 2017-06-28 2017-08-18 吉林大学 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
WO2018005539A1 (en) * 2016-06-27 2018-01-04 The Regents Of The University Of California Distributed dynamic strain fiber optics measurement by brillouin optical time-domain reflectometry
CN107765086A (zh) * 2017-10-17 2018-03-06 闽南师范大学 一种同时测量多个微波信号频率的装置及方法
CN108199776A (zh) * 2018-02-08 2018-06-22 吉林大学 一种基于光电振荡器的微波光子上变频装置及方法
CN109813961A (zh) * 2019-01-11 2019-05-28 中国科学院半导体研究所 基于光学频率梳的微波瞬时测频装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546007A (zh) * 2011-12-30 2012-07-04 浙江大学 利用布里渊散射实现多频微波信号频率测量的装置及方法
US20140218717A1 (en) * 2012-07-19 2014-08-07 Nanjing University BOTDA System that Combined Optical Pulse Coding Techniques and Coherent Detection
CN103715480A (zh) * 2014-01-20 2014-04-09 吉林大学 一种超高品质因数的单带通可调谐微波光子滤波器
US20150236784A1 (en) * 2014-01-24 2015-08-20 Kerry VAHALA Stabilized microwave-frequency source
CN103955028A (zh) * 2014-04-29 2014-07-30 中国科学院半导体研究所 一种宽带可调谐单通带微波光子滤波器产生系统
CN104614585A (zh) * 2015-01-04 2015-05-13 西南交通大学 基于受激布里渊效应的多频率高精度微波光子测频方案
CN104677396A (zh) * 2015-03-19 2015-06-03 广西师范大学 动态分布式布里渊光纤传感装置及方法
WO2018005539A1 (en) * 2016-06-27 2018-01-04 The Regents Of The University Of California Distributed dynamic strain fiber optics measurement by brillouin optical time-domain reflectometry
CN106840223A (zh) * 2017-01-16 2017-06-13 上海交通大学 基于布里渊散射的宽带微波瞬时频谱测量装置
CN107065390A (zh) * 2017-06-28 2017-08-18 吉林大学 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
CN107765086A (zh) * 2017-10-17 2018-03-06 闽南师范大学 一种同时测量多个微波信号频率的装置及方法
CN108199776A (zh) * 2018-02-08 2018-06-22 吉林大学 一种基于光电振荡器的微波光子上变频装置及方法
CN109813961A (zh) * 2019-01-11 2019-05-28 中国科学院半导体研究所 基于光学频率梳的微波瞬时测频装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONG DU ET.AL: "Photonic generation of MMW-UWB monocycle and doublet signals based on frequency up-conversion and delay-line filter", 《OPTICS COMMUNICATIONS》 *
潘林兵: "基于微波光子学的瞬时微波频率测量技术研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610366A (zh) * 2020-05-15 2020-09-01 南京航空航天大学 基于超快光学扫频的宽带微波测量方法及装置
CN111610366B (zh) * 2020-05-15 2021-10-08 南京航空航天大学 基于超快光学扫频的宽带微波测量方法及装置
US11313930B1 (en) 2020-11-13 2022-04-26 Rohde & Schwarz Gmbh & Co. Kg Alternation pulsed double resonance detection scheme for gapless detection in atomic vapor quantum sensors
CN113391268A (zh) * 2021-04-27 2021-09-14 中国人民解放军空军预警学院 一种微波光子测频实现方法与系统
CN113315573A (zh) * 2021-05-28 2021-08-27 重庆邮电大学 一种光学辅助的宽带微波瞬时频率测量方法和装置
CN113315573B (zh) * 2021-05-28 2023-02-10 重庆邮电大学 一种光学辅助的宽带微波瞬时频率测量方法
CN113595629A (zh) * 2021-08-06 2021-11-02 吉林大学 一种基于相移增益比的微波光子频率测量装置
CN114062778A (zh) * 2021-11-25 2022-02-18 中国人民解放军国防科技大学 一种基于受激布里渊散射的高精度多微波频率测量方法
CN114062778B (zh) * 2021-11-25 2023-07-18 中国人民解放军国防科技大学 一种基于受激布里渊散射的高精度多微波频率测量方法
CN114720780A (zh) * 2022-06-09 2022-07-08 杭州微纳智感光电科技有限公司 一种高功率高频微波场强传感方法及装置
CN114720780B (zh) * 2022-06-09 2022-09-09 杭州微纳智感光电科技有限公司 一种高功率高频微波场强传感方法及装置

Also Published As

Publication number Publication date
CN110736876B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN110736876B (zh) 基于微波光子学的宽范围高精度微波频率测量方法及装置
CN107144731B (zh) 基于布里渊散射效应和幅度比的微波频率测量方法及装置
CN109813961B (zh) 基于光学频率梳的微波瞬时测频装置
Ghelfi et al. Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars
Liu et al. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping
US20200124650A1 (en) System and Method for Measuring Time-Frequency Characteristic of High-Frequency Electromagnetic Signal
CN110017967B (zh) 一种基于相位比较的电光强度调制器啁啾参数测试方法
CN106093598B (zh) 一种电磁信号特性测量系统和方法
Shi et al. Photonics-based broadband microwave instantaneous frequency measurement by frequency-to-phase-slope mapping
Singh et al. Photonic microwave frequency measurement with high accuracy and sub-MHz resolution
Zuo et al. Short-time Fourier transform based on stimulated Brillouin scattering
Zhang et al. Frequency-sweep-range-reconfigurable complementary linearly chirped microwave waveform pair generation by using a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering
Zuo et al. Photonic-assisted filter-free microwave Doppler frequency shift measurement using a fixed low-frequency reference signal
CN114978332B (zh) 频率和相位均可调谐的毫米波信号产生装置及方法
CN109931967B (zh) 一种光电探测器频率响应测量的频率配置方法
Zuo et al. Improving the accuracy and resolution of filter-and frequency-to-time mapping-based time and frequency acquisition methods by broadening the filter bandwidth
CN110350966B (zh) 基于光子技术的宽带微波信号到达角度测量装置及方法
Wang et al. Photonic-assisted microwave frequency measurement with adjustable channel bandwidth based on spectrum-controlled Brillouin phase shift
CN113595629A (zh) 一种基于相移增益比的微波光子频率测量装置
Ma et al. Time–frequency analysis of microwave signals based on stimulated Brillouin scattering
CN114285466B (zh) 基于双光频梳及受激布里渊散射的微波频率测量方法
CN114414993B (zh) 一种电光强度调制器芯片频率响应测试的方法
CN113406388B (zh) 光电探测器频率响应测试装置及其测试方法
CN207780105U (zh) 一种电光调制器的半波电压测量装置
Wang et al. Power-independent microwave instantaneous frequency measurement based on combination of Brillouin gain and loss spectra

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant