CN112201712A - 超晶格梯度能带空穴势垒层结构以及红外探测器 - Google Patents

超晶格梯度能带空穴势垒层结构以及红外探测器 Download PDF

Info

Publication number
CN112201712A
CN112201712A CN202010997397.1A CN202010997397A CN112201712A CN 112201712 A CN112201712 A CN 112201712A CN 202010997397 A CN202010997397 A CN 202010997397A CN 112201712 A CN112201712 A CN 112201712A
Authority
CN
China
Prior art keywords
layer
superlattice
hole barrier
barrier layer
energy band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010997397.1A
Other languages
English (en)
Other versions
CN112201712B (zh
Inventor
刘永锋
张传杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Gaoxin Technology Co Ltd
Original Assignee
Wuhan Gaoxin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Gaoxin Technology Co Ltd filed Critical Wuhan Gaoxin Technology Co Ltd
Priority to CN202010997397.1A priority Critical patent/CN112201712B/zh
Publication of CN112201712A publication Critical patent/CN112201712A/zh
Application granted granted Critical
Publication of CN112201712B publication Critical patent/CN112201712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及空穴势垒层技术领域,提供了一种超晶格梯度能带空穴势垒层结构,包括n级超晶格层,每级超晶格层均包括由下向上依次生长的InAs层、第一GaSb层、AlSb层以及第二GaSb层,其中,所述InAs层的周期厚度为A,所述GaSb层的厚度周期为
Figure DDA0002693012660000011
所述AlSb层的厚度周期为C,所述第二AaSb层的厚度周期为
Figure DDA0002693012660000012
在第n级超晶格层中,x=n‑1,且在每级超晶格层中,总厚度周期A+B+C均相等。还提供一种红外探测器,包括上述的超晶格梯度能带空穴势垒层结构。本发明通过改变各级超晶格层中AlSb层的插入位置,即处于
Figure DDA0002693012660000013
处,即可实现能带渐变,无需改变超晶格的厚度周期,维持各层生长总时间不变,势垒层导带偏移小,价带偏移大,满足空穴势垒层的设计需求,结构调节灵活,材料容易实现外延生长。

Description

超晶格梯度能带空穴势垒层结构以及红外探测器
技术领域
本发明涉及空穴势垒层技术领域,具体为一种超晶格梯度能带空穴势垒层结构以及红外探测器。
背景技术
锑化物超晶格红外探测器是近年来红外探测技术领域研究的热点,其有着广阔的应用前景,是第三代红外探测器的优选材料。锑化物超晶格材料具有灵活的能带工程设计,结合分子束外延技术,可以根据设计的结构生长出满足各种需求的红外探测器结构,尤其是InAs/GaSb II类超晶格红外探测器。
完整的InAs/GaSb超晶格器件结构的吸收层通常有几百个周期结构组成,InAs与GaSb材料之间存在应力失配、界面互扩散等问题,使InAs/GaSb超晶格材料微结构缺陷密度高,少子寿命低,导致器件的暗电流密度大。对于长波红外材料,其吸收层禁带宽度窄,采用传统PIN结构器件设计,PN结耗尽层几乎分布在整个吸收区,这导致吸收层内部的产生-复合电流增大。为了解决这个问题,需要从材料结构上做一些特殊的设计,如插入电子势垒层、空穴势垒层、双势垒层或梯度势垒层等。AlSb材料的禁带宽度为1.7eV且晶格常数与GaSb衬底相近,可与InAs或GaSb组合形成InAs/AlSb、GaSb/AlSb、InAs/GaSb/AlSb/GaSb等结构的空穴势垒层。梯度空穴势垒结构设计可以将强的PN结内建电场从禁带宽度较窄的吸收区移到禁带宽度较宽的势垒区,同时使超晶格材料的导带尽可能平坦,减少器件的光生电子的阻挡作用。InAs/GaSb/AlSb/GaSb组合是一种常用的空穴势垒结构,基于这种组合设计梯度势垒结构,通常需要逐级改变InAs层、GaSb层和AlSb层和厚度。
然而,超晶格材料多采用分子束外延技术生长,改变厚度周期是通过改变快门开关时间实现的。在含As的材料生长过程中,随着外延生长时间延长,分子束外延炉反应腔内的As背景压力越来越大。超晶格厚度周期在短时间内变化会使As的束流更加难以控制,导致界面质量的可控性差,材料质量降低,进而影响红外探测器件的光学和电学性能。
发明内容
本发明的目的在于提供一种超晶格梯度能带空穴势垒层结构以及红外探测器,至少可以解决现有技术中部分缺陷。
为实现上述目的,本发明实施例提供如下技术方案:一种超晶格梯度能带空穴势垒层结构,包括n级超晶格层,每级超晶格层均包括由下向上依次生长的InAs层、第一GaSb层、AlSb层以及第二GaSb层,
其中,所述InAs层的周期厚度为A,所述GaSb层的厚度周期为
Figure BDA0002693012640000021
所述AlSb层的厚度周期为C,所述第二AaSb层的厚度周期为
Figure BDA0002693012640000022
在第n级超晶格层中,x=n-1,且在每级超晶格层中,总厚度周期A+B+C均相等。
进一步,x为整数,且
Figure BDA0002693012640000023
进一步,每级所述超晶格层均由2~30个周期组成。
进一步,所述周期的个数为5个或10个。
进一步,每级所述超晶格层的周期数相等、部分相等或完全不相等。
进一步,所述总厚度周期A+B+C的值在6~12nm之间。
进一步,所述总厚度周期的值为8.7nm。
进一步,生长的方法为分子束外延法或金属有机物化学气相沉积法。
本发明实施例提供另一种技术方案:一种红外探测器,包括上述的超晶格梯度能带空穴势垒层结构。
进一步,包括衬底,于所述衬底上依次生长有P型接触层、吸收层、空穴势垒层以及N型接触层,所述空穴势垒层为所述超晶格梯度能带空穴势垒层结构。
与现有技术相比,本发明的有益效果是:通过改变各级超晶格层中AlSb层的插入位置,即处于
Figure BDA0002693012640000031
处,即可实现能带渐变,无需改变超晶格的厚度周期,维持各层生长总时间不变,势垒层导带偏移小,价带偏移大,满足空穴势垒层的设计需求,结构调节灵活,材料容易实现外延生长。
附图说明
图1为本发明实施例提供的一种超晶格梯度能带空穴势垒层结构的示意图;(从第一级超晶格层开始的示意图)
图2为本发明实施例提供的一种超晶格梯度能带空穴势垒层结构的第1级超晶格能外延生长开关顺序设计示意图;
附图标记中:1-第1级超晶格层;11-InAs层;12-第一GaSb层;13-AlSb层;14-第二GaSb层;2-第2级超晶格层;n-第n级超晶格层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例提供一种超晶格梯度能带空穴势垒层结构,包括n级超晶格层,每级超晶格层均包括由下向上依次生长的InAs层11、第一GaSb层12、AlSb层13以及第二GaSb层14,其中,所述InAs层11的周期厚度为A,所述GaSb层的厚度周期为
Figure BDA0002693012640000032
所述AlSb层13的厚度周期为C,所述第二AaSb层的厚度周期为
Figure BDA0002693012640000033
在第n级超晶格层n中,x=n-1,且在每级超晶格层中,总厚度周期A+B+C均相等。在本实施例中,通过改变各级超晶格层中AlSb层13的插入位置,即处于
Figure BDA0002693012640000034
处,即可实现能带渐变,无需改变超晶格的厚度周期,维持各层生长总时间不变,势垒层导带偏移小,价带偏移大,满足空穴势垒层的设计需求,结构调节灵活,材料容易实现外延生长。具体地,将所述InAs层11的周期厚度设定为A,将所述第一GaSb层12的厚度周期为
Figure BDA0002693012640000041
将所述AlSb层13的厚度周期设定为C,将所述第二GaSb层14的厚度周期为
Figure BDA0002693012640000042
而A+B+C的总厚度周期是相等的,那么所述AlSb层13是设在
Figure BDA0002693012640000043
处,那么就只需要控制B的值和x的值即可控制AlSb层13的插入位置,进而实现能带渐变,无需改变超晶格的厚度周期,维持各层生长总时间不变,势垒层导带偏移小,价带偏移大,满足空穴势垒层的设计需求,结构调节灵活,材料容易实现外延生长。从第1级举例说明,第1级超晶格层1中的C层AlSb插入位置为B/2处(x=0),第2级超晶格层2中的C层AlSb插入位置为B/2-1处(x=1),第3级超晶格层中的C层AlSb插入位置为B/2-2处(x=2),……,依次类推,第n级超晶格层n中的C层AlSb插入位置为B/2+n-1处(x=n-1)。x为整数,取值范围为:-B/2≤x≤B/2。而每级超晶格层中AlSb层13插入位置可以随级数增加离InAs层11越来越近(x为非负整数),也可随级数增加离InAs层11越来越远(x为非正整数)。图2是第1级超晶格材料的生长开关顺序的设计,其它各级超晶格材料的开关设计仅需在此基础上调节AlSb13开启的时刻。
作为本发明实施例的优化方案,每级所述超晶格层均由2~30个周期组成。每级所述超晶格层的周期数相等、部分相等或完全不相等。所述总厚度周期A+B+C的值在6~12nm之间。以下为具体实施例:
实施例1:一种超晶格梯度能带空穴势垒层结构,其具体结构从下至上依次为:
第1级超晶格,周期数为5,由5.4nm的InAs,0.9nm的GaSb,1.5nm的AlSb和0.9nm的GaSb层组成,周期厚度为8.7nm;
第2级超晶格,周期数为5,由5.4nm的InAs,0.6nm的GaSb,1.5nm的AlSb和1.2nm的GaSb层组成,周期厚度为8.7nm;
第3级超晶格,周期数为5,由5.4nm的InAs,0.3nm的GaSb,1.5nm的AlSb和1.5nm的GaSb层组成,周期厚度为8.7nm;
第4级超晶格,周期数为5,由5.4nm的InAs,0nm的GaSb,1.5nm的AlSb和1.8nm的GaSb层组成,周期厚度为8.7nm。
通过能带理论进行分析和计算,这种结构的空穴势垒层能带从第1级超晶格开始禁带宽度由0.2938eV逐级增大至0.5156eV,对应的导带偏移量0.004eV,而价带偏移量为0.2618eV,完全满足空穴势垒层能带结构的设计需求。
实施例2:一种超晶格梯度能带空穴势垒层结构,其具体结构从下至上依次为:
第1级超晶格,周期数为10,由5.7nm的InAs,0.6nm的GaSb,1.8nm的AlSb和0.6nm的GaSb层组成,周期厚度为8.7nm;
第2级超晶格,周期数为10,由5.7nm的InAs,0.3nm的GaSb,1.8nm的AlSb和0.9nm的GaSb层组成,周期厚度为8.7nm;
第3级超晶格,周期数为10,由5.7nm的InAs,0nm的GaSb,1.8nm的AlSb和1.2nm的GaSb层组成,周期厚度为8.7nm。
通过能带理论进行分析和计算,这种结构的空穴势垒层能带从第1级超晶格开始禁带宽度由0.3450eV逐级增大至0.5268eV,对应的导带偏移量0.002eV,而价带偏移量为0.1838eV,完全满足空穴势垒层能带结构的设计需求。
作为本发明实施例的优化方案,生长的方法为分子束外延法或金属有机物化学气相沉积法。
本发明实施例提供一种红外探测器,包括上述的超晶格梯度能带空穴势垒层结构。在本实施例中,在红外探测器中采用上述的空穴势垒层结构,通过改变各级超晶格层中AlSb层13的插入位置,即处于
Figure BDA0002693012640000061
处,即可实现能带渐变,无需改变超晶格的厚度周期,维持各层生长总时间不变,势垒层导带偏移小,价带偏移大,满足空穴势垒层的设计需求,结构调节灵活,材料容易实现外延生长,易于红外探测器的制作。
作为本发明实施例的优化方案,本红外探测器包括衬底,于所述衬底上依次生长有P型接触层、吸收层、空穴势垒层以及N型接触层,所述空穴势垒层为所述超晶格梯度能带空穴势垒层结构。在本实施例中,红外探测器的制备还包括衬底、P型接触层、吸收层、空穴势垒层以及N型接触层,其中的空穴势垒层可以是上述的超晶格梯度能带空穴势垒层结构。优选的,P型接触层上设下电极,N型接触层上设上电极。优选的,衬底为GaSb衬底,P型接触层为InAs/GaSb超晶格P型接触层,N型接触层为InAs/GaSb超晶格N型接触层。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种超晶格梯度能带空穴势垒层结构,其特征在于:包括n级超晶格层,每级超晶格层均包括由下向上依次生长的InAs层、第一GaSb层、AlSb层以及第二GaSb层,
其中,所述InAs层的周期厚度为A,所述GaSb层的厚度周期为
Figure FDA0002693012630000011
所述AlSb层的厚度周期为C,所述第二AaSb层的厚度周期为
Figure FDA0002693012630000012
在第n级超晶格层中,x=n-1,且在每级超晶格层中,总厚度周期A+B+C均相等。
2.如权利要求1所述的超晶格梯度能带空穴势垒层结构,其特征在于:x为整数,且
Figure FDA0002693012630000013
3.如权利要求1所述的超晶格梯度能带空穴势垒层结构,其特征在于:每级所述超晶格层均由2~30个周期组成。
4.如权利要求3所述的超晶格梯度能带空穴势垒层结构,其特征在于:所述周期的个数为5个或10个。
5.如权利要求1所述的超晶格梯度能带空穴势垒层结构,其特征在于:每级所述超晶格层的周期数相等、部分相等或完全不相等。
6.如权利要求1所述的超晶格梯度能带空穴势垒层结构,其特征在于:所述总厚度周期A+B+C的值在6~12nm之间。
7.如权利要求6所述的超晶格梯度能带空穴势垒层结构,其特征在于:所述总厚度周期的值为8.7nm。
8.如权利要求1所述的超晶格梯度能带空穴势垒层结构,其特征在于:生长的方法为分子束外延法或金属有机物化学气相沉积法。
9.一种红外探测器,其特征在于:包括如权利要求1-8任一所述的超晶格梯度能带空穴势垒层结构。
10.如权利要求9所述的红外探测器,其特征在于:包括衬底,于所述衬底上依次生长有P型接触层、吸收层、空穴势垒层以及N型接触层,所述空穴势垒层为所述超晶格梯度能带空穴势垒层结构。
CN202010997397.1A 2020-09-21 2020-09-21 超晶格梯度能带空穴势垒层结构以及红外探测器 Active CN112201712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010997397.1A CN112201712B (zh) 2020-09-21 2020-09-21 超晶格梯度能带空穴势垒层结构以及红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010997397.1A CN112201712B (zh) 2020-09-21 2020-09-21 超晶格梯度能带空穴势垒层结构以及红外探测器

Publications (2)

Publication Number Publication Date
CN112201712A true CN112201712A (zh) 2021-01-08
CN112201712B CN112201712B (zh) 2022-03-22

Family

ID=74014694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997397.1A Active CN112201712B (zh) 2020-09-21 2020-09-21 超晶格梯度能带空穴势垒层结构以及红外探测器

Country Status (1)

Country Link
CN (1) CN112201712B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
CN108133970A (zh) * 2017-11-02 2018-06-08 武汉高芯科技有限公司 一种InAs/GaSb超晶格红外探测器及其制作方法
CN109285911A (zh) * 2018-09-19 2019-01-29 云南师范大学 一种短波/中波/长波三波段红外探测器及其制备方法
CN110797424A (zh) * 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
CN108133970A (zh) * 2017-11-02 2018-06-08 武汉高芯科技有限公司 一种InAs/GaSb超晶格红外探测器及其制作方法
CN109285911A (zh) * 2018-09-19 2019-01-29 云南师范大学 一种短波/中波/长波三波段红外探测器及其制备方法
CN110797424A (zh) * 2019-11-15 2020-02-14 南京大学 一种具有暗电流抑制结构的锑化物超晶格甚长波红外探测器

Also Published As

Publication number Publication date
CN112201712B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
Ding et al. Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells
TWI582995B (zh) Method for manufacturing perforated field effect transistor and method for manufacturing III-V compound semiconductor nanowire
US10505062B2 (en) High efficiency tandem solar cells and a method for fabricating same
KR20120081100A (ko) 터널 전계 효과 트랜지스터 및 그 제조 방법
US20140131827A1 (en) Avalanche photodiode and method of manufacture thereof
KR20040020582A (ko) 이중 구조의 나노점을 갖는 광전소자 및 그 제조방법
CN111490449A (zh) 一种四元系张应变半导体激光外延片及其制备方法
TW201248897A (en) Light receiving element and method for manufacturing same
Kawata et al. Fabrication of a GaAs/GaNAsBi solar cell and its performance improvement by thermal annealing
TWI506802B (zh) 多層量子井型太陽能電池及多層量子井型太陽能電池之製造方法
CN112201712B (zh) 超晶格梯度能带空穴势垒层结构以及红外探测器
Paulauskas et al. Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber
CN110534598B (zh) 一种含有超晶格结构背场的化合物太阳电池
KR20120012719A (ko) Ⅲ-ⅴ족 화합물 반도체 양자점을 흡수층으로 이용한 태양전지 및 이의 제조방법
Cederberg et al. The preparation of InGa (As) Sb and Al (Ga) AsSb films and diodes on GaSb for thermophotovoltaic applications using metal-organic chemical vapor deposition
Benslim et al. Study and optimization of InGaN Schottky solar cell performance
CN110610849A (zh) 一种InGaN半导体材料及其外延制备方法和应用
Tanaka et al. Improved two-step photon absorption current by Cl-doping in ZnTeO-based intermediate band solar cells with n-ZnS layer
Aperathitis et al. Temperature dependence of photocurrent components on enhanced performance GaAs/AlGaAs multiple quantum well solar cells
Lay et al. InGaAs quantum dots-in-a-well solar cells with anti-reflection coating
GB2483759A (en) solar cell and method for fabricating the same
Tan et al. Numerical simulation of homojunction pin In0. 4Ga0. 6N solar cell with different absorber layer configurations
Van Nieuwenhuysen et al. Epitaxially grown emitters for thin film crystalline silicon solar cells
Isoaho et al. Optimized molecular beam epitaxy process for lattice-matched narrow-bandgap (0.8 eV) GaInNAsSb solar junctions
EP3906586B1 (en) Ingan-based led epitaxial wafer and fabrication method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Huang Li

Inventor after: Liu Yongfeng

Inventor after: Zhang Chuanjie

Inventor before: Liu Yongfeng

Inventor before: Zhang Chuanjie