CN112186109B - Perovskite thin film preparation method, perovskite thin film and perovskite solar cell - Google Patents
Perovskite thin film preparation method, perovskite thin film and perovskite solar cell Download PDFInfo
- Publication number
- CN112186109B CN112186109B CN202011013464.8A CN202011013464A CN112186109B CN 112186109 B CN112186109 B CN 112186109B CN 202011013464 A CN202011013464 A CN 202011013464A CN 112186109 B CN112186109 B CN 112186109B
- Authority
- CN
- China
- Prior art keywords
- perovskite
- thin film
- film
- semiconductor layer
- perovskite thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000010408 film Substances 0.000 claims abstract description 52
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000004528 spin coating Methods 0.000 claims abstract description 20
- 239000002904 solvent Substances 0.000 claims abstract description 19
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 238000000137 annealing Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 38
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 37
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 12
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 2
- 239000003570 air Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000005424 photoluminescence Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000012296 anti-solvent Substances 0.000 description 2
- 238000000089 atomic force micrograph Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- JTCFNJXQEFODHE-UHFFFAOYSA-N [Ca].[Ti] Chemical compound [Ca].[Ti] JTCFNJXQEFODHE-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域Technical field
本发明涉及太阳能电池技术领域,尤其涉及一种钙钛矿薄膜的制备方法、制备的钙钛矿薄膜及钙钛矿太阳能电池。The present invention relates to the technical field of solar cells, and in particular to a method for preparing a perovskite film, the prepared perovskite film and a perovskite solar cell.
背景技术Background technique
目前,制备致密的钙钛矿薄膜的方法通常为,首先配制钙钛矿溶液,然后滴在衬底上旋涂,在旋转过程中滴入反型溶剂(anti - solvent),如甲苯、异丙醇、乙醚等,诱导钙钛矿快速结晶,从而制成致密钙钛矿薄膜。At present, the method for preparing dense perovskite films is usually to first prepare a perovskite solution, then drop it on the substrate and spin-coat it. During the spinning process, drop in anti-solvent (anti-solvent), such as toluene, isopropyl Alcohol, ether, etc. can induce rapid crystallization of perovskite, thereby producing a dense perovskite film.
该方法虽然能制得致密的钙钛矿薄膜,但是也存在以下问题:(1)薄膜的稳定性不佳,在大气环境中易受到水和氧气的作用而发生分解,即使在封装条件下,也易在高温下发生分解;(2)薄膜的晶粒尺寸较小,缺陷密度较大,不利于光电转换效率的提高。以上两个因素限制了反型溶剂快速诱导钙钛矿结晶成膜技术制备大晶粒的钙钛矿薄膜,因此,上述技术还有待于改进和发展。Although this method can produce a dense perovskite film, it also has the following problems: (1) The film has poor stability and is easily decomposed by the action of water and oxygen in the atmospheric environment. Even under packaging conditions, It is also prone to decomposition at high temperatures; (2) The film has a small grain size and a large defect density, which is not conducive to the improvement of photoelectric conversion efficiency. The above two factors limit the use of inverse solvent to rapidly induce perovskite crystallization film formation technology to prepare large-grained perovskite films. Therefore, the above technology still needs to be improved and developed.
发明内容Contents of the invention
为了解决上述现有技术制备的钙钛矿薄膜稳定性差、晶粒小缺陷密度大而不利于光电转换效率提高的问题,本发明提供一种钙钛矿薄膜的制备方法、钙钛矿薄膜及钙钛矿太阳能电池。In order to solve the problems that the perovskite film prepared by the above-mentioned prior art has poor stability, small crystal grains and high defect density, which is not conducive to the improvement of photoelectric conversion efficiency, the present invention provides a preparation method of a perovskite film, a perovskite film and a calcium Titanium ore solar cells.
本发明所述钙钛矿薄膜的制备方法,包括以下步骤:The preparation method of the perovskite film of the present invention includes the following steps:
1)、将钙钛矿溶液旋涂到具有半导体层的衬底的半导体层上,所述钙钛矿溶液的溶剂为二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、γ-丁内酯(γ-GBL)中的一种或多种;1). Spin-coat the perovskite solution onto the semiconductor layer of the substrate having the semiconductor layer. The solvent of the perovskite solution is dimethylformamide (DMF), dimethyl sulfoxide (DMSO), γ -One or more types of butyrolactone (γ-GBL);
2)、在旋涂结束前滴入反型溶剂;2) Drop in the reverse solvent before the end of spin coating;
3)、在旋涂结束后,将衬底在压力为0.1-10Mpa的气体环境中在80-120℃下退火5-60分钟,制得钙钛矿薄膜。3) After the spin coating is completed, anneal the substrate at 80-120°C for 5-60 minutes in a gas environment with a pressure of 0.1-10Mpa to prepare a perovskite film.
在上述高压气体环境下进行退火,薄膜的晶粒尺寸得到有效的增大,缺陷密度有效降低,提高了薄膜的光电性能;此外,该高压气体环境下退火的薄膜的稳定性也得到了提高。By annealing in the above-mentioned high-pressure gas environment, the grain size of the film is effectively increased, the defect density is effectively reduced, and the photoelectric performance of the film is improved; in addition, the stability of the film annealed in the high-pressure gas environment is also improved.
步骤1)中,所述钙钛矿溶液的浓度为1-1.5mol/L。In step 1), the concentration of the perovskite solution is 1-1.5 mol/L.
步骤1)中,所述衬底为FTO或者ITO透明电极,半导体层为TiO2、SnO2、ZnO、PEDOT:PSS、NiO中的一种,半导体层厚度为30-50nm。In step 1), the substrate is an FTO or ITO transparent electrode, the semiconductor layer is one of TiO 2 , SnO 2 , ZnO, PEDOT: PSS, and NiO, and the thickness of the semiconductor layer is 30-50 nm.
步骤2)中,所述反型溶剂为异丙醇、乙醚、甲苯、氯仿中的一种或多种,反型溶剂的滴入是在旋涂结束前的5-15秒进行。In step 2), the reverse solvent is one or more of isopropyl alcohol, ether, toluene, and chloroform, and the dripping of the reverse solvent is performed 5-15 seconds before the end of spin coating.
步骤3)中,气体为氮气、氩气、氦气、空气中的一种或多种。In step 3), the gas is one or more of nitrogen, argon, helium, and air.
步骤3)中,退火的升温速度为5-15℃/min。In step 3), the temperature rise rate of annealing is 5-15°C/min.
本发明提供一种钙钛矿薄膜,其使用上述钙钛矿薄膜的制备方法制备而成。The present invention provides a perovskite film, which is prepared using the above preparation method of the perovskite film.
本发明提供一种钙钛矿太阳能电池,其中包含上述钙钛矿薄膜。The present invention provides a perovskite solar cell, which contains the above-mentioned perovskite film.
有益效果:本发明在使用钙钛矿溶液制备成膜的过程中,使用了高压气体作为施压介质,并使薄膜在高压环境下进行退火,可以有效增大晶粒尺寸,减小缺陷密度,提高钙钛矿薄膜质量,提高薄膜的稳定性;还提高薄膜的光电性能,即提高钙钛矿太阳能电池的效率,其中器件性能参数中的填充因子以及短路电流都有明显提升。Beneficial effects: In the process of using perovskite solution to prepare the film, the present invention uses high-pressure gas as the pressure medium, and anneals the film in a high-pressure environment, which can effectively increase the grain size and reduce the defect density. Improve the quality of the perovskite film and improve the stability of the film; it also improves the photoelectric properties of the film, that is, improves the efficiency of perovskite solar cells, in which the filling factor and short-circuit current of the device performance parameters are significantly improved.
附图说明Description of drawings
图1为本发明的钙钛矿薄膜的原子力显微镜图;Figure 1 is an atomic force microscope image of the perovskite film of the present invention;
图2为本发明的钙钛矿薄膜的光致发光强度和薄膜平均晶粒大小的图;Figure 2 is a graph showing the photoluminescence intensity and the average grain size of the film of the perovskite film of the present invention;
图3为本发明的钙钛矿薄膜的j-v曲线图;Figure 3 is a j-v curve diagram of the perovskite film of the present invention;
图4为使用本发明钙钛矿薄膜的电池器件各项参数图;Figure 4 is a diagram showing various parameters of a battery device using the perovskite film of the present invention;
图5为本发明钙钛矿薄膜的x射线衍射图谱。Figure 5 is an x-ray diffraction pattern of the perovskite film of the present invention.
具体实施方式Detailed ways
下面通过实施例对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。The technical solutions of the present invention will be described in detail below through examples, but the protection scope of the present invention is not limited to the examples.
实施例1Example 1
1)、首先将钙钛矿(CH3NH3PbI3)溶液旋涂到FTO导电玻璃上的厚度为40nm的TiO2半导体层(致密层)上;其中所述钙钛矿溶液的浓度为1.4mol/L,溶剂使用DMF和DMSO的混合溶剂,DMF和DMSO的体积比为5:1;1). First, the perovskite (CH 3 NH 3 PbI 3 ) solution is spin-coated onto the 40nm-thick TiO 2 semiconductor layer (dense layer) on the FTO conductive glass; the concentration of the perovskite solution is 1.4 mol/L, the solvent is a mixed solvent of DMF and DMSO, the volume ratio of DMF and DMSO is 5:1;
2)、然后在旋涂停止前10秒滴入作为反型溶剂的异丙醇和乙醚,异丙醇的体积分数为0.1%;2) Then drop in isopropyl alcohol and ether as the reverse solvent 10 seconds before the spin coating stops. The volume fraction of isopropyl alcohol is 0.1%;
3)、在旋涂结束后,将衬底放置到高压管式炉(OTF-1200X-HP-55,合肥科晶材料技术有限公司,下同)中,然后充入氩气,使气压达到2MPa,然后按照10℃/min的升温速度加热到100℃,并维持30分钟,制成钙钛矿薄膜1。3) After the spin coating is completed, place the substrate into a high-pressure tube furnace (OTF-1200X-HP-55, Hefei Kejing Materials Technology Co., Ltd., the same below), and then fill it with argon gas to bring the pressure to 2MPa. , and then heated to 100°C at a heating rate of 10°C/min and maintained for 30 minutes to form a perovskite film 1.
使用钙钛矿薄膜1按常规方法制造钙钛矿太阳能电池1。The perovskite solar cell 1 is manufactured by a conventional method using the perovskite thin film 1 .
实施例2Example 2
1)、首先将钙钛矿溶液旋涂到FTO导电玻璃上的厚度为40nm的TiO2半导体层(致密层)上;其中所述钙钛矿溶液的浓度为1.4mol/L,溶剂使用DMF和DMSO的混合溶剂,DMF和DMSO的体积比为5:1;1). First, spin-coat the perovskite solution onto the 40nm-thick TiO 2 semiconductor layer (dense layer) on the FTO conductive glass; the concentration of the perovskite solution is 1.4mol/L, and the solvent is DMF and DMSO mixed solvent, the volume ratio of DMF and DMSO is 5:1;
2)、然后在旋涂停止前10秒滴入作为反型溶剂的异丙醇和乙醚,异丙醇的体积分数为0.1%;2) Then drop in isopropyl alcohol and ether as the reverse solvent 10 seconds before the spin coating stops. The volume fraction of isopropyl alcohol is 0.1%;
3)、在旋涂结束后,将衬底放置到高压管式炉中,然后充入氩气,使气压达到4MPa,然后按照10℃/min的升温速度加热到100℃,并维持30分钟,制成钙钛矿薄膜2。3) After the spin coating is completed, place the substrate into a high-pressure tube furnace, then fill it with argon gas to reach a pressure of 4MPa, and then heat it to 100°C at a heating rate of 10°C/min and maintain it for 30 minutes. Preparation of perovskite film 2.
使用钙钛矿薄膜2按常规方法制造钙钛矿太阳能电池2。A perovskite solar cell 2 is manufactured using a conventional method using the perovskite thin film 2 .
实施例3Example 3
1)、首先将钙钛矿溶液旋涂到FTO导电玻璃上的厚度为40nm的TiO2半导体层(致密层)上;其中所述钙钛矿溶液的浓度为1.4mol/L,溶剂使用DMF和DMSO的混合溶剂,DMF和DMSO的体积比为5:1;1). First, spin-coat the perovskite solution onto the 40nm-thick TiO 2 semiconductor layer (dense layer) on the FTO conductive glass; the concentration of the perovskite solution is 1.4mol/L, and the solvent is DMF and DMSO mixed solvent, the volume ratio of DMF and DMSO is 5:1;
2)、然后在旋涂停止前10秒滴入作为反型溶剂的异丙醇和乙醚,异丙醇的体积分数为0.1%;2) Then drop in isopropyl alcohol and ether as the reverse solvent 10 seconds before the spin coating stops. The volume fraction of isopropyl alcohol is 0.1%;
3)、在旋涂结束后,将衬底放置到高压管式炉中,然后充入氩气,使气压达到6MPa,然后按照10℃/min的升温速度加热到100℃,并维持30分钟,制成钙钛矿薄膜3。3) After the spin coating is completed, place the substrate into a high-pressure tube furnace, then fill it with argon gas to reach a pressure of 6MPa, and then heat it to 100°C at a heating rate of 10°C/min and maintain it for 30 minutes. Preparation of perovskite film 3.
使用钙钛矿薄膜3按常规方法制造钙钛矿太阳能电池3。A perovskite solar cell 3 is manufactured using a conventional method using the perovskite thin film 3 .
实施例4Example 4
1)、首先将钙钛矿溶液旋涂到FTO导电玻璃上的厚度为40nm的TiO2半导体层(致密层)上;其中所述钙钛矿溶液的浓度为1.4mol/L,溶剂使用DMF和DMSO的混合溶剂,DMF和DMSO的体积比为5:1;1). First, spin-coat the perovskite solution onto the 40nm-thick TiO 2 semiconductor layer (dense layer) on the FTO conductive glass; the concentration of the perovskite solution is 1.4mol/L, and the solvent is DMF and DMSO mixed solvent, the volume ratio of DMF and DMSO is 5:1;
2)、然后在旋涂停止前10秒滴入作为反型溶剂的异丙醇和乙醚,异丙醇的体积分数为0.1%;2) Then drop in isopropyl alcohol and ether as the reverse solvent 10 seconds before the spin coating stops. The volume fraction of isopropyl alcohol is 0.1%;
3)、在旋涂结束后,将衬底放置到高压管式炉中,然后充入氩气,使气压达到8MPa,然后按照10℃/min的升温速度加热到100℃,并维持30分钟,制成钙钛矿薄膜4。3) After the spin coating is completed, place the substrate into a high-pressure tube furnace, then fill it with argon gas to reach a pressure of 8MPa, and then heat it to 100°C at a heating rate of 10°C/min and maintain it for 30 minutes. Perovskite film 4 is produced.
使用钙钛矿薄膜4按常规方法制造钙钛矿太阳能电池4。A perovskite solar cell 4 is manufactured using a conventional method using the perovskite thin film 4 .
实施例5Example 5
1)、首先将钙钛矿溶液旋涂到FTO导电玻璃上的厚度为40nm的TiO2半导体层(致密层)上;其中所述钙钛矿溶液的浓度为1.4mol/L,溶剂使用DMF和DMSO的混合溶剂,DMF和DMSO的体积比为5:1;1). First, spin-coat the perovskite solution onto the 40nm-thick TiO 2 semiconductor layer (dense layer) on the FTO conductive glass; the concentration of the perovskite solution is 1.4mol/L, and the solvent is DMF and DMSO mixed solvent, the volume ratio of DMF and DMSO is 5:1;
2)、然后在旋涂停止前10秒滴入作为反型溶剂的异丙醇和乙醚,异丙醇的体积分数为0.1%;2) Then drop in isopropyl alcohol and ether as the reverse solvent 10 seconds before the spin coating stops. The volume fraction of isopropyl alcohol is 0.1%;
3)、在旋涂结束后,将衬底放置到高压管式炉中,然后充入氩气,使气压达到10MPa,然后按照10℃/min的升温速度加热到100℃,并维持30分钟,制成钙钛矿薄膜5。3) After the spin coating is completed, place the substrate into a high-pressure tube furnace, then fill it with argon gas to reach a pressure of 10MPa, and then heat it to 100°C at a heating rate of 10°C/min and maintain it for 30 minutes. Perovskite film 5 is produced.
使用钙钛矿薄膜5按常规方法制造钙钛矿太阳能电池5。A perovskite solar cell 5 is manufactured using a conventional method using the perovskite thin film 5 .
分别对上述实施例1、2、3、4和5制得的钙钛矿薄膜和钙钛矿太阳能电池进行性能测试。Performance tests were performed on the perovskite films and perovskite solar cells prepared in the above embodiments 1, 2, 3, 4 and 5 respectively.
测试条件:用3NTEGRA(NT-MDT)原子力显微镜拍摄薄膜的表面形貌,用LabRAM HREvolution (Horiba)光谱仪测试光致发光光谱,用Bruker (D8 ADVANCE)x射线衍射仪进行原位XRD测试。Newport Oriel Solar (3 A Class AAA, 94023 A)太阳模拟器模拟光照条件为AM 1.5G,1000 mW/cm2,j-v曲线采用Keithly 2400型数字原表进行测量,所有测试均在空气环境下进行。测得的结果如表1、图1-图5所示。Test conditions: Use a 3NTEGRA (NT-MDT) atomic force microscope to photograph the surface morphology of the film, use a LabRAM HREvolution (Horiba) spectrometer to test the photoluminescence spectrum, and use a Bruker (D8 ADVANCE) x-ray diffractometer to perform in-situ XRD testing. The simulated lighting conditions of the Newport Oriel Solar (3 A Class AAA, 94023 A) solar simulator are AM 1.5G, 1000 mW/cm 2 , and the jv curve is measured using a Keithly 2400 digital original meter. All tests are conducted in an air environment. The measured results are shown in Table 1 and Figures 1-5.
表1Table 1
图1为本发明的钙钛矿薄膜的原子力显微镜图。图中可以看到,在压力环境下退火的薄膜其表面晶粒尺寸比常规压力(0.1MPa)显著变大,这有利于电池器件的效率提升。Figure 1 is an atomic force microscope image of the perovskite film of the present invention. It can be seen from the figure that the surface grain size of the film annealed under pressure environment is significantly larger than that under conventional pressure (0.1MPa), which is beneficial to improving the efficiency of battery devices.
图2为本发明的钙钛矿薄膜的光致发光(PL)强度和薄膜平均晶粒大小的图。一般来说,光致发光强度越大意味着薄膜缺陷越少,由图可知,随着压力的变化,发光强度先增大后减小,在6MPa下达到极大值,而常规压力(0.1MPa)下最小。此外,薄膜平均晶粒尺寸也如图所示,其趋势与光致发光一致。Figure 2 is a graph showing the photoluminescence (PL) intensity and the average grain size of the film of the perovskite film of the present invention. Generally speaking, the greater the photoluminescence intensity, the fewer film defects. It can be seen from the figure that as the pressure changes, the luminescence intensity first increases and then decreases, reaching a maximum value at 6MPa, while the conventional pressure (0.1MPa ) is the smallest. In addition, the average grain size of the film is also shown in the figure, and its trend is consistent with photoluminescence.
图3为本发明钙钛矿薄膜的j-v曲线图。该图表示出不同压力下退火的薄膜制备的太阳能电池的性能。由图可以看到在6MPa下的退火制备的太阳能电池具有最高的效率。Figure 3 is a j-v curve diagram of the perovskite film of the present invention. This figure shows the performance of solar cells prepared from thin films annealed under different pressures. It can be seen from the figure that the solar cell prepared by annealing at 6MPa has the highest efficiency.
图4为使用本发明钙钛矿薄膜的电池器件各项参数图。该图表示不同压力下退火制备的太阳能电池的性能参数。Figure 4 is a diagram showing various parameters of a battery device using the perovskite film of the present invention. This figure represents the performance parameters of solar cells prepared by annealing under different pressures.
图5为本发明钙钛矿薄膜的x射线衍射图谱。该图表示在压力环境下退火,有机钙钛矿薄膜MAPbI3可以承受300oC的高温而不发生分解,远高于常压下薄膜可以承受的温度。Figure 5 is an x-ray diffraction pattern of the perovskite film of the present invention. This figure shows that when annealed in a pressure environment, the organic perovskite film MAPbI 3 can withstand a high temperature of 300 ° C without decomposing, which is much higher than the temperature that the film can withstand under normal pressure.
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。As stated above, although the present invention has been shown and described with reference to specific preferred embodiments, this is not to be construed as limiting the invention itself. Various changes may be made in form and details without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011013464.8A CN112186109B (en) | 2020-09-24 | 2020-09-24 | Perovskite thin film preparation method, perovskite thin film and perovskite solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011013464.8A CN112186109B (en) | 2020-09-24 | 2020-09-24 | Perovskite thin film preparation method, perovskite thin film and perovskite solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112186109A CN112186109A (en) | 2021-01-05 |
CN112186109B true CN112186109B (en) | 2023-12-12 |
Family
ID=73955394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011013464.8A Active CN112186109B (en) | 2020-09-24 | 2020-09-24 | Perovskite thin film preparation method, perovskite thin film and perovskite solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112186109B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113540270B (en) * | 2021-06-30 | 2023-06-30 | 杭州电子科技大学 | Method for obtaining flat, uniform and compact perovskite film |
CN113571650B (en) * | 2021-07-07 | 2023-08-22 | 常州大学 | Device and method for preparing perovskite film by constant high-pressure annealing |
CN115465885A (en) * | 2022-09-22 | 2022-12-13 | 南通南京大学材料工程技术研究院 | Highly oriented MAPbI 3 Preparation method of perovskite thin film and MAPbI 3 Perovskite thin film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105428539A (en) * | 2016-01-18 | 2016-03-23 | 昆明学院 | Preparation method for perovskite solar cell absorption layer capable of improving photoelectric properties through controlling annealing pressure intensity atmosphere |
CN106784322A (en) * | 2016-12-14 | 2017-05-31 | 北京大学深圳研究生院 | A kind of perovskite thin film and preparation method thereof and perovskite solar cell |
CN111435707A (en) * | 2019-07-10 | 2020-07-21 | 杭州纤纳光电科技有限公司 | Method for improving film forming quality of perovskite thin film and perovskite solar cell |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10297754B2 (en) * | 2014-08-01 | 2019-05-21 | International Business Machines Corporation | Techniques for perovskite layer crystallization |
-
2020
- 2020-09-24 CN CN202011013464.8A patent/CN112186109B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105428539A (en) * | 2016-01-18 | 2016-03-23 | 昆明学院 | Preparation method for perovskite solar cell absorption layer capable of improving photoelectric properties through controlling annealing pressure intensity atmosphere |
CN106784322A (en) * | 2016-12-14 | 2017-05-31 | 北京大学深圳研究生院 | A kind of perovskite thin film and preparation method thereof and perovskite solar cell |
CN111435707A (en) * | 2019-07-10 | 2020-07-21 | 杭州纤纳光电科技有限公司 | Method for improving film forming quality of perovskite thin film and perovskite solar cell |
Also Published As
Publication number | Publication date |
---|---|
CN112186109A (en) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112186109B (en) | Perovskite thin film preparation method, perovskite thin film and perovskite solar cell | |
CN104022185B (en) | Perovskite membrane and preparation and application method thereof | |
CN109216557B (en) | Based on citric acid/SnO2Perovskite solar cell of electron transport layer and preparation method thereof | |
CN107240643B (en) | Bromo element adulterates methylamine lead iodine perovskite solar battery and preparation method thereof | |
CN107068875A (en) | A kind of method for optimizing perovskite crystal film morphology | |
CN109786555B (en) | Perovskite solar cell and preparation method | |
CN105226190B (en) | A kind of planar heterojunction perovskite solar cell and preparation method thereof | |
CN107369764A (en) | A kind of perovskite solar cell and preparation method for adulterating lead acetate trihydrate | |
CN107093640A (en) | A kind of CsPbI of ion doping2Br films, preparation method and applications | |
CN112447907A (en) | Method for regulating perovskite crystallization process | |
CN109585661B (en) | Preparation method of interface-enhanced highlight-thermal stable perovskite film | |
CN111874941A (en) | CsPbBr3Perovskite and preparation method and device thereof | |
CN105870342B (en) | The method of interface processing preparation high-performance perovskite thin film | |
CN110635050A (en) | A pressure-assisted approach to fabricate high-quality perovskite thin films | |
Wen et al. | Two-Step sequential blade-coating large-area FA-based perovskite thin film via a controlled PbI2 microstructure | |
CN107170894A (en) | A kind of perovskite solar cell and preparation method thereof | |
CN114551637A (en) | Perovskite light absorption layer and preparation method thereof, solar cell and preparation method thereof | |
CN111403609A (en) | Preparation method of novel low-dimensional perovskite film | |
CN117202748A (en) | Perovskite film and preparation method and application thereof | |
CN106340545B (en) | The application of the preparation and novel solvent of CIS and CIGS thin film solar cell light-absorption layer wherein | |
CN117082881A (en) | Perovskite solar cell post-treated by piperazine hydrobromide and preparation method thereof | |
CN114975656A (en) | A kind of perovskite precursor solution, preparation method and application | |
CN114975801A (en) | Method for improving environmental stability of perovskite solar cell based on crystallization regulation | |
CN105957920A (en) | A kind of preparation method of Cu3BiS3 film | |
CN114613913B (en) | A formamidinium lead iodine-based perovskite solar cell and a preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |