CN1121854A - 室温奥氏体铁超微粒子的制备技术 - Google Patents
室温奥氏体铁超微粒子的制备技术 Download PDFInfo
- Publication number
- CN1121854A CN1121854A CN 94112441 CN94112441A CN1121854A CN 1121854 A CN1121854 A CN 1121854A CN 94112441 CN94112441 CN 94112441 CN 94112441 A CN94112441 A CN 94112441A CN 1121854 A CN1121854 A CN 1121854A
- Authority
- CN
- China
- Prior art keywords
- source
- iron
- technology
- laser
- room temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 38
- 229910052742 iron Inorganic materials 0.000 title claims description 16
- 239000002245 particle Substances 0.000 title abstract description 7
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 30
- 238000010791 quenching Methods 0.000 claims abstract description 8
- 239000012495 reaction gas Substances 0.000 claims abstract description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000003595 mist Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 6
- 229910017147 Fe(CO)5 Inorganic materials 0.000 abstract 1
- 239000012300 argon atmosphere Substances 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004093 laser heating Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Landscapes
- Compounds Of Iron (AREA)
- Powder Metallurgy (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种室温γ-Fe超微粒子的制备技术,是采用激光气相合成,以Fe(CO)5作铁源,高温激冷生成γ-Fe微粒,其特征在于:以连续二氧化碳激光束为光源,以NH3作反应气,在氩气氛中较高的压力下,高温、激冷,生成室温γ-Fe微粉,工艺参数如下:激光功率密度:6000~10000W/min,NH3流速:80~150ml/min,反应室压力:0.6~1.4atm,铁源温度:30~70℃。本发明提供的方法可使产品纯度高,稳定性好,且不易氧化。
Description
本发明涉及室温γ-Fe的制备技术,特别是可在室温下保持稳定的γ-Fe超微粒子的制备技术。
铁在室温或低温为体心立方结构,即α-Fe。在高温(910~1392℃)呈面心立方结构,即γ-Fe。由于结构不同,二者的性能也有许多不同之处。如α-Fe为铁磁性物质,而γ-Fe为顺磁性物质。γ-Fe纳米微粒由于从低温到高温具有恒定的顺磁性能,在复合材料及催化材料等领域具有许多潜在的应用前景。但由于γ-Fe为高温稳定相,在室温条件下获得十分困难。制备γ-Fe微粒的试验始于70年代,目前为止,尚来制备出单相γ-Fe纳米微粒,伴生物α-Fe难以消除,已有的制备技术有下述几种:(1)蒸发冷凝法:以感应加热或激光加热使铁快速融化汽化,铁蒸气在上升过程中激冷,使部分γ-Fe保留到室温,其γ-Fe含量为20%左右,α-Fe含量80%左右。2)α-Fe微粒加热激冷法,用等离子体等手段把α-Fe纳米微粒加热到1000℃以上,形成高温γ-Fe相,然后激冷,在室温可得以含γ-Fe40%的铁微粒。3)激光气相法:用TEA脉冲激光在SF6光敏气体的诱发下,驱动Fe(CO)5气相的热分解反应,利用激光加热的快热及快冷特点,使高温反应区形成的γ-Fe微粒激冷到室温,可获得γ-Fe(50~90%)铁微粒,但是粉体氧化严重,且SF6易分解而污染γ-Fe粉末。且每小时的粉产率小于50毫克,难以实现工业化。
本发明的目的在于提供一种室温γ-Fe微粒子的制备技术,其产品纯度高,稳定性好,且不易氧化。
本发明提供了一种室温γ-Fe超微粒子的制备技术,是采用激光气相合成,以Fe(CO)5作铁源,高温激冷生成γ-Fe微粒,其特征在于:以连续二氧化碳激光束为光源,以NH3作反应气,在氩气氛中较高的压力下,高温、激冷,生成室温γ-Fe微粉,工艺参数如下:
激光功率密度:6000~10000W/cm2
NH3流速:80~150ml/min
反应室压力:0.6~1.4atm
铁源温度:20~100℃由本发明方法制备出的室温稳定的γ-Fe单相纳米微粉,含有少量的氮,粉体中不含α-Fe及氮化铁物相,粒子直径为10~200nm,颗粒形态为球形和多角形,粒子分散性好,尺寸分布均匀,表面有微量的氧化铁薄膜层,粉体的含氮量为0.5%~2.4%wt,氮原子位于γ-Fe八面体间隙中,使γ-Fe在室温特别稳定,在250℃以下不发生γ-α相变。下面通过实施例详述本发明。
附图1为反应装置示意图;
附图2为γ-Fe微粒形貌图;
附图3为γ-Fe粉末x光衍射图。
实施例1
反应装置见图1所示,铁源Fe(CO)5放在一罐(1)中,反应气通过罐(1)带走铁源并进入到反应室(2)中,激光束会集于反应气流处,反应气流正下方对应于一收集管(3),收集管(3)口有一水冷釜(7),收集管(3)通过一过滤器(4)与真空泵相连,激光束入口镜片(5)相对的为激光吸收片(6),镜片(5)近旁为保护气入口,可通入氩气进行保护,聚焦点在气体喷嘴下方4mm处,光斑直径5mm。激光功率密度104W/cm2,反应压力0.7atm,NH3流量270ml/min,铁源加热40℃,制得γ-Fe粉形貌见图2,X光衍射见图3,产率可达到20~100g/h。
实施例2
激光功率密度8×103W/cm2,激光束在喷咀下方3.5mm处,聚焦为4mm的光斑,反应室压力1.1atm,Fe(CO)5的温度40C,NH3250ml/min,γ-Fe产率为30g/h,粉末中含有5%的α-Fe,氮含量1%wt,表面含有微量的Fe3O4,γ-Fe粒子直径为40~80nm。
实施例3
激光功率密度8×103W/cm2,反应压力1.0atm,Fe(CO)5温度70℃,其他参数如实施例2,产物中含γ-Fe70%,Fe3O410%,粒子直径为30~80nm,无α-Fe出现,氮含量为1.3%wt。
Claims (1)
1.一种室温γ-Fe超微粒子的制备技术,是采用激光气相合成,以Fe(CO)5作铁源,高温激冷生成γ-Fe微粒,其特征在于:以连续二氧化碳激光束为光源,以NH3作反应气,在氩气氛中较高的压力下,高温、激冷,生成室温γ-Fe微粉,工艺参数如下:
激光功率密度:6000~10000W/min
NH3流速:80~150ml/min
反应室压力:0.6~1.4atm
铁源温度:30~70℃
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN94112441A CN1058920C (zh) | 1994-08-15 | 1994-08-15 | 室温奥氏体铁超微粒子的制备技术 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN94112441A CN1058920C (zh) | 1994-08-15 | 1994-08-15 | 室温奥氏体铁超微粒子的制备技术 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1121854A true CN1121854A (zh) | 1996-05-08 |
CN1058920C CN1058920C (zh) | 2000-11-29 |
Family
ID=5036124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN94112441A Expired - Fee Related CN1058920C (zh) | 1994-08-15 | 1994-08-15 | 室温奥氏体铁超微粒子的制备技术 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1058920C (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1073483C (zh) * | 1998-03-27 | 2001-10-24 | 冶金工业部钢铁研究总院 | 一种纳米γ-(铁,镍)合金粉及制造方法 |
US9080229B2 (en) | 2012-05-07 | 2015-07-14 | Ut-Battelle, Llc | Nano-composite stainless steel |
CN104851547A (zh) * | 2015-04-17 | 2015-08-19 | 大连大学 | Fe-Co双粒子纳米磁性液体及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0699732B2 (ja) * | 1988-07-20 | 1994-12-07 | 理化学研究所 | γ―鉄の微粒子を製造する方法 |
CN1021889C (zh) * | 1992-04-20 | 1993-08-25 | 北京化工学院 | 制链球状金属粉体的激光气相法及其设备 |
-
1994
- 1994-08-15 CN CN94112441A patent/CN1058920C/zh not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1073483C (zh) * | 1998-03-27 | 2001-10-24 | 冶金工业部钢铁研究总院 | 一种纳米γ-(铁,镍)合金粉及制造方法 |
US9080229B2 (en) | 2012-05-07 | 2015-07-14 | Ut-Battelle, Llc | Nano-composite stainless steel |
CN104851547A (zh) * | 2015-04-17 | 2015-08-19 | 大连大学 | Fe-Co双粒子纳米磁性液体及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN1058920C (zh) | 2000-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Flamant et al. | Solar processing of materials: opportunities and new frontiers | |
US6261484B1 (en) | Method for producing ceramic particles and agglomerates | |
CN1621352A (zh) | 金属氧化物纳米粒子的等离子体合成 | |
KR20050085704A (ko) | 반응 챔버 플라스마 반응기 시스템으로 증발-응축 방법을사용하는 나노입자의 제조 방법 | |
DE60307753D1 (de) | Verfahren zur Herstellung von Metallpulver durch thermische Zersetzung | |
RU2008152775A (ru) | Способ получения металлических нанопорошков разложением карбонила металла при использовании индукционной плазменной горелки | |
WO2005090651A1 (ja) | 高アスペクト比酸化鉄ウイスカー、高アスペクト比酸化チタンウイスカー及びこれらを含む構造並びにその製造方法 | |
Zhong | Nanoscience and nanomaterials: synthesis, manufacturing and industry impacts | |
CN1058920C (zh) | 室温奥氏体铁超微粒子的制备技术 | |
Tao et al. | Physicochemical study of the sustainable preparation of nano-Fe2O3 from ferrous sulfate with coke | |
CN115889760B (zh) | 一种快速制备碳纳米管包覆超细高熵合金复合粉体的装置及方法 | |
US4728507A (en) | Preparation of reactive metal hydrides | |
Bermejo et al. | Synthesis of nanoscaled iron particles from freeze-dried precursors | |
Fedoseev et al. | Phase transformations in highly disperse powders during their rapid heating and cooling | |
CN1117020A (zh) | 激光气相合成氮化铁超细粉 | |
CN1663909A (zh) | 激光轰击碳粉合成纳米金刚石的方法 | |
CN108405874B (zh) | 一种微米级球形铁粉的制备方法 | |
Kasper et al. | Controlled formation of chain aggregates from very small metal oxide particles | |
Reau et al. | Large scale production of nanoparticles by laser pyrolysis | |
CN1180912C (zh) | 激光气相制备纳米银粒子方法和装置 | |
CN100484870C (zh) | 激光轰击法连续合成金刚石纳米珠(溶胶)的方法 | |
CN1058921C (zh) | 激光气相合成伽玛三氧化二铁纳米微粉 | |
Shirzadi-Ahodashti et al. | Nanostructures of Rare Earth Oxides (Ho2O3 and Nd2O3): Synthesis Methods, Properties, and Comparative Analysis | |
JPH0226538B2 (zh) | ||
Laplaze et al. | Carbon sublimation using a solar furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |