CN1121854A - 室温奥氏体铁超微粒子的制备技术 - Google Patents

室温奥氏体铁超微粒子的制备技术 Download PDF

Info

Publication number
CN1121854A
CN1121854A CN 94112441 CN94112441A CN1121854A CN 1121854 A CN1121854 A CN 1121854A CN 94112441 CN94112441 CN 94112441 CN 94112441 A CN94112441 A CN 94112441A CN 1121854 A CN1121854 A CN 1121854A
Authority
CN
China
Prior art keywords
source
iron
technology
laser
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 94112441
Other languages
English (en)
Other versions
CN1058920C (zh
Inventor
梁勇
赵新清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN94112441A priority Critical patent/CN1058920C/zh
Publication of CN1121854A publication Critical patent/CN1121854A/zh
Application granted granted Critical
Publication of CN1058920C publication Critical patent/CN1058920C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种室温γ-Fe超微粒子的制备技术,是采用激光气相合成,以Fe(CO)5作铁源,高温激冷生成γ-Fe微粒,其特征在于:以连续二氧化碳激光束为光源,以NH3作反应气,在氩气氛中较高的压力下,高温、激冷,生成室温γ-Fe微粉,工艺参数如下:激光功率密度:6000~10000W/min,NH3流速:80~150ml/min,反应室压力:0.6~1.4atm,铁源温度:30~70℃。本发明提供的方法可使产品纯度高,稳定性好,且不易氧化。

Description

室温奥氏体铁超微粒子的制备技术
本发明涉及室温γ-Fe的制备技术,特别是可在室温下保持稳定的γ-Fe超微粒子的制备技术。
铁在室温或低温为体心立方结构,即α-Fe。在高温(910~1392℃)呈面心立方结构,即γ-Fe。由于结构不同,二者的性能也有许多不同之处。如α-Fe为铁磁性物质,而γ-Fe为顺磁性物质。γ-Fe纳米微粒由于从低温到高温具有恒定的顺磁性能,在复合材料及催化材料等领域具有许多潜在的应用前景。但由于γ-Fe为高温稳定相,在室温条件下获得十分困难。制备γ-Fe微粒的试验始于70年代,目前为止,尚来制备出单相γ-Fe纳米微粒,伴生物α-Fe难以消除,已有的制备技术有下述几种:(1)蒸发冷凝法:以感应加热或激光加热使铁快速融化汽化,铁蒸气在上升过程中激冷,使部分γ-Fe保留到室温,其γ-Fe含量为20%左右,α-Fe含量80%左右。2)α-Fe微粒加热激冷法,用等离子体等手段把α-Fe纳米微粒加热到1000℃以上,形成高温γ-Fe相,然后激冷,在室温可得以含γ-Fe40%的铁微粒。3)激光气相法:用TEA脉冲激光在SF6光敏气体的诱发下,驱动Fe(CO)5气相的热分解反应,利用激光加热的快热及快冷特点,使高温反应区形成的γ-Fe微粒激冷到室温,可获得γ-Fe(50~90%)铁微粒,但是粉体氧化严重,且SF6易分解而污染γ-Fe粉末。且每小时的粉产率小于50毫克,难以实现工业化。
本发明的目的在于提供一种室温γ-Fe微粒子的制备技术,其产品纯度高,稳定性好,且不易氧化。
本发明提供了一种室温γ-Fe超微粒子的制备技术,是采用激光气相合成,以Fe(CO)5作铁源,高温激冷生成γ-Fe微粒,其特征在于:以连续二氧化碳激光束为光源,以NH3作反应气,在氩气氛中较高的压力下,高温、激冷,生成室温γ-Fe微粉,工艺参数如下:
激光功率密度:6000~10000W/cm2
NH3流速:80~150ml/min
反应室压力:0.6~1.4atm
铁源温度:20~100℃由本发明方法制备出的室温稳定的γ-Fe单相纳米微粉,含有少量的氮,粉体中不含α-Fe及氮化铁物相,粒子直径为10~200nm,颗粒形态为球形和多角形,粒子分散性好,尺寸分布均匀,表面有微量的氧化铁薄膜层,粉体的含氮量为0.5%~2.4%wt,氮原子位于γ-Fe八面体间隙中,使γ-Fe在室温特别稳定,在250℃以下不发生γ-α相变。下面通过实施例详述本发明。
附图1为反应装置示意图;
附图2为γ-Fe微粒形貌图;
附图3为γ-Fe粉末x光衍射图。
实施例1
反应装置见图1所示,铁源Fe(CO)5放在一罐(1)中,反应气通过罐(1)带走铁源并进入到反应室(2)中,激光束会集于反应气流处,反应气流正下方对应于一收集管(3),收集管(3)口有一水冷釜(7),收集管(3)通过一过滤器(4)与真空泵相连,激光束入口镜片(5)相对的为激光吸收片(6),镜片(5)近旁为保护气入口,可通入氩气进行保护,聚焦点在气体喷嘴下方4mm处,光斑直径5mm。激光功率密度104W/cm2,反应压力0.7atm,NH3流量270ml/min,铁源加热40℃,制得γ-Fe粉形貌见图2,X光衍射见图3,产率可达到20~100g/h。
实施例2
激光功率密度8×103W/cm2,激光束在喷咀下方3.5mm处,聚焦为4mm的光斑,反应室压力1.1atm,Fe(CO)5的温度40C,NH3250ml/min,γ-Fe产率为30g/h,粉末中含有5%的α-Fe,氮含量1%wt,表面含有微量的Fe3O4,γ-Fe粒子直径为40~80nm。
实施例3
激光功率密度8×103W/cm2,反应压力1.0atm,Fe(CO)5温度70℃,其他参数如实施例2,产物中含γ-Fe70%,Fe3O410%,粒子直径为30~80nm,无α-Fe出现,氮含量为1.3%wt。

Claims (1)

1.一种室温γ-Fe超微粒子的制备技术,是采用激光气相合成,以Fe(CO)5作铁源,高温激冷生成γ-Fe微粒,其特征在于:以连续二氧化碳激光束为光源,以NH3作反应气,在氩气氛中较高的压力下,高温、激冷,生成室温γ-Fe微粉,工艺参数如下:
激光功率密度:6000~10000W/min
NH3流速:80~150ml/min
反应室压力:0.6~1.4atm
铁源温度:30~70℃
CN94112441A 1994-08-15 1994-08-15 室温奥氏体铁超微粒子的制备技术 Expired - Fee Related CN1058920C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN94112441A CN1058920C (zh) 1994-08-15 1994-08-15 室温奥氏体铁超微粒子的制备技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN94112441A CN1058920C (zh) 1994-08-15 1994-08-15 室温奥氏体铁超微粒子的制备技术

Publications (2)

Publication Number Publication Date
CN1121854A true CN1121854A (zh) 1996-05-08
CN1058920C CN1058920C (zh) 2000-11-29

Family

ID=5036124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94112441A Expired - Fee Related CN1058920C (zh) 1994-08-15 1994-08-15 室温奥氏体铁超微粒子的制备技术

Country Status (1)

Country Link
CN (1) CN1058920C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073483C (zh) * 1998-03-27 2001-10-24 冶金工业部钢铁研究总院 一种纳米γ-(铁,镍)合金粉及制造方法
US9080229B2 (en) 2012-05-07 2015-07-14 Ut-Battelle, Llc Nano-composite stainless steel
CN104851547A (zh) * 2015-04-17 2015-08-19 大连大学 Fe-Co双粒子纳米磁性液体及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699732B2 (ja) * 1988-07-20 1994-12-07 理化学研究所 γ―鉄の微粒子を製造する方法
CN1021889C (zh) * 1992-04-20 1993-08-25 北京化工学院 制链球状金属粉体的激光气相法及其设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073483C (zh) * 1998-03-27 2001-10-24 冶金工业部钢铁研究总院 一种纳米γ-(铁,镍)合金粉及制造方法
US9080229B2 (en) 2012-05-07 2015-07-14 Ut-Battelle, Llc Nano-composite stainless steel
CN104851547A (zh) * 2015-04-17 2015-08-19 大连大学 Fe-Co双粒子纳米磁性液体及其制备方法

Also Published As

Publication number Publication date
CN1058920C (zh) 2000-11-29

Similar Documents

Publication Publication Date Title
Flamant et al. Solar processing of materials: opportunities and new frontiers
US6261484B1 (en) Method for producing ceramic particles and agglomerates
CN1621352A (zh) 金属氧化物纳米粒子的等离子体合成
KR20050085704A (ko) 반응 챔버 플라스마 반응기 시스템으로 증발-응축 방법을사용하는 나노입자의 제조 방법
DE60307753D1 (de) Verfahren zur Herstellung von Metallpulver durch thermische Zersetzung
RU2008152775A (ru) Способ получения металлических нанопорошков разложением карбонила металла при использовании индукционной плазменной горелки
WO2005090651A1 (ja) 高アスペクト比酸化鉄ウイスカー、高アスペクト比酸化チタンウイスカー及びこれらを含む構造並びにその製造方法
Zhong Nanoscience and nanomaterials: synthesis, manufacturing and industry impacts
CN1058920C (zh) 室温奥氏体铁超微粒子的制备技术
Tao et al. Physicochemical study of the sustainable preparation of nano-Fe2O3 from ferrous sulfate with coke
CN115889760B (zh) 一种快速制备碳纳米管包覆超细高熵合金复合粉体的装置及方法
US4728507A (en) Preparation of reactive metal hydrides
Bermejo et al. Synthesis of nanoscaled iron particles from freeze-dried precursors
Fedoseev et al. Phase transformations in highly disperse powders during their rapid heating and cooling
CN1117020A (zh) 激光气相合成氮化铁超细粉
CN1663909A (zh) 激光轰击碳粉合成纳米金刚石的方法
CN108405874B (zh) 一种微米级球形铁粉的制备方法
Kasper et al. Controlled formation of chain aggregates from very small metal oxide particles
Reau et al. Large scale production of nanoparticles by laser pyrolysis
CN1180912C (zh) 激光气相制备纳米银粒子方法和装置
CN100484870C (zh) 激光轰击法连续合成金刚石纳米珠(溶胶)的方法
CN1058921C (zh) 激光气相合成伽玛三氧化二铁纳米微粉
Shirzadi-Ahodashti et al. Nanostructures of Rare Earth Oxides (Ho2O3 and Nd2O3): Synthesis Methods, Properties, and Comparative Analysis
JPH0226538B2 (zh)
Laplaze et al. Carbon sublimation using a solar furnace

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee