CN112175224A - 一种提高fdm 3d打印tpu鞋材拉伸和耐折性能的方法 - Google Patents

一种提高fdm 3d打印tpu鞋材拉伸和耐折性能的方法 Download PDF

Info

Publication number
CN112175224A
CN112175224A CN202011097290.8A CN202011097290A CN112175224A CN 112175224 A CN112175224 A CN 112175224A CN 202011097290 A CN202011097290 A CN 202011097290A CN 112175224 A CN112175224 A CN 112175224A
Authority
CN
China
Prior art keywords
fdm
shoe material
printing
tpu shoe
tpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011097290.8A
Other languages
English (en)
Other versions
CN112175224B (zh
Inventor
卓东贤
陈柳听
陈少云
郑燕玉
瞿波
刘小英
李文杰
何淋静
罗永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Normal University
Original Assignee
Quanzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Normal University filed Critical Quanzhou Normal University
Priority to CN202011097290.8A priority Critical patent/CN112175224B/zh
Publication of CN112175224A publication Critical patent/CN112175224A/zh
Application granted granted Critical
Publication of CN112175224B publication Critical patent/CN112175224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • B29C59/165Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating of profiled articles, e.g. hollow or tubular articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)

Abstract

本发明公开了一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,该方法利用微波辐照来解决利用FDM 3D技术打印TPU鞋材所引起的层间粘接强度弱的难题。本发明通过引入微波辐照,进而可在短时间内提高高分子链的运动活性,从而有效地促进了3D打印TPU鞋材层与层之间高分子链的渗透、融合,提高它们之间的作用力,减轻随打印方向不同产生的机械性能下降程度,拓展打印鞋材的功能和应用范围,更好的满足个性化的需求。本发明得到的经过微波辐照处理后的FDM 3D打印TPU鞋材的机械性能得以明显改善,有效解决FDM 3D打印成型件层与层之间粘结不紧,容易开裂、断裂等的问题,使得FDM 3D打印TPU鞋材实用性得到很大的提高,有助于推动FDM 3D打印TPU鞋材的应用推广。

Description

一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法
技术领域
本发明属于3D打印技术领域,具体涉及一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法。
背景技术
随着新一代工业革命的到来,未来制造业将迎来新一轮浪潮,数字化和智能化将成为其发展趋势。其中3D打印技术作为一种全新的增材制造方式出现在人们面前,并广受关注。伴随着3D打印技术的逐渐发展,其已经开始运用在越来越多的行业中,其中包括服装鞋材行业。3D打印作为一种快速成型技术,整个过程一次成型,没有任何剪裁产生的浪费,可以节约大量劳动力和材料成本,同时使鞋服定制等相关行业有了全新的发展方向。
柔软而富有弹性的热塑性聚氨酯(TPU)一直备受3D打印技术的青睐。越来越多的3D打印TPU材料都应用在各个领域,尤其是应用在3D打印鞋底。TPU柔性材料鞋底,重量轻、透气性好、环保、耐磨、高弹、耐黄变。
在传统的柔性TPU材料3D打印技术应用中,采用FDM 3D打印技术将丝状的TPU材料成型。但FDM打印成型过程中,由于熔融沉积层与已成型层温度间距大,且用于打印的线材由于熔融后冷却收缩不均匀而产生内应力,都会使得打印制品层与层之间粘结力较弱,从而极易出现表面粗糙、变形翘曲等问题。研究FDM技术中出现的卷翘变形现象,解决制品层与层之间粘接强度较弱的问题则是其中关键。
微波辐照是微波向热能的转变,通过物体吸收微波转换成热能,使材料迅速升温并伴随着一系列物理、化学的变化,从而实现传统意义上材料所难达到的效果。能量转变的方法有很多,如离子传导、偶极子转动、界面极化、磁滞、核磁共振等,微波加热中的离子传导与偶极子转动是其主要原理。传统意义上的传导、对流等加热方法,热能是从微波炉的内部向材料进行传递,即热能是从表至里进行传导,因此材料中存在着不可避免的温度梯度。微波加热是通过材料对微波电磁场反应,如通过被加热材料内部的偶极分子随着电磁场变化而往复运动,以“内部摩擦生热”的方式让被加热材料的温度迅速升高,不需要通过任何的热传导过程,就能做到材料的内部与外部同时加热、同时升温,且消耗的能量低,仅需传统的加热方法能耗的几分之一或几十分之一就能达到效果。
发明内容
针对现有技术的情况和不足,本发明的目的在于提供一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,通过微波辐照解决FDM 3D打印TPU制品的层与层之间粘结强度较弱的问题,研制出低成本、操作简单、高强度、高弹性的TPU 3D打印制品,对推动3D成型技术在制鞋领域的规模化应用,具有十分重要的实用价值。
为了解决上述技术问题,本发明提出的技术方案是:一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,该方法是利用微波辐照来解决利用FDM 3D技术打印TPU鞋材所引起的层间粘接强度弱的难题。
所述微波辐照的功率为100-2000W,微波辐照的时间为20s-60min。
所述的TPU鞋材的材料为聚氨酯或改性聚氨酯复合材料。
进一步的,所述的改性聚氨酯复合材料为非铁电填料改性聚氨酯复合材料、铁电填料改性聚氨酯复合材料或导电填料改性聚氨酯复合材料中的一种。
所述的非铁电填料为二氧化硅、滑石粉、碳酸钙、硫酸钡、氧化铝、氮化硼、氮化铝、二氧化钛中的一种或几种的组合。
所述的铁电填料为钛酸钡、钽酸锂、钛酸铅、锆酸铅、钛酸锶钡中的一种或几种的组合。
所述的导电填料为碳纳米管、石墨烯、气相生长碳纤维、炭黑、导电石墨中的一种或几种的组合。
本发明有益效果是通过微波辐照修复FDM 3D打印TPU鞋材层与层之间粘结较弱的问题,提高打印鞋材强度和耐疲劳性能,为3D打印技术在制鞋业的规模化应用提供依据。具体而言,本发明通过引入微波辐照,进而可在短时间内提高高分子链的运动活性,从而有效地促进了3D打印TPU鞋材层与层之间高分子链的渗透、融合,提高它们之间的作用力,减轻随打印方向不同产生的机械性能下降程度,拓展打印鞋材的功能和应用范围,更好的满足个性化的需求。本发明经过微波辐照处理后的FDM 3D打印TPU鞋材的机械性能得以明显改善,有效解决FDM 3D打印成型件层与层之间粘结不紧,容易开裂、断裂等的问题,使得FDM3D打印TPU鞋材实用性得到很大的提高,有助于推动FDM 3D打印TPU鞋材的应用推广。
附图说明
图1为FDM打印制品的设计图;
图2为FDM打印实物的光学照片;
图3为微波辐射处理对鞋材用TPU 3D打印制品层间粘合效果的显微镜图,其中(a)为对比例未进行微波处理,(b)为实施例4经过微波处理。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,显然,所描述的发明是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例以TPU或其复合材料为打印材料,为了便于测试,打印制品为标准测试样条和空间网格状实物。
实施例1
将TPU线材利用FDM 3D打印机按照GB/T 1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率300W,后处理的时间120s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例2
将二氧化硅/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率800W,后处理的时间180s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例3
将钛酸钡/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率1500W,后处理的时间30s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例4
将碳纳米管/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率300W,后处理的时间300s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例5
将滑石粉/碳酸钙/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率800W,后处理的时间420s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例6
将钽酸锂/钛酸铅/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率1500W,后处理的时间240s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例7
将石墨烯/气相生长碳纤维/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T 1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率800W,后处理的时间600s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例8
将硫酸钡/氧化铝/氮化硼/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T 1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率1500W,后处理的时间420s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例9
将锆酸铅/钛酸锶钡/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率500W,后处理的时间240s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例10
将氮化铝/二氧化钛/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率360W,后处理的时间320s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
实施例11
将炭黑/导电石墨/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后进行微波辐照后处理。微波处理器功率900W,后处理的时间120s,降温后取出,测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
对比例
将实施例4使用碳纳米管/热塑性聚氨酯复合材料线材利用FDM 3D打印机按照GB/T 1040.2-2006有关拉伸性能测试标准和图1打印测试评估件,而后测试3D打印制品的拉伸强度、断裂伸长率和耐折性能(依据GB/T3903.1-1994标准)。
表1为实施例和对比例所得3D打印制品的拉伸性能和耐折性能,由表1可见,经微波辐照处理后,FDM 3D打印TPU制品的拉伸性能与耐折性能显著提升,尤其是添加铁电与导电填料的聚氨酯复合材料,其改善效果则更为显著。
图3为微波辐射处理对鞋材用TPU 3D打印制品层间粘合效果的显微镜图,由图3可见,经微波辐照后,FDM制品的层与层之间的纹理已变得较为模糊,宏观上体现出较强的一致性,这与微波辐照后3D打印制品的拉伸与耐折性能显著提升的效果也是一致的。
表1微波处理对FDM 3D打印制品的拉伸性能和耐折性能的影响
Figure BDA0002724164530000051
Figure BDA0002724164530000061

Claims (7)

1.一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,其特征在于:对FDM 3D技术打印TPU鞋材进行微波辐照处理。
2.根据权利要求1所述的一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,其特征在于:所述微波辐照的功率为100-2000W,微波辐照的时间为20s-60min。
3.根据权利要求1所述的一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,其特征在于:所述的TPU鞋材的材料为聚氨酯或改性聚氨酯复合材料。
4.根据权利要求3所述的一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,其特征在于:所述的改性聚氨酯复合材料为非铁电填料改性聚氨酯复合材料、铁电填料改性聚氨酯复合材料或导电填料改性聚氨酯复合材料中的一种。
5.根据权利要求4所述的一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,其特征在于:所述的非铁电填料为二氧化硅、滑石粉、碳酸钙、硫酸钡、氧化铝、氮化硼、氮化铝、二氧化钛中的一种或几种的组合。
6.根据权利要求4所述的一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,其特征在于:所述的铁电填料为钛酸钡、钽酸锂、钛酸铅、锆酸铅、钛酸锶钡中的一种或几种的组合。
7.根据权利要求4所述的一种提高FDM 3D打印TPU鞋材拉伸和耐折性能的方法,其特征在于:所述的导电填料为碳纳米管、石墨烯、气相生长碳纤维、炭黑、导电石墨中的一种或几种的组合。
CN202011097290.8A 2020-10-14 2020-10-14 一种提高fdm 3d打印tpu鞋材拉伸和耐折性能的方法 Active CN112175224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011097290.8A CN112175224B (zh) 2020-10-14 2020-10-14 一种提高fdm 3d打印tpu鞋材拉伸和耐折性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011097290.8A CN112175224B (zh) 2020-10-14 2020-10-14 一种提高fdm 3d打印tpu鞋材拉伸和耐折性能的方法

Publications (2)

Publication Number Publication Date
CN112175224A true CN112175224A (zh) 2021-01-05
CN112175224B CN112175224B (zh) 2022-10-14

Family

ID=73950038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011097290.8A Active CN112175224B (zh) 2020-10-14 2020-10-14 一种提高fdm 3d打印tpu鞋材拉伸和耐折性能的方法

Country Status (1)

Country Link
CN (1) CN112175224B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337102A (zh) * 2021-07-27 2021-09-03 浙江德斯泰新材料股份有限公司 一种粘结性好的tpu膜及其制备方法
CN115946339A (zh) * 2022-12-28 2023-04-11 中国科学院福建物质结构研究所 一种高导电性能fdm 3d打印制件的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217861A (zh) * 2007-12-26 2008-07-09 江苏工业学院 W型铁氧体电磁吸波材料及其制备方法
CN104845353A (zh) * 2015-05-27 2015-08-19 上海材料研究所 用于fdm 3d打印的热塑性聚氨酯改性复合材料及其制备方法
US20170239887A1 (en) * 2014-06-23 2017-08-24 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
CN107881798A (zh) * 2017-11-28 2018-04-06 浙江昶丰新材料有限公司 水性聚氨酯合成革及其制备方法
CN108424630A (zh) * 2018-03-25 2018-08-21 桂林理工大学 一种tpu基微波响应4d打印耗材的制备方法及其应用
CN110257006A (zh) * 2017-12-07 2019-09-20 苏州鼎烯聚材纳米科技有限公司 一种微波吸波材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217861A (zh) * 2007-12-26 2008-07-09 江苏工业学院 W型铁氧体电磁吸波材料及其制备方法
US20170239887A1 (en) * 2014-06-23 2017-08-24 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
CN104845353A (zh) * 2015-05-27 2015-08-19 上海材料研究所 用于fdm 3d打印的热塑性聚氨酯改性复合材料及其制备方法
CN107881798A (zh) * 2017-11-28 2018-04-06 浙江昶丰新材料有限公司 水性聚氨酯合成革及其制备方法
CN110257006A (zh) * 2017-12-07 2019-09-20 苏州鼎烯聚材纳米科技有限公司 一种微波吸波材料及其制备方法
CN108424630A (zh) * 2018-03-25 2018-08-21 桂林理工大学 一种tpu基微波响应4d打印耗材的制备方法及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337102A (zh) * 2021-07-27 2021-09-03 浙江德斯泰新材料股份有限公司 一种粘结性好的tpu膜及其制备方法
CN113337102B (zh) * 2021-07-27 2022-05-17 浙江德斯泰新材料股份有限公司 一种粘结性好的tpu膜及其制备方法
CN115946339A (zh) * 2022-12-28 2023-04-11 中国科学院福建物质结构研究所 一种高导电性能fdm 3d打印制件的制备方法

Also Published As

Publication number Publication date
CN112175224B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Liu et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review
CN112175224B (zh) 一种提高fdm 3d打印tpu鞋材拉伸和耐折性能的方法
Rajak et al. A review on synthetic fibers for polymer matrix composites: performance, failure modes and applications
Tian et al. Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route
Byrne et al. Recent advances in research on carbon nanotube–polymer composites
Pandey et al. Carbon nanotube-based multifunctional polymer nanocomposites
GB2494530A (en) Composite material comprising a layer of polymeric piezoelectric material matched with a textile substrate and method for making such a composite material
JP6211881B2 (ja) 炭素繊維及びその製造方法
CN105658043B (zh) 一种电磁屏蔽膜材料及其制备方法
Zhang et al. Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performances
CN113096853B (zh) 基于二维纳米导电材料的复合材料及其制备方法
Zhang et al. Surface decoration of short-cut polyimide fibers with multi-walled carbon nanotubes and their application for reinforcement of lightweight PC/ABS composites
El Magri et al. Optimizing the mechanical properties of 3D-printed PLA-graphene composite using response surface methodology
Biermaier et al. Towards the functional ageing of electrically conductive and sensing textiles: A review
Marconi et al. Impact of graphene reinforcement on mechanical properties of PLA 3D printed materials
Yan et al. Fabrication of gradient vapor grown carbon fiber based polyurethane foam for shape memory driven microwave shielding
Qu et al. Influence of thermal processing conditions on mechanical and material properties of 3D printed thin-structures using PEEK material
Wang et al. Fabrication of continuous carbon fiber reinforced polyamide 6 composites by means of self‐resistance electric heating
TW202120775A (zh) 石墨片的製造方法
Lin et al. Thermoplastic polyurethane reinforced with continuous carbon fiber tows: manufacturing technique and fabric property evaluation
Amesimeku et al. Fabrication of electrically conductive and improved UV-resistant aramid fabric via bio-inspired polydopamine and graphene oxide coating
KR101754745B1 (ko) 필러를 함유하는 섬유 강화 열가소성 수지 복합재료 및 그 제조 방법
TW201022016A (en) Biaxial oriented polyester film with improved formability and manufacturing method thereof
KR20180020541A (ko) 연속 탄소섬유 강화 복합재료의 제조방법과 복합성형체의 제조방법
Zhang et al. Interfacial reinforcement strategy of basalt fiber/polymer composite constructed by interlocking interface composed of ZnO nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant