CN112166068B - 电动助力转向扭矩补偿 - Google Patents

电动助力转向扭矩补偿 Download PDF

Info

Publication number
CN112166068B
CN112166068B CN202080002941.2A CN202080002941A CN112166068B CN 112166068 B CN112166068 B CN 112166068B CN 202080002941 A CN202080002941 A CN 202080002941A CN 112166068 B CN112166068 B CN 112166068B
Authority
CN
China
Prior art keywords
vehicle
torque signal
steering angle
data
planning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080002941.2A
Other languages
English (en)
Other versions
CN112166068A (zh
Inventor
乌宁
H·安德森
F·塞卡蒙特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motional AD LLC
Original Assignee
Motional AD LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motional AD LLC filed Critical Motional AD LLC
Priority to CN202210603800.7A priority Critical patent/CN115071811A/zh
Priority claimed from PCT/IB2020/050714 external-priority patent/WO2020157683A1/en
Publication of CN112166068A publication Critical patent/CN112166068A/zh
Application granted granted Critical
Publication of CN112166068B publication Critical patent/CN112166068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/24Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
    • B62D1/28Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
    • B62D1/283Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers for unmanned vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0022Gains, weighting coefficients or weighting functions
    • B60W2050/0024Variable gains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

描述了用于电动助力转向扭矩补偿的技术等。提供了用于由计算机、例如配置在自主运载工具(100)上的计算机实现的方法的技术。配置在运载工具(100)上且连接至运载工具的电动助力转向(EPS)的规划电路(404)确定补偿扭矩信号,以将运载工具的方向盘(1310)的实际转向角修正成匹配方向盘的预期转向角。规划电路将该补偿扭矩信号发送至用于控制方向盘(1310)的转向角的控制电路(1102)。EPS基于补偿扭矩信号来修正实际转向角,从而得到修正转向角。控制电路基于该修正转向角来操作运载工具。

Description

电动助力转向扭矩补偿
相关申请的交叉引用
本申请要求2019年1月29日提交的美国临时专利申请62/798,419和2019年3月14日提交的丹麦专利申请PA201970163的优先权,这两个申请的全部内容通过引用而被包含于此。
技术领域
本说明书涉及电动助力转向扭矩补偿。
背景技术
电动助力转向(EPS)系统是在运载工具的转向柱上施加扭矩以使运载工具向任一方向转向的系统。EPS(有时称为电动助力转向(electric power-assisted steering))系统安装在转向柱或转向器上,并且对转动方向盘的转向柱施加扭矩。在自主运载工具中,EPS系统可以对转向柱施加扭矩,由此控制运载工具的操作。
发明内容
提供了用于由计算机(例如,配置(onboard)在自主运载工具上的计算机)实现的方法的技术。配置在运载工具上且连接至运载工具的EPS系统的规划电路确定补偿扭矩信号,以将运载工具的方向盘的实际转向角修正成匹配方向盘的预期转向角。规划电路将补偿扭矩信号发送至用于控制方向盘的转向角的控制电路。EPS系统基于补偿扭矩信号来修改实际转向角,从而得到修正转向角。控制电路基于该修正转向角来操作运载工具。
这些和其它方面、特征和实现可被表示为方法、设备、系统、组件、程序产品、用于进行功能的方法或步骤以及其它方式。
从以下的包括权利要求书的说明书,这些和其它方面、特征和实现将变得明显。
附图说明
图1示出具有自主能力的自主运载工具的示例。
图2例示示例“云”计算环境。
图3例示计算机系统。
图4示出自主运载工具的示例架构。
图5示出感知模块可以使用的输入和输出的示例。
图6示出LiDAR系统的示例。
图7示出操作中的LiDAR系统。
图8示出LiDAR系统的操作的附加细节。
图9示出规划模块的输入和输出之间的关系的框图。
图10示出路径规划中所使用的有向图。
图11示出控制模块的输入和输出的框图。
图12示出控制器的输入、输出和组件的框图。
图13示出连接至方向盘的控制器的示意图。
图14是用以将补偿扭矩施加到转向柱的示例处理的流程图。
图15是可以应用于EPS系统的电压信号的示例。
图16是具有前馈功能的控制回路的示意图。
图17是将运载工具条件和转向角与前馈扭矩相关的标绘图。
具体实施方式
在以下描述中,为了解释的目的,阐述了许多具体细节,以便提供对本发明的透彻理解。然而,显而易见的是,本发明可以在没有这些具体细节的情况下实施。在其它实例中,众所周知的构造和装置是以框图形式示出的,以避免不必要地使本发明模糊。
在附图中,为了便于描述,显示了示意要素的具体安排或次序,例如表示设备、模块、指令块和数据要素的那些要素。然而,本领域技术人员应当理解,附图中示意要素的具体排序或安排并不意味着要求特定的处理顺序或序列、或处理过程的分离。此外,在附图中包含示意性要素并不意味着在所有实施例中都需要这种要素,也不意味着由这种要素表示的特征不能包括在一些实施例中或不能在一些实施例中与其它要素结合。
此外,在附图中,连接要素、例如实线或虚线或箭头用于说明两个或两个以上其它示意要素之间的连接、关系或关联,没有任何此类连接要素并不意味着不能存在连接、关系或关联。换句话说,一些要素之间的连接、关系或关联未在附图中显示,以便不掩盖本发明。此外,为了便于说明,使用单个连接要素来表示要素之间的多个连接、关系或关联。例如,如果连接元件代表信号、数据或指令的通信,本领域技术人员应理解,该元件代表影响通信可能需要的一个或多个信号路径(例如,总线)。
现在将详细参考实施例,其示例在附图中示出。在下面的详细描述中,阐述了许多具体细节,以便提供对所描述的各种实施例的透彻理解。然而,对于本领域的普通技术人员来说明显的是,可以在没有这些具体细节的情况下实施所描述的各种实施例。在其它情况下,没有详细描述众所周知的方法、程序、组件、电路和网络,以便不会不必要地掩盖实施例的方面。
下面描述的若干特征可以彼此独立地使用,也可以与其它特征的任何组合一起使用。但是,任何个别特征可能不能解决上述任何问题,或者只能解决上述问题之一。上文讨论的一些问题可能不能通过本文所述的任何一个特征得到充分解决。虽然提供了标题,但在本说明的其它地方也可以找到与某一标题有关但在该标题部分未找到的信息。本文根据以下概要描述实施例:
1.总体概述
2.系统概述
3.自主运载工具架构
4.自主运载工具输入
5.自主运载工具规划
6.自主运载工具控制
总体概述
本发明描述一种自主运载工具,该自主运载工具具有连接至该运载工具的EPS系统的配置在该运载工具上的(以下所述的)规划电路。EPS系统由控制电路控制,该控制电路将基本扭矩施加到运载工具的转向柱,以使方向盘转动到期望转向角。在一些实施例中,控制电路确定将得到该期望转向角的基本扭矩,确定幅度与基本扭矩的幅度相对应的基本扭矩信号(例如,电压信号),并且将该基本扭矩信号发送至EPS。作为响应,EPS将由基本扭矩信号表示的基本扭矩施加到转向柱。以这种方式,预计基本扭矩信号使方向盘转动期望转向角。在某些情况下,例如,以某些运载工具速率,方向盘响应基本扭矩信号而转动的实际转向角偏离期望(或预期)转向角。在一些实施例中,将实际转向角作为反馈信号提供至控制电路,并且通过进一步修正实际转向角以基本上匹配预期转向角的补偿扭矩来对基本扭矩进行补偿。
本发明描述了:基于提前(即,在将基本扭矩信号应用于EPS之前)知晓实际转向角相对于预期转向角的预期偏差,将补偿扭矩作为前馈信号而不是反馈信号施加至转向柱。前馈信号表示要调整(例如,增加或减少)基本扭矩使得实际转向角基本上匹配预期转向角所利用的补偿扭矩的量。换言之,基于运载工具驾驶条件,规划电路预料到实际转向角和预期转向角之间的偏差。作为主动响应,规划电路确定补偿扭矩信号以将方向盘的实际转向角修正成匹配预期转向角,并且将该补偿扭矩信号发送至控制电路。控制电路根据补偿扭矩信号来修正基本扭矩信号,并且将修正扭矩信号应用于EPS系统。参考将扭矩施加到转向柱以使连接至转向柱的方向盘转动来说明本发明的实施例。这里所述的技术可应用于无方向盘的运载工具,在这样的运载工具中,转向柱操作运载工具的其它特征以使运载工具转动。
系统概述
图1示出具有自主能力的自主运载工具100的示例。
如本文所使用的,术语“自主能力”是指一种功能、特征或设施,该功能、特征或设施使运载工具能够部分地或完全地运行,而无需实时的人类干预,包括但不限于完全自主运载工具、高度自主运载工具和有条件自主运载工具。
如本文所使用的,自主运载工具(AV)是一种具有自主能力的运载工具。
如本文所使用的,“运载工具”包括货物或人员的运输方式。例如,小汽车、公共汽车、火车、飞机、无人机、卡车、船只、舰艇、潜水器、飞船等。无人驾驶的小汽车是运载工具的示例。
如本文所使用的,“轨迹”是指将AV从第一时空地点导航到第二时空地点的路径或路线。在实施例中,第一时空地点被称为初始地点或起始地点,第二时空地点被称为目的地、最终地点、目标、目标位置或目标地点。在一些示例中,轨迹由一个或多个路段(例如,道路的数段)组成,并且各路段由一个或多个块(例如,车道或交叉口的一部分)组成。在实施例中,时空地点对应于真实世界地点。例如,时空地点是上车或下车地点,以使人员或货物上车或下车。
如本文所使用的,“(一个或多个)传感器”包括一个或多个硬件组件,用于检测与传感器周围环境有关的信息。一些硬件组件可包括感测组件(例如,图像传感器、生物测量传感器)、发送和/或接收组件(例如,激光或射频波发射器和接收器)、电子组件(例如,模数转换器)、数据存储装置(例如,RAM和/或非易失性存储器)、软件或固件组件和数据处理组件(例如,专用集成电路)、微处理器和/或微控制器。
如本文所使用的,“场景描述”是一种数据结构(例如,列表)或数据流,其包括由AV运载工具上的一个或多个传感器检测到的一个或多个分类或标记的对象,或由AV外部的源提供的一个或多个分类或标记的对象。
如本文所使用的,“道路”是一个可以被运载工具穿过的物理区域,并且可以对应于已命名的通道(例如,城市街道、州际高速公路等)或可对应于未命名的通道(例如,房屋或办公楼内的行车道、停车场的一段、空置停车场的一段、乡村地区的污物通道等)。因为有些运载工具(如四轮驱动的小卡车、越野车(SUV)等)能够穿越各种不特别适合运载工具行驶的物理区域,因此“道路”可以是任何市政当局或其它政府或行政机构没有正式界定为一条通道的物理区域。
如本文所使用的,“车道”是道路的可被运载工具穿越的部分。有时基于车道标记来识别车道。例如,车道可对应于车道标记之间的大部分或全部空间,或仅对应于车道标记之间的部分空间(例如,小于50%)。例如,具有相距很远的车道标记的道路可能容纳两个或两个以上的运载工具,使得一个运载工具可以在不穿过车道标记的情况下超过另一个运载工具,因此可被解释为车道比车道标记之间的空间窄,或车道之间有两个车道。在没有车道标记的情况下,也可以对车道进行解释。例如,可以基于环境的物理特征(例如,农村地区的岩石和沿着大道的树木、或者例如在欠发达地区应避免的自然障碍物)来定义车道。也可以独立于车道标记或物理特征来解释车道。例如,可以基于原本缺少将会被解释为车道边界的特征的在区域中无障碍物的任意路径来解释车道。在示例情景中,AV可以解释通过田野或空地的无障碍物部分的车道。在另一示例情景中,AV可以解释通过不具有车道标记的宽(例如,足够两个或更多个车道宽)道路的车道。在该情景中,AV可以将与车道有关的信息通信至其它AV,使得其它AV可以使用相同的车道信息来协调AV之间的路径规划。
术语“空中下载(OTA)客户端”包括任何AV,或者嵌入在AV中、耦接至AV或与AV进行通信的任何电子装置(例如,计算机、控制器、IoT装置、电子控制单元(ECU))。
术语“空中下载(OTA)更新”意味着对使用专有和/或标准化的无线通信技术递送至OTA客户端的软件、固件、数据或配置设置或者它们的任何组合的任何更新、改变、删除或添加,其中该专有和/或标准化的无线通信技术包括但不限于:蜂窝移动通信(例如,2G、3G、4G、5G)、无线电无线区域网络(例如,WiFi)和/或卫星因特网。
术语“边缘节点”是指耦接至网络的一个或多个边缘装置,这些装置提供与AV进行通信所用的门户并且可以与其它边缘节点和基于云的计算平台进行通信,以调度OTA更新并将OTA更新递送至OTA客户端。
术语“边缘装置”是指实现边缘节点并提供向企业或服务提供商(如VERIZON、AT&T)核心网的物理无线接入点(AP)的装置。边缘装置的示例包括但不限于:计算机、控制器、发送器、路由器、路由交换机、综合接入装置(IAD)、多路复用器、城域网(MAN)和广域网(WAN)接入装置。
“一个或多个”包括由一个要素执行的功能,由多个要素执行的功能、例如以分布式的方式,由一个要素执行的几个功能,由几个要素执行的几个功能,或上述的任意组合。
还将理解的是,尽管在某些情况下,术语“第一”、“第二”等是用来描述各种要素的,但这些要素不应受到这些术语的限制。这些术语仅用于区分一个要素与另一个要素。例如,在未背离各种所述实施例的范围的情况下,第一触点可被称为第二触点,并且同样,第二触点可被称为第一触点。第一触点和第二触点都是触点,但这两者不是相同触点。
此处描述的各种实施例的描述中使用的术语仅用于描述特定实施例,而不是意在限制。正如在所描述的各种实施例和所附权利要求书的描述中所使用的,单数形式“a”、“an”和“the”也意在包括复数形式,除非上下文另有明确说明。还应理解,本文所用的"和/或"一词是指并且包括一个或多个相关清单项目的任何和所有可能的组合。还应理解的是,在本说明中使用的术语“包括”、“包含”、“具备”和/或“具有”具体说明存在所述的特征、整数、步骤、操作、要素和/或组成部分,但并不排除存在或添加一个或多个其它特征、整数、步骤、操作、要素、组成部分、和/或上述的组。
如本文所使用的,“如果”一词可选择地理解为在该情况下、在当时、或者响应于检测到、或响应于确定为,视上下文而定。同样,“如果已确定”或“如果[所述条件或事件]已被检测到”这一短语,视情境而定,可以理解为“在确定时”或“响应于确定为“或”在检测到[所述条件或事件]时”或“响应于检测到[所述条件或事件]”。
如本文所使用的,AV系统是指AV以及实时生成的支持AV操作的硬件、软件、存储的数据和实时生成的支持AV运作的数据。在实施例中,AV系统并入在AV内。在实施例中,AV系统跨多个地点分布。例如,AV系统的一些软件是在类似于下面结合图3描述的云计算环境300的云计算环境中实现的。
一般而言,本文件描述了适用于任何具有一种或多种自主能力的运载工具的技术,包括完全自主运载工具、高度自主运载工具和有条件自主运载工具,如所谓的第5级、第4级和第3级运载工具(见SAE国际标准J3016:道路上机动车自动驾驶系统相关术语的分类和定义,通过引用将其全部内容纳入本说明,以了解运载工具自主权等级的更多详细信息)。本说明所述技术也适用于部分自主运载工具和驾驶员辅助运载工具,如所谓的2级和1级运载工具(见SAE国际标准J3016:道路上机动车自动驾驶系统相关术语的分类和定义)。在实施例中,一个或多个1级、2级、3级、4级和5级运载工具系统可根据对传感器输入的处理,在某些操作条件下自动执行某些运载工具操作(例如,转向、制动和使用地图)。本文件中所述的技术可以使从完全自主运载工具到人类操作的运载工具的各级运载工具受益。
自主运载工具与需要人类驾驶员的运载工具相比存在优势。一个优势是安全性。例如,在2016年,美国经历了600万起汽车事故、240万人受伤、40000人死亡和1300万辆运载工具碰撞事故,估计社会成本为9100亿美元多。从1965年到2015年,每行驶1亿英里的美国交通事故死亡人数已从约6人减少到约1人,部分是由于运载工具中所部署的附加安全措施。例如,认为与将发生碰撞有关的额外半秒的警告减轻了60%的前后碰撞。然而,被动安全特征(例如,安全带、安全气囊)在改进该数字方面有可能已达到它们的极限。因而,诸如运载工具的自动控制等的主动安全措施是改进这些统计数据的可能的下一步。由于在95%的碰撞中认为人类驾驶员是造成严重碰撞前事件的原因,因此自动驾驶系统例如通过以下操作,有可能实现更好的安全结果:比人类更好地可靠地识别和避免紧急情况;做出比人类更好的决策,比人类更好地遵守交通法规,并且比人类更好地预测将来事件;并且比人类更好地可靠地控制运载工具。
参考图1,AV系统120使AV 100沿着轨迹198运行,穿过环境190至目的地199(有时称为最终地点),同时避开对象(例如,自然障碍物191、运载工具193、行人192、骑车者和其它障碍物)和遵守道路规则(例如,操作规则或驾驶偏好)。
在实施例中,AV系统120包括用于从计算机处理器146接收操作命令并对其进行操作的装置101。在实施例中,计算处理器146与下面参考图3描述的处理器304相似。装置101的示例包括转向控制器102、制动器103、挡位、加速踏板或其它加速控制机构、挡风玻璃雨刮器、侧门锁、窗控器和转向指示器。
在实施例中,AV系统120包括用于测量或推断AV 100的状态或条件的属性的传感器121,这些属性例如是AV的位置、线速度和加速度及角速度和加速度、以及航向(例如,AV100的前端的方向)。传感器121的示例是GPS、以及测量运载工具线性加速度和角速率的惯性测量单元(IMU)、用于测量或估计车轮滑移率的车轮速率传感器、车轮制动压力或制动扭矩传感器、引擎扭矩或车轮扭矩传感器以及转向角度和角速率传感器。
在实施例中,传感器121还包括用于感测或测量AV的环境的属性的传感器。例如,可见光、红外或热(或两者兼有)光谱的单目或立体摄像机122、LiDAR 123、RADAR、超声波传感器、飞行时间(TOF)深度传感器、速率传感器、温度传感器、湿度传感器和降水传感器。
在实施例中,AV系统120包括数据存储单元142和存储器144,用于存储与计算机处理器146或由传感器121收集的数据相关的机器指令。在实施例中,数据存储单元142与以下结合图3描述的ROM 308或存储装置310类似。在实施例中,存储器144与下面描述的主存储器306类似。在实施例中,数据存储单元142和存储器144存储有关环境190的历史、实时和/或预测性信息。在实施例中,存储的信息包括地图、驾驶性能、交通拥堵更新或天气条件。在实施例中,与环境190有关的数据通过来自远程数据库134的通信通道传输到AV100。
在实施例中,AV系统120包括通信装置140,用于将对其它运载工具的状态和条件(诸如位置、线性和角速度、线性和角加速度以及线性和角航向等)的测量到或推断的属性传送到AV 100。这些装置包括运载工具到运载工具(V2V)和运载工具到基础设施(V2I)通信装置以及用于通过点对点或自组织(ad hoc)网络或两者兼而有之进行无线通信的装置。在实施例中,通信装置140跨电磁频谱(包括无线电和光通信)或其它介质(例如,空气和声学介质)进行通信。运载工具对运载工具(V2V)、运载工具对基础设施(V2I)通信(以及在一些实施例中为一种或多种其它类型的通信)的组合有时被称为运载工具对所有事物(V2X)通信。V2X通信通常符合一个或多个通信标准,用于与自主运载工具进行的和在自主运载工具之间的通信。
在实施例中,通信装置140包括通信接口。例如,有线、无线、WiMAX、Wi-Fi、蓝牙、卫星、蜂窝、光、近场、红外或无线电接口。通信接口将数据从远程数据库134传输到AV系统120。在实施例中,远程数据库134嵌入云计算环境200中,如图2中所述。通信接口140将从传感器121收集的数据或与AV 100操作有关的其它数据传输到远程数据库134。在实施例中,通信接口140向AV 100传输与远程操作有关的信息。在一些实施例中,AV 100与其它远程(例如,“云”)服务器136通信。
在实施例中,远程数据库134还存储和传输数字数据(例如,存储道路和街道地点等的数据)。这些数据存储在AV 100上的存储器144中,或者通过通信通道从远程数据库134传输到AV 100。
在实施例中,远程数据库134存储和传输与以前在一天中类似时间沿着轨迹198行驶的运载工具的驾驶属性有关的历史信息(例如,速率和加速率分布)。在一个实现中,这种数据可以存储在AV 100上的存储器144中,或者通过通信通道从远程数据库134传输到AV100。
位于AV 100上的计算装置146基于实时传感器数据和先验信息以算法方式生成控制动作,使得AV系统120能够执行其自主驾驶能力。
在实施例中,AV系统120包括连接至计算装置146的计算机外围设备132,用于向AV100的用户(例如,乘员或远程用户)提供信息和提醒并接收来自该用户的输入。在实施例中,外围设备132类似于下面参考图3讨论的显示器312、输入装置314和光标控制器316。连接是无线的或有线的。任意两个或更多的接口设备可以集成到单个设备中。
图2例示示例“云”计算环境。云计算是一种服务交付模式,可以方便、按需地在网络上访问共享的可配置计算资源池(例如网络、网络带宽、服务器、处理、内存、存储、应用程序、虚拟机和服务)。在典型的云计算系统中,一个或多个大型云数据中心容纳用于递送云所提供的服务的机器。现在参考图2,云计算环境200包括通过云202互连的云数据中心204a、204b和204c。数据中心204a、204b和204c为连接至云202的计算机系统206a、206b、206c、206d、206e和206f提供云计算服务。
云计算环境200包括一个或多个云数据中心。通常,云数据中心(例如图2中所示的云数据中心204a)是指构成云(例如图2中所示的云202或云的特定部分)的服务器的物理排列。例如,服务器在云数据中心中物理排列成房间、组、行和机架。云数据中心有一个或多个区域,其中包括一个或多个服务器房间。每个房间有一行或多行服务器,每行都包括一个或多个机架。每个机架包括一个或多个单独的服务器节点。在一些实现中,区域、房间、机架和/或行中的服务器根据数据中心设施的物理基础设施要求(包括电力、能源、热力、热源和/或其它要求)分为若干组。在实施例中,服务器节点类似于图3中描述的计算机系统。数据中心204a具有许多分布在多个机架上的计算系统。
云202包括云数据中心204a、204b和204c以及用于连接云数据中心204a、204b和204c并有助于促进计算系统206a-f对云计算服务的访问的网络和网络资源(例如,网络设备、节点、路由器、交换机和网络电缆)。在实施例中,该网络表示一个或多个本地网络、广域网或通过使用地面或卫星连接部署的有线或无线链路连接的网际网络的任意组合。通过网络交换的数据采用多种网络层协议(如Internet协议(IP)、多协议标签交换(MPLS)、异步传输模式(ATM)、帧中继(FrameRelay)等)进行传输。此外,在网络代表多个子网络的组合的实施例中,在每个底层子网络上使用不同的网络层协议。在一些实施例中,网络代表一个或多个互连网际网络(例如公共互联网等)。
计算系统206a-f或云计算服务消费者通过网络链路和网络适配器连接至云202。在实施例中,计算系统206a-f被实现为各种计算装置,例如服务器、台式机、膝上型计算机、平板电脑、智能手机、物联网(IoT)设备、自主运载工具(包括小汽车、无人机、航天飞机、火车、公共汽车等)和消费电子产品。在实施例中,计算系统206a-f在其它系统中实现或作为其它系统的一部分实现。
图3例示计算机系统300。在实现中,计算机系统300是一种专用计算装置。专用计算装置被硬连线以执行这些技术,或包括诸如一个或多个专用集成电路(ASIC)或现场可编程门阵列(FPGA)等的被持久编程为进行上述技术的数字电子装置,或可包括一个或多个通用硬件处理器,这些硬件处理器经编程以根据固件、存储器、其它存储器、或者组合中的程序指令执行这些技术。这种专用的计算装置还可以将定制的硬线逻辑、ASIC或FPGA与定制的编程相结合来完成这些技术。在各种实施例中,专用计算装置是台式计算机系统、便携式计算机系统、手持设备、网络设备或包含硬线和/或程序逻辑以实现这些技术的任何其它设备。
在实施例中,计算机系统300包括总线302或用于通信信息的其它通信机制、以及与总线302连接以处理信息的硬件处理器304。硬件处理器304是例如通用微处理器。计算机系统300还包括主存储器306,例如随机存取存储器(RAM)或其它动态存储装置,连接至总线302以存储信息和指令,该信息和指令由处理器304执行。在一个实现中,主存储器306用于在执行要由处理器304执行的指令期间存储临时变量或其它中间信息。当这些指令存储在处理器304可访问的非暂时性存储介质中时,使计算机系统300变成一个专用机器,该机器被定制以执行指令中指定的操作。
在实施例中,计算机系统300还包括只读存储器(ROM)308或连接至总线302的其它静态存储装置,用于存储处理器304的静态信息和指令。提供诸如磁盘、光盘、固态驱动器或三维交叉点存储器等的存储装置310,并连接至总线302以存储信息和指令。
在实施例中,计算机系统300通过总线302连接至诸如阴极射线管(CRT)、液晶显示器(LCD)、等离子体显示器、发光二极管(LED)显示器或用于向计算机用户显示信息的有机发光二极管(OLED)显示器等的显示器312。包括字母数字键和其它键的输入装置314连接至总线302,用于向处理器304传送信息和命令选择。另一种类型的用户输入装置是光标控制器316,例如鼠标、轨迹球、触控显示器或光标方向键,用于将方向信息和命令选择传送到处理器304,并用于控制光标在显示器312上的移动。这种输入装置通常具有两个轴线上的两个自由度,第一轴线(例如,x轴)和第二轴线(例如,y轴),这两个轴线允许装置指定平面上的位置。
根据一个实施例,这里的技术由计算机系统300执行,以响应处理器304执行主存储器306中包含的一个或多个指令的一个或多个序列。这些指令从诸如存储装置310等的另一存储介质读入主存储器306。执行主存储器306中包含的指令序列使处理器304执行本文所述的处理步骤。在替代实施例中,使用硬连线电路代替或与软件指令结合使用。
此处使用的术语“存储介质”是指存储数据和/或指令的任何非暂时性介质,这些数据和/或指令使机器以特定方式运行。这种存储介质包括非易失性介质和/或易失性介质。非易失性介质例如包括诸如存储装置310等的光盘、磁盘、固态驱动器或三维交叉点存储器。易失性介质包括动态存储器,诸如主存储器306等。存储介质的常见形式包括例如软盘、软盘、硬盘、固态驱动器、磁带或任何其它磁数据存储介质、CD-ROM、任何其它光数据存储介质、任何具有孔型的物理介质、RAM、PROM和EPROM、FLASH-EPROM、NV-RAM、或任何其它存储芯片或存储盒。
存储介质有别于传输介质,但可以与传输介质相结合使用。传输介质参与存储介质之间的信息传输。例如,传输介质包括同轴电缆、铜线和光纤,其包括具备总线302的电线。传输介质也可以采取声波或光波的形式,如在无线电波和红外数据通信过程中产生的声波或光波。
在实施例中,各种形式的介质涉及向处理器304携带一个或多个指令序列以供执行。例如,这些指令最初是在远程计算机的磁盘或固态驱动器上执行的。远程计算机将指令加载到其动态存储器中,并使用调制解调器通过电话线路发送指令。计算机系统300的本地调制解调器接收电话线路上的数据,并使用红外发射机将数据转换为红外信号。红外检测器接收红外信号中携带的数据,并且适当的电路将数据放置在总线302上。总线302将数据承载到主存储器306,处理器304从主存储器306检索并执行指令。主存储器306接收的指令可以任选地在处理器304执行之前或之后存储在存储装置310上。
计算机系统300还包括连接至总线302的通信接口318。通信接口318提供耦合到连接至本地网络322的网络链路320多双向数据通信。例如,通信接口318是综合业务数字网(ISDN)卡、电缆调制解调器、卫星调制解调器或用以提供与相应类型电话线路的数据通信连接的调制解调器。作为另一示例,通信接口318是局域网(LAN)卡,用于提供与兼容LAN的数据通信连接。在一些实现中,无线链路也被实现。在任何这种实现中,通信接口318发送和接收承载代表各种信息的数字数据流的电、电磁或光信号。
网络链路320通常通过一个或多个网络向其它数据装置提供数据通信。例如,网络链路320通过本地网络322提供与主计算机324或与由因特网服务提供商(ISP)326运营的云数据中心或设备的连接。ISP 326又通过现在通常称为“因特网”的世界范围分组数据通信网络来提供数据通信服务。本地网络322和因特网328都使用携带数字数据流的电、电磁或光信号。通过各种网络的信号以及网络链路320上并通过通信接口318的信号是传输介质的示例形式,其中通信接口318承载了进出计算机系统300的数字数据。在实施例中,网络320包含上述云202或云202的一部分。
计算机系统300通过(一个或多个)网络、网络链路320和通信接口318发送消息和接收包括程序代码的数据。在实施例中,计算机系统300接收用于处理的代码。接收到的代码在接收到时由处理器304执行,和/或存储在存储装置310中,或存储在其它非易失性存储装置中以便以后执行。
自主运载工具架构
图4示出用于自主运载工具(例如,图1所示的AV 100)的示例架构400。架构400包括感知模块402(有时称为感知电路)、规划模块404(有时称为规划电路)、控制模块406(有时称为控制电路)、定位模块408(有时称为定位电路)和数据库模块410(有时称为数据库电路)。各模块在AV 100的操作中发挥作用。共同地,模块402、404、406、408和410可以是图1所示的AV系统120的一部分。在一些实施例中,模块402、404、406、408和410中的任何模块是计算机软件(例如,计算机可读介质上所存储的可执行代码)和计算机硬件(例如,一个或多个微处理器、微控制器、专用集成电路[ASIC]、硬件存储器装置、其它类型的集成电路、其它类型的计算机硬件、或者这些硬件中的任何或所有的组合)的组合。模块402、404、406、408和410各自有时被称为处理电路(例如,计算机硬件、计算机软件、或者这两者的组合)。模块402、404、406、408和410中的任何或全部的组合也是处理电路的示例。
在使用中,规划模块404接收表示目的地412的数据,并且确定表示AV100为了到达(例如,抵达)目的地412而可以行驶的轨迹414(有时称为路线)的数据。为了使规划模块404确定表示轨迹414的数据,规划模块404从感知模块402、定位模块408和数据库模块410接收数据。
感知模块402使用例如也如图1所示的一个或多个传感器121来识别附近的物理对象。将对象分类(例如,分组成诸如行人、自行车、汽车、交通标志等的类型),并且将包括经分类的对象416的场景描述提供至规划模块404。
规划模块404还从定位模块408接收表示AV位置418的数据。定位模块408通过使用来自传感器121的数据和来自数据库模块410的数据(例如,地理数据)以计算位置来确定AV位置。例如,定位模块408使用来自GNSS(全球导航卫星系统)传感器的数据和地理数据来计算AV的经度和纬度。在实施例中,定位模块408所使用的数据包括具有行车道几何属性的高精度地图、描述道路网络连接属性的地图、描述行车道物理属性(诸如交通速率、交通量、运载工具和自行车车道的数量、车道宽度、车道交通方向、或车道标记类型和地点,或者它们的组合)的地图、以及描述道路特征(诸如十字路口、交通标志或各种类型的其它行驶信号等)的空间地点的地图。在实施例中,高精度地图是通过将数据经由自动或手动注释添加到低精度地图所构建的。
控制模块406接收表示轨迹414的数据和表示AV位置418的数据,并且以将使得AV100行驶轨迹414到达目的地412的方式来操作AV的控制功能420a~420c(例如,转向、油门、制动、点火)。例如,如果轨迹414包括左转,则控制模块406将以如下方式操作控制功能420a~420c:转向功能的转向角度将使得AV 100左转,并且油门和制动将使得AV 100在进行转弯之前暂停并等待经过的行人或运载工具。
自主运载工具输入
图5示出感知模块402(图4)所使用的输入502a-502d(例如,图1中所示的传感器121)和输出504a-504d(例如,传感器数据)的示例。一个输入502a是LiDAR(光检测和测距)系统(例如,图1所示的LiDAR 123)。LiDAR是使用光(例如,诸如红外光等的一道光)来获得与其视线中的物理对象有关的数据的技术。LiDAR系统产生LiDAR数据作为输出504a。例如,LiDAR数据是用于构造环境190的表现的3D或2D点(也称为点云)的集合。
另一输入502b是RADAR(雷达)系统。RADAR是使用无线电波来获得与附近的物理对象有关的数据的技术。RADAR可以获得与不在LiDAR系统的视线内的对象有关的数据。RADAR系统502b产生RADAR数据作为输出504b。例如,RADAR数据是用于构造环境190的表现的一个或多个射频电磁信号。
另一输入502c是照相机系统。照相机系统使用一个或多个照相机(例如,使用诸如电荷耦合器件[CCD]等的光传感器的数字照相机)来获取与附近的物理对象有关的信息。照相机系统产生照相机数据作为输出504c。照相机数据通常采用图像数据的形式(例如,诸如RAW、JPEG、PNG等的图像数据格式的数据)。在一些示例中,照相机系统具有例如为了立体影像(立体视觉)的目的的多个独立照相机,这使得照相机系统能够感知深度。尽管照相机系统所感知的对象在这里被描述为“附近”,但这是相对于AV而言的。在使用中,照相机系统可被配置为“看见”远处的(例如,AV前方的远至1公里以上的)对象。因此,照相机系统可以具有为了感知遥远的对象而优化的诸如传感器和透镜等的特征。
另一输入502d是交通灯检测(TLD)系统。TLD系统使用一个或多个照相机来获得与交通灯、街道标志和提供视觉导航信息的其它物理对象有关的信息。TLD系统产生TLD数据作为输出504d。TLD数据经常采用图像数据的形式(例如,诸如RAW、JPEG、PNG等的图像数据格式的数据)。TLD系统与包含照相机的系统的不同之处在于:TLD系统使用具有宽视场(例如,使用广角镜头或鱼眼镜头)的照相机,以获得与尽可能多的提供视觉导航信息的物理对象有关的信息,使得AV 100有权访问这些对象所提供的所有相关导航信息。例如,TLD系统的视角可以为约120度以上。
在一些实施例中,使用传感器融合技术来组合输出504a-504d。因而,将个体输出504a-504d提供至AV 100的其它系统(例如,提供至如图4所示的规划模块404),或者采用相同类型(例如,使用相同组合技术或组合相同输出或者这两者)或不同类型(例如,使用不同的各个组合技术或组合不同的各个输出或者这两者)的单个组合输出或多个组合输出的形式,可以将组合输出提供至其它系统。在一些实施例中,使用早期融合技术。早期融合技术的特征在于:将输出组合,之后将一个或多个数据处理步骤应用到组合输出。在一些实施例中,使用后期融合技术。后期融合技术的特征在于:在将一个或多个数据处理步骤应用到个体输出之后,将进行输出的组合。
图6示出LiDAR系统602的示例(例如,图5所示的输入502a)。LiDAR系统602从发光器606(例如,激光发射器)发射光604a-604c。LiDAR系统所发射的光通常不在可见光谱中;例如,经常使用红外光。所发射的光604b中的一些光遇到物理对象608(例如,运载工具)并且反射回到LiDAR系统602。(从LiDAR系统发射的光通常不会穿透物理对象,例如,实心形式的物理对象。)LiDAR系统602还具有用于检测反射光的一个或多个光检测器610。在实施例中,与LiDAR系统相关联的一个或多个数据处理系统生成表示LiDAR系统的视场614的图像612。图像612包括表示物理对象608的边界616的信息。这样,图像612用于确定AV附近的一个或多个物理对象的边界616。
图7示出操作中的LiDAR系统602。在该图所示的情境中,AV 100接收采用图像702的形式的照相机系统输出504c和采用LiDAR数据点704的形式的LiDAR系统输出504a。在使用中,AV 100的数据处理系统将图像702与数据点704进行比较。特别地,在数据点704中也识别出在图像702中识别出的物理对象706。这样,AV 100基于数据点704的轮廓和密度来感知物理对象的边界。
图8示出LiDAR系统602的操作的附加细节。如上所述,AV 100基于LiDAR系统602所检测到的数据点的特性来检测物理对象的边界。如图8所示,诸如地面802等的平坦对象将以一致的方式反射从LiDAR系统602发射的光804a-804d。换句话说,由于LiDAR系统602使用一致的间隔发射光,因此地面802将以相同的一致间隔将光反射回到LiDAR系统602。在AV100在地面802上行驶时,在没有东西阻挡道路的情况下,LiDAR系统602将继续检测到由下一个有效地面点806反射的光。然而,如果对象808阻挡道路,则LiDAR系统602所发射的光804e-804f将以不符合预期一致方式的方式从点810a-810b反射。根据该信息,AV 100可以确定为存在对象808。
路径规划
图9示出(例如,如图4所示的)规划模块404的输入和输出之间的关系的框图900。通常,规划模块404的输出是从起点904(例如,源地点或初始地点)到终点906(例如,目的地或最终地点)的路线902。路线902通常由一个或多个路段定义。例如,路段是指要行驶经过街道、道路、公路、行车道或适合汽车行驶的其它物理区域的至少一部分的距离。在一些示例中,例如,如果AV 100是诸如四轮驱动(4WD)或全轮驱动(AWD)小汽车、SUV或小型卡车等的越野运载工具,则路线902包括诸如未铺面道路或开阔田野等的“越野”路段。
除路线902之外,规划模块还输出车道级路线规划数据908。车道级路线规划数据908用于在特定时间基于路线902的路段的条件来驶过这些路段。例如,如果路线902包括多车道公路,则车道级路线规划数据908包括轨迹规划数据910,其中AV 100可以使用该轨迹规划数据910以例如基于出口是否临近、多个车道中的一个以上的车道是否存在其它运载工具、或者在几分钟或更少时间的过程中变化的其它因素,来从这多个车道中选择某车道。同样地,在一些实现中,车道级路线规划数据908包括路线902的某路段特有的速率约束912。例如,如果该路段包括行人或非预期交通,则速率约束912可以将AV 100限制到比预期速率慢的行驶速率,例如基于该路段的限速数据的速率。
在实施例中,向规划模块404的输入包括(例如,来自图4所示的数据库模块410的)数据库数据914、当前地点数据916(例如,图4所示的AV位置418)、(例如,用于图4所示的目的地412的)目的地数据918和对象数据920(例如,如图4所示的感知模块402所感知的经分类的对象416)。在一些实施例中,数据库数据914包括规划时所使用的规则。规则是使用形式语言(例如,使用布尔逻辑)指定的。在AV 100所遇到的任何给定情形中,这些规则中的至少一些规则将适用于该情形。如果规则具有基于AV 100可用的信息(例如,与周围环境有关的信息)所满足的条件,则该规则适用于给定情形。规则可以具有优先级。例如,“如果公路是高速公路,则移动到最左侧车道”这一规则与“如果出口在一英里内临近,则移动到最右侧车道”相比可以具有更低的优先级。
图10示出在路径规划中(例如,由规划模块404(图4))使用的有向图1000。通常,如图10所示的有向图那样的有向图1000用于确定任何起点1002和终点1004之间的路径。在现实世界中,分隔起点1002和终点1004的距离可能相对较大(例如,在两个不同的都市区域中),或者可能相对较小(例如,毗邻城市街区的两个十字路口或多车道道路的两条车道)。
在实施例中,有向图1000具有表示起点1002和终点1004之间的AV 100可能占用的不同地点的节点1006a-1006d。在一些示例中,例如,在起点1002和终点1004表示不同的都市区域时,节点1006a-1006d表示道路的路段。在一些示例中,例如,在起点1002和终点1004表示相同道路上的不同地点时,节点1006a-1006d表示该道路上的不同位置。这样,有向图1000包括不同粒度级别的信息。在实施例中,具有高粒度的有向图也是具有更大规模的另一有向图的子图。例如,起点1002和终点1004相距远(例如,相距许多英里)的有向图的大部分信息处于低粒度,并且该有向图是基于所存储的数据,但该有向图还包括供该有向图中的表示AV 100的视场中的物理地点的一部分用的一些高粒度信息。
节点1006a-1006d不同于无法与节点重叠的对象1008a-1008b。在实施例中,在粒度低时,对象1008a-1008b表示汽车不能驶过的地区,例如无街道或道路的区域。在粒度高时,对象1008a-1008b表示AV 100的视场中的物理对象,例如其它汽车、行人、或AV 100不能与之共用物理空间的其它实体。在实施例中,对象1008a-1008b的一部分或全部是静态对象(例如,不改变位置的对象,诸如街灯或电线杆等)或动态对象(例如,能够改变位置的对象,诸如行人或其它小汽车等)。
节点1006a-1006d通过边缘1010a-1010c连接。如果两个节点1006a-1006b通过边缘1010a连接,则AV 100可以在一个节点1006a和另一节点1006b之间行驶,例如,而不必在到达另一节点1006b之前行驶到中间节点。(当提到AV100在节点之间行驶时,意味着AV 100在由相应节点表示的两个物理位置之间行驶。)边缘1010a-1010c通常是双向的,从某种意义上,AV 100从第一节点行驶到第二节点,或者从第二节点行驶到第一节点。在实施例中,边缘1010a-1010c是单向的,从某种意义上,AV 100可以从第一节点行驶到第二节点,然而AV 100不能从第二节点行驶到第一节点。在边缘1010a-1010c表示例如单向街道、街道、道路或公路的单独车道、或者由于法律或物理约束因而仅能沿一个方向驶过的其它特征的情况下,边缘1010a-1010c是单向的。
在实施例中,规划模块404使用有向图1000来识别由起点1002和终点1004之间的节点和边缘组成的路径1012。
边缘1010a-1010c具有关联成本1014a-1014b。成本1014a-1014b是表示在AV 100选择该边缘的情况下将花费的资源的值。典型的资源是时间。例如,如果一个边缘1010a所表示的物理距离是另一边缘1010b所表示的物理距离的两倍,则第一边缘1010a的关联成本1014a可以是第二边缘1010b的关联成本1014b的两倍。影响时间的其它因素包括预期交通、十字路口的数量、限速等。另一典型的资源是燃料经济性。两个边缘1010a-1010b可以表示相同的物理距离,但例如由于道路条件、预期天气等,因此一个边缘1010a与另一边缘1010b相比需要更多的燃料。
在规划模块404识别起点1002和终点1004之间的路径1012时,规划模块404通常选择针对成本优化的路径,例如,在将边缘的各个成本相加到一起时具有最小总成本的路径。
自主运载工具控制
图11示出(例如,如图4所示的)控制模块406的输入和输出的框图1100。控制模块根据控制器1102而工作,该控制器1102例如包括:与处理器304类似的一个或多个处理器(例如,诸如微处理器或微控制器或这两者等的一个或多个计算机处理器);与主存储器306、ROM 308和存储装置310类似的短期和/或长期数据存储装置(例如,存储器随机存取存储器或闪速存储器或这两者);以及存储器中所存储的指令,这些指令在(例如,由一个或多个处理器)执行时执行控制器1102的操作。
在实施例中,控制器1102接收表示期望输出1104的数据。期望输出1104通常包括速度,例如速率和航向。期望输出1104例如可以基于从(例如,如图4所示的)规划模块404接收到的数据。根据期望输出1104,控制器1102产生可用作油门输入1106和转向输入1108的数据。油门输入1106表示例如通过接合转向踏板或接合另一油门控件来接合AV 100的油门(例如,加速控制)以实现期望输出1104的大小。在一些示例中,油门输入1106还包括可用于接合AV100的制动器(例如,减速控制)的数据。转向输入1108表示转向角度,例如AV的转向控制(例如,方向盘、转向角致动器或用于控制转向角度的其它功能)应被定位成实现期望输出1104的角度。
在实施例中,控制器1102接收在调整提供至油门和转向的输入时使用的反馈。例如,如果AV 100遇到诸如山丘等的干扰1110,则AV 100的测量速率1112降至低于期望输出速率。在实施例中,任何测量输出1114均被提供至控制器1102,使得例如基于测量速率和期望输出之间的差分1113来进行所需的调整。测量输出1114包括测量位置1116、测量速度1118(包括速率和航向)、测量加速度1120和AV 100的传感器可测量的其它输出。
在实施例中,例如通过诸如照相机或LiDAR传感器等的传感器预先检测与干扰1110有关的信息,并且该信息被提供至预测性反馈模块1122。然后,预测性反馈模块1122将控制器1102可用于相应地调整的信息提供至控制器1102。例如,如果AV 100的传感器检测到(“看见”)山丘,则控制器1102可以使用该信息来准备在适当时间接合油门,以避免显著减速。
图12示出控制器1102的输入、输出和组件的框图1200。控制器1102具有影响油门/制动器控制器1204的操作的速率分析器1202。例如,速率分析器1202根据例如由控制器1102接收到并由速率分析器1202处理后的反馈,来指示油门/制动器控制器1204使用油门/制动器1206进行加速或进行减速。
控制器1102还具有影响方向盘控制器1210的操作的横向跟踪控制器1208。例如,横向跟踪控制器1208根据例如由控制器1102接收到并由横向跟踪控制器1208处理后的反馈,来指示方向盘控制器1210调整转向角致动器1212的位置。
控制器1102接收用于确定如何控制油门/制动器1206和转向角致动器1212的多个输入。规划模块404提供控制器1102例如选择AV 100开始操作时的航向并确定在AV 100到达十字交叉路口时驶过哪个道路路段所使用的信息。定位模块408例如将描述AV 100的当前地点的信息提供至控制器1102,使得控制器1102可以确定AV 100是否处于基于正控制油门/制动器1206和转向角致动器1212的方式而预期所处的地点。在实施例中,控制器1102接收来自其它输入1214的信息,例如从数据库、计算机网络等接收到的信息。
使用前馈信号的转向角控制
图13示出连接至运载工具的方向盘1310的控制器1102的示意图。控制器1102可以连接至运载工具的EPS系统或者可以是运载工具的EPS系统的组件。由控制器1102应用的转向控制信号可以通过转向器1302、中间轴1304、转向柱1306和转向柱组件1308被发送至方向盘1310。作为响应,方向盘1310可以转动与转向控制信号的强度相对应的转向角。在实施例中,运载工具不包括方向盘1310。
图14是用以将补偿扭矩施加到转向柱的示例处理1400的流程图。处理1400的某些方面可以通过规划模块404、控制器1102或它们的组合来实现。在1402处,将基本扭矩信号发送至控制器。例如,规划模块404将基本扭矩信号发送至控制器1102。基本扭矩信号表示控制器1102需要施加到运载工具的转向柱以按由规划模块404确定的方式控制运载工具的操作的基本扭矩。在一些实施例中,基于运载工具的轨迹,规划模块404确定需要转动方向盘以在该轨迹上继续所利用的转向角。规划模块404确定要施加到转向柱以将方向盘转动到所确定的转向角的基本扭矩。规划模块404确定表示基本扭矩的基本扭矩信号。规划模块404生成基本扭矩信号,并将该基本扭矩信号与用以将基本扭矩信号发送至转向柱的指令发送至控制器1102。可选地,规划模块404将该指令发送至控制器1102,该控制器1102然后生成基本扭矩信号并将该基本扭矩信号发送至转向柱。
在一些实现中,扭矩信号可以是电压信号。图15是可以应用于EPS系统的电压信号的示例。例如,控制器1102可以包括数模转换器(DAC)1502。DAC1502可以输出在电压为例如0.0V到1.0V的范围内的电压信号。运载工具的EPS系统可以输出在与DAC 1502所输出的电压的范围不同(例如,比DAC1502所输出的电压的范围高)的范围内的电压(VEPS)。例如,EPS系统可以接受作为转向柱扭矩传感器输出的电压的处于2.0V到3.0V的范围内的电压。来自DAC 1502的电压可被增强了2V的电压(Vint)(即,DAC 1502的电压与EPS系统可接受的电压之间的差),以达到与扭矩信号相对应的电压(Vt)。在一些实施例中,实现平均机制以增强来自DAC 1502的电压,例如-2.5V电压平均机制。
理想情况下,施加到转向柱的基本扭矩将使方向盘转动由规划模块404所确定的预期转向角。然而,在某些运载工具条件(例如,运载工具速率、运载工具负荷、行驶条件、或类似的运载工具条件)下,方向盘转动的实际转向角偏离预期转向角。例如,以范围在7m/s和11m/s之间的速率,可以观察到这样的偏差。在一些实施例中,控制器1102可以实现控制回路(例如,比例-积分-微分(PID)控制回路),以基于实际转向角来修正扭矩信号。
在一些实施例中,规划模块404例如基于运载工具条件确定为施加到转向柱的基本扭矩将得到偏离针对该基本扭矩所确定的预期转向角的实际转向角。因此,如以下所述,规划模块404通过将补偿扭矩作为前馈信号应用到控制回路来对该偏差进行补偿。
图16是具有前馈功能的控制回路的示意图。控制回路可以由控制器1102或规划模块404来实现。控制回路连接至EPS系统1602,该EPS系统1602将输入扭矩信号转换成要施加到转向柱的输出扭矩。电压模块1606包括参考图15所述的DAC 1502和电压增强机制。前馈功能模块1608如以下所述应用前馈信号。调节模块1604表示基于实际转向角而修正的PID控制回路的无功项(reactive term)。调节模块1604将误差(即,实际转向角和预期转向角之间的偏差)调节为零。
“参考轨迹”表示控制器1102控制方向盘所依据的来自规划模块404的信号。基于“参考轨迹”,电压模块1606生成表示扭矩信号的电压,并将该扭矩信号发送至EPS系统1602。EPS系统1602施加扭矩。EPS系统1602将方向盘的实际转向角作为反馈提供至控制器1102或规划模块404。基于该反馈,规划模块404或控制器1102可以操作电压模块1606以调整电压(例如,增加或减少电压),使得实际转向角与预期转向角匹配。
在一些实施例中,即使没有来自EPS系统1602的反馈,规划模块404或控制器1102也可以操作前馈功能模块1608以向电压模块1606应用前馈信号。返回到图14,在1404处,确定要施加到转向柱的补偿扭矩。在1406处,将表示补偿扭矩的补偿扭矩信号(例如,电压信号)应用作为前馈信号。后面说明规划模块404为了确定补偿扭矩信号所实现的实验技术。在1408处,根据补偿扭矩信号来修正基本扭矩信号。例如,利用补偿扭矩信号来增强电压模块1606所输出的基本扭矩信号。也就是说,使基本扭矩信号的幅度增加或减少了补偿扭矩信号的幅度。在1410处,将修正扭矩信号应用于转向柱。例如,电压模块1606将修正扭矩信号发送至EPS系统402,该EPS系统402将增强后的扭矩信号应用于转向柱,这使得将方向盘转动到期望转向角。在1412处,基于修正转向角来操作运载工具。规划模块404或控制器1102(或这两者)可以在运载工具的操作的持续时间内实现处理1400的上述步骤。
为了将补偿扭矩作为前馈信号施加到基本扭矩,规划模块404或控制器1102提前生成并存储多个补偿扭矩信号,各补偿扭矩信号表示基于运载工具条件所要施加的补偿扭矩。运载工具条件例如可以包括运载工具的不同速率、运载工具正操作于的天气条件、运载工具正操作于的道路条件、运载工具上的负荷、或者它们的组合。运载工具上的负荷可以包括乘员简档,即已知搭乘运载工具的乘员的描述。
在1414处,生成多个补偿扭矩信号。为此,在一些实施例中,可以实现以下的处理步骤。在一些实施例中,规划模块404可以向各运载工具条件指派定量值,并且使运载工具在该运载工具条件下操作。规划模块404可以针对各运载工具条件确定补偿扭矩信号。在1416处,确定针对相应扭矩信号的预期转向角。例如,规划模块404可以确定针对基本扭矩信号的预期转向角。在一些实施例中,规划模块404可以通过对将运载工具条件(例如,速率)和转向角与前馈扭矩相关的二次多项式曲面进行曲线拟合,来确定预期转向角。图17是将运载工具条件和转向角与前馈扭矩相关的标绘图1700。在一些实施例中,规划模块404通过测量稳定速率的方向盘的转向角来确定预期转向角。
在1418处,可以将扭矩信号应用于转向柱。例如,如前面所述,规划模块404可以将基本扭矩信号应用于控制器1102。在1420处,可以以预先确定的运载工具条件来操作运载工具。例如,如前面所述,规划模块404可以使运载工具以各运载工具条件操作。在1422处,测量实际转向角。例如,EPS系统1602可以测量方向盘响应于从规划模块404接收到的基本扭矩信号而已转动的实际转向角。在1424处,确定修正实际转向角所需的补偿扭矩信号。例如,规划模块404可以确定要应用于基本扭矩信号以消除预期转向角和实际转向角之间的偏差的补偿扭矩信号。在1426处,可以存储补偿扭矩信号、实际转向角和预先确定的运载工具条件。例如,规划模块404可以生成包括补偿扭矩信号、基本扭矩信号、以及指派给运载工具条件的定量值的数据集。
规划模块404可以以不同的运载工具条件多次实现处理步骤1416-1426,并且生成多个数据集。数据集可以包括一个运载工具条件(例如,运载工具速率)或多个运载工具条件(例如,雨天的运载工具速率、未铺设道路上的运载工具速率等)。以这种方式,规划模块404可以实现实验技术以生成并存储要作为前馈信号应用的补偿扭矩信号。在运载工具操作期间,规划模块404可以检测运载工具操作条件,并且从所存储的数据集中识别与运载工具操作条件基本上匹配的数据集。从该数据集,规划模块404可以识别补偿扭矩信号并将该补偿扭矩信号作为前馈信号来发送。在一些实施例中,规划模块404可以实时地应用补偿扭矩信号。对于实时,这意味着在规划模块404确定应用前馈信号与识别并发送前馈信号之间的时间可以忽略不计(例如,纳秒、微秒或毫秒的量级)。
例如,规划模块404可以基于运载工具操作于的天气条件来应用补偿扭矩信号。天气条件例如可以包括雨、雪、大风、其它天气条件或它们的组合。规划模块404可以基于AV100上安装的传感器所感测到的信息、基于AV 100正驾驶于的地理地点和时间、从远程地点、或者它们的组合,来确定天气条件。随着当正在这样的极端天气条件下驾驶AV 100时、AV 100的速度增加,与当正在正常天气条件下驾驶AV 100时相比,估计转向角和实际转向角之间的偏差可以更大。在一些实施例中,规划模块404可以确定天气条件的变化,并且响应地(例如,实时地)应用前馈补偿扭矩信号以减小或消除估计转向角和实际转向角之间的偏差。
在另一示例中,规划模块404可以基于运载工具驾驶于的道路条件来应用补偿扭矩信号。道路条件例如可以包括湿路、滑路、脏路、破损道路或其它道路条件。规划模块404可以基于AV 100上安装的传感器所感测到的信息、基于AV 100正驾驶于的地理地点、从远程地点、或者它们的组合,来确定道路条件。随着当正在这样的极端道路条件下驾驶AV 100时、AV 100的速度增加,与当正在正常道路条件下驾驶AV 100时相比,估计转向角和实际转向角之间的偏差可以更大。在一些实施例中,规划模块404可以确定道路条件的变化,并且响应地(例如,实时地)应用前馈补偿扭矩信号以减小或消除估计转向角和实际转向角之间的偏差。
在又一示例中,规划模块404可以基于运载工具上的负荷来应用补偿扭矩信号。例如,由于乘载率增加或者在运载工具中正运输重物,负荷可以大于正常负荷。规划模块404可以基于AV 100上安装的传感器所感测到的信息、从远程地点、或者它们的组合,来确定负荷。随着当正在高负荷下驾驶AV 100时、AV 100的速度增加,与当正在正常负荷下驾驶AV100时相比,估计转向角和实际转向角之间的偏差可以更大。在一些实施例中,规划模块404可以确定负荷的变化,并且响应地(例如,实时地)应用前馈补偿扭矩信号以减小或消除估计转向角和实际转向角之间的偏差。
在另一示例中,规划模块404可以基于AV 100的一个或多个乘员的乘员简档来应用补偿扭矩信号。规划模块404可以存储可应用于AV 100的任何乘员的通用驾驶偏好。该通用驾驶偏好可以指定乘员的驾驶偏好,举几个例子:采用最短路线到达目的地、避免高速公路或收费等。基于通用驾驶偏好,规划模块404可以确定为了满足通用驾驶偏好而要应用的一组运载工具驾驶条件。此外,规划模块404可以针对该组运载工具驾驶条件确定要应用于转向柱的补偿扭矩信号。随着时间的推移,规划模块404可以基于使用AV 100的各乘员来修正通用驾驶偏好。随后,规划模块404可以识别登上了运载工具的乘员,识别该乘员的乘员简档,并且针对将满足乘员的驾驶偏好的一组运载工具驾驶条件确定要应用于转向柱的补偿扭矩信号。规划模块404可以实时地应用所确定的补偿扭矩信号。
在实施例中,可以通过将经训练的模型应用于AV 100来确定要应用于转向柱的补偿扭矩信号的量。经训练的模型可以是通过将机器学习技术应用于生成并应用先前的补偿扭矩信号所基于的历史遍历数据而生成的。经训练的模型还可以考虑到一天中的时间、交通条件、基于视听或其它数据的行人密度、以及天气等的其它因素。例如,可以生成并存储运载工具驾驶条件和针对这些运载工具驾驶条件所应用的补偿扭矩信号。这里为了确定补偿扭矩信号的量所描述的技术可以应用于历史遍历数据。可以实现机器学习技术来训练规划模块404,以从历史遍历数据确定针对运载工具条件的任何组合的补偿扭矩信号的量。可以利用实时确定的量来改善通过机器学习所确定的量。另外,可以更新历史遍历数据以改善机器学习技术。
在一些实施例中,处理步骤1416-1426可以由远离运载工具的计算机系统来实现,或者可以通过规划模块404和发送至远离运载工具的计算机系统的数据集来实现。在这样的情况下,规划模块404可以从远程计算机系统接收要应用于EPS系统1602的补偿扭矩。
在一些实施例中,规划模块404可以对预期转向角和实际转向角之间的偏差进行补偿,直至预先确定的转向角阈值(例如,10°或一些其它角度)为止。超过预先确定的阈值的偏差表明:运载工具存在机械问题,这需要维修店的注意。在这样的情况下,也就是说,在确定为偏差超过预先确定的阈值时,规划模块404可以将运载工具操作到目标地点(例如,维修店或其它目标地点)。在一些实施例中,规划模块404除了将运载工具操作到目标地点之外,还可以实现其它操作。附加操作例如可以包括将要显示的警报发送至运载工具中的乘员、发送至目标地点、发送至不同的地点、限制可以发送至EPS系统1602的指令、或者它们的组合。
在先前描述中,已经参考许多具体细节描述了本发明的实施例,这些具体细节可因实现而不同。因此,说明书和附图应被视为说明性的,而非限制性意义的。本发明范围的唯一且排他的指示、以及申请人期望是本发明范围的内容是以授权权利要求的具体形式从本申请授权的权利要求书的字面和等同范围,包括任何后续修正。本文中明确阐述的用于被包括在此类权利要求中的术语的任何定义应当以此类术语如在权利要求书中所使用的意义为准。另外,当在先前的说明书或所附权利要求书使用术语“还包括”时,该短语的下文可以是附加的步骤或实体、或先前所述的步骤或实体的子步骤/子实体。

Claims (14)

1.一种计算机实现的用于运载工具的方法,包括:
利用配置在所述运载工具上且连接至所述运载工具的电动助力转向系统即EPS系统的规划电路,来确定补偿扭矩信号以将所述运载工具的方向盘的实际转向角修正成匹配所述方向盘的预期转向角;
利用所述规划电路,将得到施加在所述方向盘上的扭矩的基本扭矩信号发送至控制电路;
根据所述补偿扭矩信号来修正所述基本扭矩信号,其中所述补偿扭矩信号和所述基本扭矩信号至少之一是电压;
利用所述规划电路,将所述补偿扭矩信号发送至用于控制所述方向盘的转向角的所述控制电路;
利用所述EPS系统,基于所述补偿扭矩信号来修正所述实际转向角,从而得到修正转向角;以及
使用所述控制电路,基于所述修正转向角来操作所述运载工具,
其特征在于,所述方法还包括:
生成多个补偿扭矩信号,所生成的各补偿扭矩信号包括要发送至所述EPS系统以向所述方向盘应用扭矩的相应扭矩信号,其中生成所述多个补偿扭矩信号包括:
针对所生成的各补偿扭矩信号:
确定针对所述相应扭矩信号的所述方向盘的预期转向角;
将所述相应扭矩信号应用于所述EPS系统,从而得到转向角;
按预先确定的运载工具速率以所述转向角操作所述运载工具;
确定针对所述相应扭矩信号的所述方向盘的实际转向角;以及
将所生成的补偿扭矩信号和所述实际转向角存储为数据对。
2.根据权利要求1所述的方法,其中,根据所述补偿扭矩信号来修正所述基本扭矩信号包括:将所述补偿扭矩信号的幅度与所述基本扭矩信号的幅度相加。
3.根据权利要求1或2所述的方法,其中,将所述补偿扭矩信号作为前馈信号发送至所述控制电路。
4.根据权利要求1或2所述的方法,
其中,确定针对所述相应扭矩信号的所述方向盘的预期转向角包括:对将运载工具速率和转向角与所施加的扭矩相关的多项式曲面进行曲线拟合。
5.根据权利要求1或2所述的方法,还包括:
确定所述预期转向角和所述实际转向角之间的差;以及
根据确定为所述差超过预定阈值,将所述运载工具操作到目标地点。
6.根据权利要求1或2所述的方法,还包括:
利用所述规划电路,确定所述运载工具的操作条件;以及
根据所述操作条件来修正所述补偿扭矩信号。
7.根据权利要求6所述的方法,其中,所述补偿扭矩信号是根据所述操作条件实时地修正的。
8.根据权利要求6所述的方法,其中,所述操作条件包括所述运载工具操作于的天气条件。
9.根据权利要求6所述的方法,其中,所述操作条件包括所述运载工具驾驶于的道路条件。
10.根据权利要求6所述的方法,其中,所述操作条件包括所述运载工具所承载的负荷。
11.根据权利要求6所述的方法,其中,所述操作条件包括由所述规划电路存储在乘员简档中的驾驶条件,所述乘员简档包括所述运载工具的一个或多个乘员的驾驶偏好。
12.根据权利要求6所述的方法,还包括:利用所述规划电路,从远离所述运载工具的远程地点接收用以修正所述补偿扭矩信号的指令,其中所述补偿扭矩信号是响应于从所述远程地点接收到所述指令而修正的。
13.一种运载工具,包括:
规划电路;
存储器;以及
至少一个程序,其存储在所述存储器中,所述至少一个程序包括所述规划电路为了进行根据权利要求1至12中任一项所述的方法而能够执行的指令。
14.一种计算机可读存储介质,其包括至少一个程序,所述至少一个程序供装置的规划电路执行,所述至少一个程序包括指令,所述指令在由所述规划电路执行时,使得运载工具进行根据权利要求1至12中任一项所述的方法。
CN202080002941.2A 2019-01-29 2020-01-29 电动助力转向扭矩补偿 Active CN112166068B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210603800.7A CN115071811A (zh) 2019-01-29 2020-01-29 计算机实现的方法、运载工具和非暂时性计算机可读介质

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962798419P 2019-01-29 2019-01-29
US62/798,419 2019-01-29
DKPA201970163A DK180545B1 (en) 2019-01-29 2019-03-14 Electric power steering torque compensation
DKPA201970163 2019-03-14
PCT/IB2020/050714 WO2020157683A1 (en) 2019-01-29 2020-01-29 Electric power steering torque compensation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210603800.7A Division CN115071811A (zh) 2019-01-29 2020-01-29 计算机实现的方法、运载工具和非暂时性计算机可读介质

Publications (2)

Publication Number Publication Date
CN112166068A CN112166068A (zh) 2021-01-01
CN112166068B true CN112166068B (zh) 2022-06-14

Family

ID=71898693

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210603800.7A Pending CN115071811A (zh) 2019-01-29 2020-01-29 计算机实现的方法、运载工具和非暂时性计算机可读介质
CN202080002941.2A Active CN112166068B (zh) 2019-01-29 2020-01-29 电动助力转向扭矩补偿

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210603800.7A Pending CN115071811A (zh) 2019-01-29 2020-01-29 计算机实现的方法、运载工具和非暂时性计算机可读介质

Country Status (5)

Country Link
KR (2) KR102619281B1 (zh)
CN (2) CN115071811A (zh)
DE (1) DE112020000572T5 (zh)
DK (1) DK180545B1 (zh)
GB (2) GB2604690B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230192036A1 (en) * 2021-12-22 2023-06-22 Motional Ad Llc Acoustic emission based device control
JPWO2023139633A1 (zh) 2022-01-18 2023-07-27

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580860B2 (ja) * 1994-07-18 2004-10-27 富士重工業株式会社 自動操舵装置
US6625530B1 (en) * 2000-11-06 2003-09-23 Delphi Technologies, Inc. Feed forward—feed back control for steer-by-wire system
DE10392983D2 (de) * 2002-07-31 2005-06-16 Daimler Chrysler Ag Verfahren zur Bestimmung eines Lenkradmoments
JP4294389B2 (ja) * 2003-06-18 2009-07-08 本田技研工業株式会社 車両用操舵装置
JP4483330B2 (ja) * 2004-02-16 2010-06-16 株式会社ジェイテクト 電動パワーステアリング装置
JP2007326499A (ja) 2006-06-08 2007-12-20 Toyota Motor Corp 操舵装置
JP4419997B2 (ja) * 2006-08-28 2010-02-24 トヨタ自動車株式会社 電動パワーステアリング装置
US20110264329A1 (en) * 2008-12-26 2011-10-27 Toyota Jidosha Kabushiki Kaisha Driving support apparatus of vehicle
KR101604093B1 (ko) * 2009-11-11 2016-03-16 엘지이노텍 주식회사 차량의 조향인식을 위한 센서 보정장치
JP5365607B2 (ja) * 2010-11-10 2013-12-11 トヨタ自動車株式会社 操舵装置
KR101924497B1 (ko) * 2011-09-06 2018-12-04 현대모비스 주식회사 차선 유지 장치 및 방법
GB201118620D0 (en) * 2011-10-27 2011-12-07 Jaguar Cars Improvements in closed loop EPAS system
JP2013193490A (ja) * 2012-03-16 2013-09-30 Nsk Ltd 電動パワーステアリング装置
KR101954058B1 (ko) * 2012-09-03 2019-03-05 현대모비스 주식회사 보상토크 산출 장치 및 방법
KR101539081B1 (ko) * 2014-05-28 2015-07-24 현대모비스 주식회사 전동식 파워 스티어링 시스템의 프릭션 보상 장치 및 방법
JP6578143B2 (ja) * 2015-06-30 2019-09-18 日立オートモティブシステムズ株式会社 パワーステアリング装置の制御装置及びパワーステアリング装置
JP6515754B2 (ja) * 2015-09-08 2019-05-22 トヨタ自動車株式会社 車両の操舵反力制御装置
KR20170093493A (ko) * 2016-02-05 2017-08-16 주식회사 만도 횡풍을 보상하는 조향장치 및 조향제어방법
GB2549328A (en) * 2016-04-15 2017-10-18 Jaguar Land Rover Ltd Vehicle steering system
CN109641618A (zh) * 2016-08-26 2019-04-16 日本精工株式会社 电动助力转向装置的控制装置
EP3489114B1 (en) * 2016-11-07 2020-10-21 NSK Ltd. Electric power steering apparatus
JP2018081002A (ja) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 操舵シミュレーション装置
US20180346021A1 (en) * 2017-05-31 2018-12-06 Ford Global Technologies, Llc Methods and apparatus for virtual torsion bar steering controls

Also Published As

Publication number Publication date
DK180545B1 (en) 2021-06-17
GB202017176D0 (en) 2020-12-16
CN115071811A (zh) 2022-09-20
DE112020000572T5 (de) 2021-12-02
KR102223836B1 (ko) 2021-03-08
KR20210110558A (ko) 2021-09-08
KR102619281B1 (ko) 2023-12-28
KR20200133390A (ko) 2020-11-27
CN112166068A (zh) 2021-01-01
GB2604690B (en) 2023-06-14
GB2604690A (en) 2022-09-14
GB202115652D0 (en) 2021-12-15
DK201970163A1 (en) 2020-08-05
GB2585318A (en) 2021-01-06
GB2585318B (en) 2021-12-15

Similar Documents

Publication Publication Date Title
CN111915917B (zh) 计算机实现的方法、存储介质和运载工具
US11014606B2 (en) Electric power steering torque compensation
CN112634633B (zh) 利用自主运载工具对多路停车交叉口进行导航
CN113359696A (zh) 用于自主运载工具的系统、方法和存储介质
CN112417636A (zh) 计算机实现的方法和用于运载工具自行操作的系统
KR102555318B1 (ko) 조건부 움직임 예측
CN115328110A (zh) 用于自主运载工具的系统和方法以及存储介质
WO2020160144A1 (en) Traffic light estimation
CN114252066A (zh) 运载工具、用于运载工具的方法以及存储介质
CN115079687A (zh) 用于自主运载工具的系统、方法和存储介质
CN114812586A (zh) 用于运载工具的系统、方法和存储介质
CN114625118A (zh) 运载工具、用于运载工具的方法以及存储介质
CN117083575A (zh) 轨迹检查器
CN114627451A (zh) 运载工具、用于运载工具的方法和存储介质
CN112486163A (zh) 基于导航信息的可用性的自主运载工具的操作
CN112166068B (zh) 电动助力转向扭矩补偿
CN113196356A (zh) 交通灯估计
KR20230093184A (ko) 제약으로서의 차선 커넥터
CN115220439A (zh) 用于运载工具的系统和方法以及存储介质
US11447134B2 (en) Vehicle route modification to improve vehicle location information
CN114938674A (zh) 基于活动来对感知对象进行分类
CN115016452A (zh) 用于运载工具的系统和方法以及计算机可读介质
CN115729229A (zh) 用于运载工具的方法和运载工具系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant