CN112157122A - 提高3003铝合金板材强度和塑性的深冷加工方法 - Google Patents

提高3003铝合金板材强度和塑性的深冷加工方法 Download PDF

Info

Publication number
CN112157122A
CN112157122A CN202011244134.XA CN202011244134A CN112157122A CN 112157122 A CN112157122 A CN 112157122A CN 202011244134 A CN202011244134 A CN 202011244134A CN 112157122 A CN112157122 A CN 112157122A
Authority
CN
China
Prior art keywords
aluminum alloy
rolling
alloy plate
plate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011244134.XA
Other languages
English (en)
Inventor
谭元标
杨亚
杨秋月
向嵩
石维
张文玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN202011244134.XA priority Critical patent/CN112157122A/zh
Publication of CN112157122A publication Critical patent/CN112157122A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/023Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes by immersion in a bath
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

本发明涉及一种提高3003铝合金板材强度和塑性的深冷加工方法,包括以下步骤:(1)将3003铝合金板材放入马弗炉中从室温随炉加热至590℃,保温6小时,随后水冷至室温;(2)将步骤(1)热处理后的3003铝合金板材放在液氮中浸泡10min,采用二辊轧机对浸泡好的3003铝合金板材进行深冷轧制,采用多道次轧制方式进行轧制,每道次压下量为原始厚度的9~11%,每道次轧制结束后,迅速放入液氮中浸泡10min,再进行下一道次的轧制;(3)将步骤(2)轧制后的3003铝合金板材进行室温拉伸。本发明的深冷加工方法制备的3003铝合金板材可同时显著提高板材的强度和塑性。

Description

提高3003铝合金板材强度和塑性的深冷加工方法
技术领域
本发明属于铝合金的加工技术领域,特别涉及一种同时提高3003铝合金板材强度和塑性的深冷加工方法。
背景技术
3003铝合金是一种不可热处理强化,但可通过形变加工强化的形变铝合金。3003铝合金具有良好的耐腐蚀性能、导电性、导热性和焊接性能,被广泛应用于压力容器与管道、工程机械交换器、飞机油箱和油路导管等。3003铝合金抗拉强度较低,仅稍高于工业纯铝,这极大限制了3003铝合金在其他领域的应用。
作为结构材料用的3003铝合金必须具有高的强度和良好的塑性,3003铝合金目前的强化技术手段主要是形变强化,如等通道角挤压、高压扭转、普通室温轧制和累积叠轧等技术。这些形变强化技术中,等通道角挤压和高压扭转方法仅适用于小试样,且成本极高,无法实现大块板材的成形加工。累积叠轧工艺复杂,结合面结合强度较低。通过累积叠轧工艺加工的板材,强度可明显提高,但是当抗拉强度高于160MPa时,其延伸率却低于5%。对于普通轧制工艺加工的铝合金板材,其抗拉强度随应变量的增加而增加,但其延伸率却随着变形量的增加而显著降低。因此,这些形变强化方法都限制了3003铝合金的应用领域。因此,如何通过简单的形变加工工艺同时提高3003铝合金强度和塑性是铝合金应用领域技术人员亟需解决的技术问题。
发明内容
针对上述现有技术存在的问题及不足,本发明的目的在于提供一种工艺简单、能够同时提高3003铝合金抗拉强度和塑性的深冷加工方法。本发明通过热处理和液氮深冷轧制相结合的方法,获得的3003铝合金板材的强度和塑性得到大幅度提高,显著高于室温轧制的3003铝合金板材。
本发明的技术方案如下:
提高3003铝合金板材强度和塑性的深冷加工方法,包括以下步骤:
(1)将3003铝合金板材放入马弗炉中从室温随炉加热至590℃,保温6小时,随后水冷至室温;
(2)将步骤(1)热处理后的3003铝合金板材放在液氮中浸泡10min,采用二辊轧机对浸泡好的3003铝合金板材进行深冷轧制,采用多道次轧制方式进行轧制,每道次压下量为原始厚度的9~11%,一般为10%左右,每道次轧制结束后,迅速放入液氮中浸泡10min,再进行下一道次的轧制;
(3)将步骤(2)轧制后的3003铝合金板材进行室温拉伸。
所述的3003铝合金板材的化学成分的wt%为:Si 0.61、Fe 0.4、Cu 0.13、Mn1.26、Zn 0.10,Al余量。
步骤(2)中,板材轧制后最终的变形量分别为原始厚度的30%、50%和70%。
步骤(3)中拉伸,30%轧制变形量的合金板材的强度和延伸率分别为168.81MPa和15.52%;当轧制变形量为50%时,3003铝合金板材的强度和和延伸率分别为186.47MPa和12.67%;当轧制变形量为70%时,3003铝合金板材的强度高达203.60MPa,延伸率依然保持在9.55%。
本发明与现有技术相比具有如下优点:
1、工艺简单、操作方便。
2、可以细化3003铝合金板材的晶粒,大幅度增加合金内部的位错密度,提高3003铝合金的力学性能。与普通室温轧制工艺相比,在相同变形量条件下本发明采用的加工技术可同时提高3003铝合金板材的抗拉强度和延伸率。
附图说明
图1为本发明实施例1的3003铝合金在液氮条件下轧制变形量为30%的工程应力应变曲线以及3003铝合金在室温条件下轧制变形量为30%的工程应力应变曲线图;
图2为本发明实施例2的3003铝合金在液氮条件下轧制变形量为50%的工程应力应变曲线以及3003铝合金在室温条件下轧制变形量为50%的工程应力应变曲线图;
图3为本发明实施例3的3003铝合金在液氮条件下轧制变形量为70%的工程应力应变曲线以及3003铝合金在室温条件下轧制变形量为70%的工程应力应变曲线图。
具体实施方式
下面结合附图和具体实施方式,对本发明进一步说明。
实施例1:
步骤1、首先将液氮倒入铁槽,待液氮的汽化稳定后,将长度、宽度和厚度分别为100mm、50mm和6mm的3003铝合金板材浸泡在液氮中,浸泡时间为10min。
步骤2、将轧机的轧辊表面涂上润滑油,开启轧机,轧辊转速设置为0.5m/min。
步骤3、待轧辊转动均匀后,对在液氮中浸泡10min的3003铝合金板材进行轧制变形。总轧制变形量3003铝合金原始板材厚度为30%,分3道次进行轧制,每道次变形量为原始板材厚度为10%。每道次轧制结束后,迅速将轧制样品放入液氮中进行浸泡,浸泡时间为10min。浸泡结束后,进行下一道次的轧制变形。直到总变形量达到3003铝合金原始板材厚度的30%,试验即可停止。
图1为液氮和室温条件下轧制变形量为30%的3003铝合金板材室温拉伸的工程应力应变曲线。从图中可以看出,液氮条件下轧制变形量为30%的3003铝合金的强度和和延伸率分别为168.81MPa和15.52%,室温轧制变形量为30%的3003铝合金的强度和和延伸率分别为145.65MPa和13.88%。液氮条件轧制后3003铝合金的强度和塑性分别比室温轧制变形后的3003铝合金板材的强度和塑性高15.9%和11.8%。
实施例2:
步骤1、首先将液氮倒入铁槽,待液氮的汽化稳定后,将长度、宽度和厚度分别为100mm、50mm和6mm的3003铝合金板材浸泡在液氮中,浸泡时间为10min。
步骤2、将轧机的轧辊表面涂上润滑油,开启轧机,轧辊转速设置为0.5m/min。
步骤3、待轧辊转动均匀后,对在液氮中浸泡10min的3003铝合金板材进行轧制变形。总轧制变形量3003铝合金原始板材厚度为50%,分5道次进行轧制,每道次变形量为原始板材厚度为10%。每道次轧制结束后,迅速将轧制样品放入液氮中进行浸泡,浸泡时间为10min。浸泡结束后,进行下一道次的轧制变形。直到总变形量达到3003铝合金原始板材厚度的50%,实验即可停止。
图2为液氮和室温条件下轧制变形量为50%的3003铝合金板材室温拉伸的工程应力应变曲线。从图中可以看出,液氮条件下轧制变形量为50%的3003铝合金的强度和和延伸率分别为186.47MPa和12.67%,室温轧制变形量为50%的3003铝合金的强度和和延伸率分别为171.22MPa和11.83%。液氮条件轧制后3003铝合金的强度和塑性分别比室温轧制变形后的3003铝合金板材的强度和塑性高8.9%和7.1%。
实施例3:
步骤1、首先将液氮倒入铁槽,待液氮的汽化稳定后,将长度、宽度和厚度分别为100mm、50mm和6mm的3003铝合金板材浸泡在液氮中,浸泡时间为10min。
步骤2、将轧机的轧辊表面涂上润滑油,开启轧机,轧辊转速设置为0.5m/min。
步骤3、待轧辊转动均匀后,对在液氮中浸泡10min的3003铝合金板材进行轧制变形。总轧制变形量3003铝合金原始板材厚度为70%,分7道次进行轧制,每道次变形量为原始板材厚度为10%。每道次轧制结束后,迅速将轧制样品放入液氮中进行浸泡,浸泡时间为10min。浸泡结束后,进行下一道次的轧制变形。直到总变形量达到3003铝合金原始板材厚度的70%,实验即可停止。
图3为液氮和室温条件下轧制变形量为70%的3003铝合金板材室温拉伸的工程应力应变曲线。从图中可以看出,液氮条件下轧制变形量为70%的3003铝合金的强度和和延伸率分别为203.60MPa和9.55%,室温轧制变形量为70%的3003铝合金的强度和和延伸率分别为186.54MPa和5.73%。液氮条件轧制后3003铝合金的强度和塑性分别比室温轧制变形后的3003铝合金板材的强度和塑性高9.2%和66.7%。

Claims (4)

1.提高3003铝合金板材强度和塑性的深冷加工方法,其特征在于,包括以下步骤:
(1)将3003铝合金板材放入马弗炉中从室温随炉加热至590℃,保温6小时,随后水冷至室温;
(2)将步骤(1)热处理后的3003铝合金板材放在液氮中浸泡10min,采用二辊轧机对浸泡好的3003铝合金板材进行深冷轧制,采用多道次轧制方式进行轧制,每道次压下量为原始厚度的9~11%,每道次轧制结束后,迅速放入液氮中浸泡10min,再进行下一道次的轧制;
(3)将步骤(2)轧制后的3003铝合金板材进行室温拉伸。
2.根据权利要求1所述的提高3003铝合金板材强度和塑性的深冷加工方法,其特征在于:步骤(2)中,板材轧制后最终的变形量分别为原始厚度的30%、50%和70%。
3.根据权利要求2所述的提高3003铝合金板材强度和塑性的深冷加工方法,其特征在于:步骤(3)中拉伸,30%轧制变形量的合金板材的强度和延伸率分别为168.81MPa和15.52%;当轧制变形量为50%时,3003铝合金板材的强度和和延伸率分别为186.47MPa和12.67%;当轧制变形量为70%时,3003铝合金板材的强度高达203.60MPa,延伸率依然保持在9.55%。
4.根据权利要求1到3任一项所述的提高3003铝合金板材强度和塑性的深冷加工方法,其特征在于:所述的3003铝合金板材的化学成分的wt%为:Si 0.61、Fe 0.4、Cu 0.13、Mn1.26、Zn 0.10,Al余量。
CN202011244134.XA 2020-11-10 2020-11-10 提高3003铝合金板材强度和塑性的深冷加工方法 Pending CN112157122A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011244134.XA CN112157122A (zh) 2020-11-10 2020-11-10 提高3003铝合金板材强度和塑性的深冷加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011244134.XA CN112157122A (zh) 2020-11-10 2020-11-10 提高3003铝合金板材强度和塑性的深冷加工方法

Publications (1)

Publication Number Publication Date
CN112157122A true CN112157122A (zh) 2021-01-01

Family

ID=73865718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011244134.XA Pending CN112157122A (zh) 2020-11-10 2020-11-10 提高3003铝合金板材强度和塑性的深冷加工方法

Country Status (1)

Country Link
CN (1) CN112157122A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519419A (en) * 1966-06-21 1970-07-07 Int Nickel Co Superplastic nickel alloys
CN101899632A (zh) * 2010-08-20 2010-12-01 浙江巨科铝业有限公司 一种3003铝合金深冲圆片的生产方法
US20120042995A1 (en) * 2009-01-16 2012-02-23 Kroepfl Ingo Guenther Method for the Manufacture of an Aluminium Alloy Plate Product Having Low Levels of Residual Stress
CN102719643A (zh) * 2012-06-27 2012-10-10 贵州大学 一种钢丝绳用高碳碳素钢盘条热处理工艺
CN103343306A (zh) * 2013-07-17 2013-10-09 北京科技大学 一种显著改善高强铝合金变形能力和力学性能的处理方法
US20180085802A1 (en) * 2015-04-10 2018-03-29 Primetals Technologies Austria GmbH Work roll cooling apparatus and method
CN108941197A (zh) * 2018-07-05 2018-12-07 哈尔滨理工大学 一种高导热铝硅合金板材的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519419A (en) * 1966-06-21 1970-07-07 Int Nickel Co Superplastic nickel alloys
US20120042995A1 (en) * 2009-01-16 2012-02-23 Kroepfl Ingo Guenther Method for the Manufacture of an Aluminium Alloy Plate Product Having Low Levels of Residual Stress
CN101899632A (zh) * 2010-08-20 2010-12-01 浙江巨科铝业有限公司 一种3003铝合金深冲圆片的生产方法
CN102719643A (zh) * 2012-06-27 2012-10-10 贵州大学 一种钢丝绳用高碳碳素钢盘条热处理工艺
CN103343306A (zh) * 2013-07-17 2013-10-09 北京科技大学 一种显著改善高强铝合金变形能力和力学性能的处理方法
US20180085802A1 (en) * 2015-04-10 2018-03-29 Primetals Technologies Austria GmbH Work roll cooling apparatus and method
CN108941197A (zh) * 2018-07-05 2018-12-07 哈尔滨理工大学 一种高导热铝硅合金板材的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELENA AVTOKRATOVA: "nanostructuring of 2xxx aluminum alloy under cryorolling to high strains", 《MATERIALS SCIENCE FORUM》, vol. 838, 8 January 2016 (2016-01-08) *
Y.B. TAN等: "A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding", 《MATERIALS CHARACTERIZATION》, vol. 127, 28 February 2017 (2017-02-28) *
向嵩等: "大过冷工艺下珠光体钢亚结构组织及力学性能", 《中南大学学报(自然科学版)》, vol. 48, no. 6, 30 June 2017 (2017-06-30) *

Similar Documents

Publication Publication Date Title
CN107354411B (zh) 一种纳米晶铝合金板材的制备方法
CN109097704B (zh) 一种生产免退火含钒耐热钢热轧盘条的方法
CN105349925B (zh) 一种Al‑Mg系合金的液氮温区冷加工工艺
CN114959458A (zh) 一种dh36海洋工程结构用热轧h型钢的制造方法
CN115044830B (zh) 一种基于孪生诱导塑性及有序强化的轻质twip钢及其制备方法
CN111531177B (zh) 一种短流程、低成本tc4钛合金管材制备工艺
CN114717496A (zh) 一种钛合金板材的波平热轧联合脉冲电流退火方法
JP5644093B2 (ja) 高強度部材の製造方法
CN111002000A (zh) 一种提高谐波减速器柔轮晶粒度的加工方法
CN112458260B (zh) 一种高强高塑纳米结构316l不锈钢板材及其制备方法
KR20120074653A (ko) 티타늄 판재 및 이의 제조방법
CN110229998B (zh) 一种低屈强比的薄规格9Ni钢板
CN116944244A (zh) 一种高强高韧抗腐蚀的6xxx系铝合金轧制工艺
CN107557624A (zh) 一种铝合金集装箱用铝板及其生产方法
CN111394669A (zh) 一种减小深冲用纯钛薄板带各向异性的制造方法
CN112157122A (zh) 提高3003铝合金板材强度和塑性的深冷加工方法
CN106834826B (zh) 一种铝合金带材及其制造方法
CN102492908A (zh) 一种具有特定织构的Zr4合金薄带材的制备方法
CN111575618B (zh) 一种降低大形变量轧制Al-Zn合金开裂倾向的处理方法
CN109022958A (zh) 一种船用5083铝合金厚板的制造方法
JPS60234920A (ja) 超高張力マルエ−ジング冷延鋼板の製造方法
CN114480811A (zh) 一种具有梯度结构的高强塑积中锰钢及其制备方法
CN109321843B (zh) 一种高强度高塑性冷轧钢板及其制造方法
CN115106620B (zh) 一种基于电弧增材制造提高7系铝合金韧性的方法
CN114261155B (zh) 一种具有良好强塑性的镁钛层合板及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination