CN105349925B - 一种Al‑Mg系合金的液氮温区冷加工工艺 - Google Patents

一种Al‑Mg系合金的液氮温区冷加工工艺 Download PDF

Info

Publication number
CN105349925B
CN105349925B CN201510869306.5A CN201510869306A CN105349925B CN 105349925 B CN105349925 B CN 105349925B CN 201510869306 A CN201510869306 A CN 201510869306A CN 105349925 B CN105349925 B CN 105349925B
Authority
CN
China
Prior art keywords
liquid nitrogen
temperature
room temperature
plate
nitrogen temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510869306.5A
Other languages
English (en)
Other versions
CN105349925A (zh
Inventor
王为
周欣
黄晖
聂祚仁
高坤元
文胜平
吴晓蓝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201510869306.5A priority Critical patent/CN105349925B/zh
Publication of CN105349925A publication Critical patent/CN105349925A/zh
Application granted granted Critical
Publication of CN105349925B publication Critical patent/CN105349925B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

一种Al‑Mg系合金的液氮温区冷加工工艺,属于有色金属技术领域。初始的含Er铝镁合金铸锭在温度为410±20℃下热轧,压下量达90%,空冷至室温,得到中间轧板,再将该中间轧板进行低温轧制。而低温冷轧则是将中间热轧板浸没在液氮里半小时左右使其冷却至液氮温度,然后迅速取出在室温下沿轧向冷轧,每完成一个道次即刻将轧板放入液氮中冷却,每一道次的压下量为10%‑15%,总压下量为60%。最后将冷轧板分别在室温和液氮温度下进行拉伸测试和冲击测试,它在液氮温区下的抗拉强度、屈服强度和延伸率都要明显高于室温,在液氮温度下的冲击功要比室温状态下更高。这种制备工艺既能够明显提高该合金在低温下的强度,还能够保证一定的低温延伸率,得到一种低温综合性能优异的铝合金材料。

Description

一种Al-Mg系合金的液氮温区冷加工工艺
技术领域:
本发明属于有色金属技术领域,具体涉及一种在液氮温区进行冷轧的加工工艺,制备出低温下综合力学性能优异的铝合金板材。
技术背景:
热轧工艺能够使铸造状态下的粗大晶粒破碎,减少或消除铸造缺陷,将铸态组织转变为变形组织,从而提高合金的加工性能;但是热轧制品的组织和性能不够均匀、产品的厚度尺寸也较难控制。
深冷处理加工工艺可有效提高钢铁材料、非铁金属及复合材料的力学性能和使用寿命、稳定尺寸、改善均匀性、不破坏工件、成本低。目前,深冷处理技术已在工模具钢等钢铁金属材料中得到一定应用,且成效显著,但对铝合金等非铁金属材料深冷处理的机理研究与应用相对较少。
日本钢铁工程汇报有期刊指出工业常用的几种铝合金板材在低温下的拉伸性能变化规律,随着温度的降低,铝合金板材的抗拉强度、屈服强度和延伸率都有所提高,铝合金也因此具有更广泛的低温应用前景。
工业上常以5083铝合金板材为初始材料,将其在510℃温度下固溶处理2h后迅速水淬,得到中间板材,然后对中间板材进行冷轧加工。通过冷轧制备出的材料具有优异的抗拉强度、屈服强度和延伸率,但是其冲击功有明显的降低。根据Woong sup park等的研究,在293K、223K、153K、133K和111K AA5083铝合金的抗拉强度、屈服强度和断面收缩率都随着温度的降低而提高。
已有大量研究表明在纯铝和Al-Mg合金中加入Er元素能够显著细化铸态晶粒尺寸,而且纳米级的Al3Er粒子能够钉扎位错和亚晶界,从而提高铝合金的强度和再结晶温度。
因此,本专利以微合金化的Al-Mg合金作为初始原料,结合热轧和深冷处理加工工艺的优势制备出低温下综合性能优异的铝合金是具有现实意义的。
发明内容:
本发明的目的在于以微合金化的Al-Mg合金为原材料,结合热轧与冷轧加工工艺来制备出低温综合力学性能优异的铝合金。
本发明是通过采用一种在液氮温区的冷加工工艺来制备出低温下综合性能优异的铝合金板材。通过对一种含铒的铝镁合金热轧板进行冷轧,再将最终轧板在室温下和液氮温度下的拉伸测试性能和冲击测试性能的测试值进行比较,得到一种低温综合力学性能优异的铝合金材料。
一种高强铝镁合金的液氮温区冷加工工艺,该铝合金铸锭的重量百分含量为:Mg,5.9%-6.2%;Mn,0.3%-0.6%;Zn 0.6%-0.9%;Zr,0.1%-0.2%;Er,0.1%-0.3%;不可避免杂质≤0.5%,余量为Al;其特征在于,其制备过程包括以下步骤:
(1)对于该含Er铝合金板材,将其铸态合金在470±20℃保温20h,然后在温度410±20℃下热轧,压下量为90%,空冷至室温,热轧板的优选厚度10mm;
(2)往保温箱里倒入足量的液氮,将步骤(1)中空冷至室温所得的热轧板完全浸没在液氮中使板材冷却至液氮温度;
(3)迅速从保温箱中取出冷却至液氮温度的轧板进行冷轧,每完成一个道次就立即将轧板放入装满液氮的保温箱浸泡使之再次冷却到液氮温度,每道次的压下量为10%-15%,最终冷轧板的厚度为4mm,最后的总压下量为60%。
本发明具有以下效果:
冷轧后的Al-Mg合金在低温下不仅具有很高的抗拉强度和屈服强度,其断面收缩率也比较好;虽然冷轧板的冲击功不高,但它在液氮温度下的冲击功相比于室温下要有明显提高。
在液氮温度下,合金所涉及的的冷加工工艺所制备出的板材比室温下具有更高的抗拉强度、屈服强度和断面伸长率。在液氮温区冷轧后的合金板材不仅具有良好的强度和塑性,而且随着温度的降低其冲击韧性也会有明显的提高,这对该铝合金板材在低温下的实际应用是具有现实意义的。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例
该铝合金板材的重量百分含量为:Mg,5.9%-6.2%;Mn,0.3%-0.6%;Zn,0.6%-0.9%;Zr,0.1%-0.2%;Er,0.1%-0.3%;不可避免杂质≤0.5%,余量为Al。其特征在于,包括以下步骤:
(1)对于该含Er铝合金板材,将其铸态合金在470±20℃保温20h,然后在温度410±20℃下热轧,压下量为90%,空冷至室温,厚度10mm,状态记为H112。
(2)将步骤(1)所得的热轧板完全浸没在装满液氮的保温箱中一段时间,使板材冷却至液氮温度,再迅速从液氮中取出冷却后的轧板在室温下进行冷轧,每一道次的压下量为10%-15%,每完成一个道次就迅速将轧板放回装满液氮的保温箱里再次冷却至液氮温度,最后所得板材厚度为4mm,最终总压下量为60%。
对比例1
将中间轧板(即初始热轧板H112态)作为对比例1和实施例进行比较。对比例1即为:将铸锭原材料在470±20℃保温20h,均匀化退火,然后在温度410±20℃下热轧,压下量为90%,空冷至室温,其厚度10mm。
对比例2
将对比例1(即初始热轧板H112态)沿轧向温轧,其中温轧加工温度为250±20℃,最终厚度为4mm,总压下量为60%。
对比例3
将对比例1(即初始热轧板H112态)先沿轧向温轧,再沿垂直于轧向方向进行交叉温轧。其中温轧加工温度为250±20℃,最终厚度为4mm,沿轧向温轧的压下量为30%,垂直于轧向轧制的压下量为40%-45%,总压下量为60%;
实验过程
将实施例、对比例1、对比例2和对比例3这四种最终板材按照国家标准沿轧向加工成厚度为4mm的拉伸试样和夏比V型缺口冲击试样。拉伸测试在MTS-SANS CMT5000系列微机控制电子万能试验机上进行,拉伸速率2mm/min;冲击测试在SUNS PTM1200摆锤式冲击试验机上进行。拉伸测试和冲击测试的测试温度为293K和77K,温度误差±5K,其中测试温度77K采用将试样完全浸入液氮获得。拉伸测试结果列于表1,冲击测试结果列于表2,其中每个数值均为同条件下3个试样测试值的平均值。
实验结果
实验结果见下表1及表2.
表1.铝镁铒合金的拉伸性能
表2.铝镁铒合金的冲击性能
由表1可知,不论在室温还是液氮温度下,对比例1(即初始热轧板H112态)的抗拉强度和屈服强度远低于实施例,其中在室温下实施例的抗拉强度和屈服强度要比同状态下对比例1分别高出42.46%和141.53%,在液氮温度下实施例的抗拉强度和屈服强度要比同状态下的对比例1分别高出39.82%和150%;虽然对比例1的延伸率仍然高于实施例,但是对比例1在液氮温度下比室温下延伸率的提高幅度却要低于实施例。对比例2和对比例3的拉伸性能相近,在室温状态下,对比例2与对比例3的抗拉强度和屈服强度都显著低于实施例;虽然对比例2和对比例3的延伸率要高于同状态下的实施例,但是在液氮温度下,实施例的抗拉强度、屈服强度和延伸率都是高于对比例2与对比例3的。
由表2可知,在室温和液氮温度下,虽然对比例1的冲击功要明显高于实施例,但是对比例1在液氮温度下的冲击功要比室温状态下的降低了23.59%。就实施例而言,随着温度的降低,其冲击功不降反增,液氮温度下的冲击功相比室温下要提高19.10%。对比例2和对比例3的冲击性能相近,虽然它们在室温下的冲击功测试值要高于实施例,但是在液氮温度下,实施例的冲击功却要明显高于对比例2与对比例3的。对于对比例1、对比例2和对比例3来说,它们的冲击功是随温度的降低而显著降低的,然而只有实施例在液氮温度下的冲击功要明显高于室温状态的。

Claims (3)

1.一种Al-Mg系合金的液氮温区冷加工工艺,铝合金板材的重量百分含量为:Mg,5.9%-6.2%;Mn,0.3%-0.6%;Zn 0.6%-0.9%;Zr,0.1%-0.2%;Er,0.1%-0.3%;不可避免杂质≤0.5%,余量为Al;其特征在于,其制备过程包括以下步骤:
(1)对于该含Er铝合金板材,将其铸态合金在470±20℃保温20h,然后在温度410±20℃下热轧,压下量为90%,空冷至室温;
(2)往保温箱里倒入足量的液氮,将步骤(1)中空冷至室温所得的热轧板完全浸没在液氮中使板材冷却至液氮温度;
(3)迅速从保温箱中取出冷却至液氮温度的轧板进行冷轧,每完成一个道次就立即将轧板放入装满液氮的保温箱浸泡使之再次冷却到液氮温度,每道次的压下量为10%-15%,最后的总压下量为60%。
2.按照权利要求1的一种Al-Mg系合金的液氮温区冷加工工艺,其特征在于,经过步骤(1)热轧处理后的铝合金板材厚度为10mm,经步骤(3)加工后所得轧板的最终厚度为4mm。
3.按照权利要求1或2的液氮温区冷加工工艺来制备低温综合性能优异的Al-Mg系合金。
CN201510869306.5A 2015-12-02 2015-12-02 一种Al‑Mg系合金的液氮温区冷加工工艺 Active CN105349925B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510869306.5A CN105349925B (zh) 2015-12-02 2015-12-02 一种Al‑Mg系合金的液氮温区冷加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510869306.5A CN105349925B (zh) 2015-12-02 2015-12-02 一种Al‑Mg系合金的液氮温区冷加工工艺

Publications (2)

Publication Number Publication Date
CN105349925A CN105349925A (zh) 2016-02-24
CN105349925B true CN105349925B (zh) 2017-08-04

Family

ID=55325984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510869306.5A Active CN105349925B (zh) 2015-12-02 2015-12-02 一种Al‑Mg系合金的液氮温区冷加工工艺

Country Status (1)

Country Link
CN (1) CN105349925B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391703B (zh) * 2016-11-23 2018-06-26 中南大学 一种采用过冷轧制生产铝合金汽车板的方法
CN106623425B (zh) * 2016-12-20 2018-04-13 中南大学 一种降低铝钛复合板材轧制边裂的方法
CN108866461B (zh) * 2018-07-13 2020-01-14 武汉理工大学 超高Mg含量变形Al-Mg合金的超低温轧制制备方法
CN110788134B (zh) * 2019-09-27 2021-05-25 太原科技大学 一种镁合金超薄板带温轧—超低温冷轧生产工艺
CN111910108B (zh) * 2020-08-12 2022-01-25 吉林大学 一种高合金含量铝合金板材的成型制备方法
CN114086039B (zh) * 2020-08-24 2022-05-20 南京理工大学 一种高强高韧纳米片层结构铝镁合金制备方法
CN112646998B (zh) * 2020-12-16 2022-05-27 中国航发北京航空材料研究院 一种飞行器壁板用铝合金及板材制备方法
CN113897522B (zh) * 2021-11-01 2022-09-02 中南大学 一种铝合金阳极材料及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790383B2 (ja) * 1991-04-03 1998-08-27 株式会社神戸製鋼所 極低温成形加工用Al−Mg系合金圧延板
US6902699B2 (en) * 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
CN103305780A (zh) * 2012-03-16 2013-09-18 春兴铸造(苏州工业园区)有限公司 一种航空铝合金的热处理方法
CN102936710B (zh) * 2012-09-29 2014-07-09 西南大学 一种用于液化天然气运输船贮藏舱用铝合金厚板及其制备方法
CN104745900B (zh) * 2015-04-18 2016-08-17 北京工业大学 一种提高铝镁铒合金低温力学性能的轧制工艺

Also Published As

Publication number Publication date
CN105349925A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
CN105349925B (zh) 一种Al‑Mg系合金的液氮温区冷加工工艺
US20220333229A1 (en) High strength 7xxx aluminum alloys and methods of making the same
Shabani et al. Effect of cold-rolling on microstructure, texture and mechanical properties of an equiatomic FeCrCuMnNi high entropy alloy
EP3135787B1 (en) Steel plate and method of producing same
Azimi et al. Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100–O alloy
Shakiba et al. Effect of homogenization treatment and silicon content on the microstructure and hot workability of dilute Al–Fe–Si alloys
Jiang et al. Effect of pass reduction on microstructure, mechanical properties and texture of hot-rolled 7075 alloy
Pouraliakbar et al. Mechanistic insight into the role of severe plastic deformation and post-deformation annealing in fracture behavior of Al-Mn-Si alloy
Chen et al. The mechanism of comprehensive properties enhancement in Al–Zn–Mg–Cu alloy via novel thermomechanical treatment
Li et al. Effect of pre-deformation on microstructures and mechanical properties of high purity Al–Cu–Mg alloy
Guo et al. Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing
Zhou et al. Effects of hot-forging and subsequent annealing on microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 high-entropy alloy
Ma et al. Effect of deformation routes on the microstructures and mechanical properties of the asymmetrical rolled 7050 Aluminum alloy plates
Cao et al. Stress corrosion cracking of several hot-rolled binary Mg–X alloys
Li et al. Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio
Wang et al. Effects of under-aging treatment on microstructure and mechanical properties of squeeze-cast Al-Zn-Mg-Cu alloy
Wang et al. Effect of artificial ageing on strength and ductility of an Al-Cu-Mg-Mn alloy subjected to solutionizing and room-temperature rolling
JP2017002388A (ja) 高強度アルミニウム合金熱間鍛造材
Hwang Effect of copper and aluminum contents on wire drawing behavior in twinning-induced plasticity steels
Liu et al. Microstructure, mechanical properties and stretch formability of as-rolled Mg alloys with Zn and Er additions
Mei et al. Good combination of strength and corrosion resistance in an Al-Cu-Mg alloy processed by a short-cycled thermomechanical treatment
Tanaka et al. Mechanical properties of 7475 aluminum alloy sheets with fine subgrain structure by warm rolling
Wang et al. Tuning homogenization of high-strength aluminum alloys through thermodynamic alloying approach
Chen et al. RT ECAP and rolling bestow high strength and good ductility on a low lithium aluminum alloy
Yakubu et al. Influence of iron content and plastic deformation on the mechanical properties of 8011-type Al-Fe-Si alloy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant