CN112156793B - 一种银纳米线-ReS2功能复合材料及其制备方法 - Google Patents
一种银纳米线-ReS2功能复合材料及其制备方法 Download PDFInfo
- Publication number
- CN112156793B CN112156793B CN202011119663.7A CN202011119663A CN112156793B CN 112156793 B CN112156793 B CN 112156793B CN 202011119663 A CN202011119663 A CN 202011119663A CN 112156793 B CN112156793 B CN 112156793B
- Authority
- CN
- China
- Prior art keywords
- res
- silver
- composite material
- functional composite
- silver nanowire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 239000002131 composite material Substances 0.000 title claims abstract description 51
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 38
- 239000004332 silver Substances 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 239000002042 Silver nanowire Substances 0.000 claims abstract description 66
- 239000002244 precipitate Substances 0.000 claims abstract description 31
- 239000002135 nanosheet Substances 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 239000002904 solvent Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000004917 polyol method Methods 0.000 claims abstract description 6
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 4
- 238000013329 compounding Methods 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 42
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 42
- 239000000243 solution Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 239000006228 supernatant Substances 0.000 claims description 30
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical group [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 16
- 238000000498 ball milling Methods 0.000 claims description 15
- 239000006185 dispersion Substances 0.000 claims description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- 230000005389 magnetism Effects 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 8
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- 238000004108 freeze drying Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000035484 reaction time Effects 0.000 claims description 6
- 238000010992 reflux Methods 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000002064 nanoplatelet Substances 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000007710 freezing Methods 0.000 claims description 4
- 230000008014 freezing Effects 0.000 claims description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 150000005846 sugar alcohols Polymers 0.000 claims 1
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 abstract description 12
- 238000001069 Raman spectroscopy Methods 0.000 abstract description 10
- 101000674278 Homo sapiens Serine-tRNA ligase, cytoplasmic Proteins 0.000 abstract description 9
- 101000674040 Homo sapiens Serine-tRNA ligase, mitochondrial Proteins 0.000 abstract description 9
- 102100040516 Serine-tRNA ligase, cytoplasmic Human genes 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000536 complexating effect Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 230000001699 photocatalysis Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 239000011941 photocatalyst Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 M) w = 40000) Substances 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000000479 surface-enhanced Raman spectrum Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0036—Grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0547—Nanofibres or nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种银纳米线‑ReS2功能复合材料,在银纳米线表面包裹有一层ReS2纳米片。本发明还公开了该种银纳米线‑ReS2功能复合材料的制备方法,步骤包括:1)采用多元醇法合成银纳米线;2)纯化处理银纳米线,获得洗涤纯化后的银纳米线;将洗涤纯化后的银纳米线分散在溶剂中;将分散后的银纳米线溶液在离心机中离心,将离心后的沉淀物超声分散,得到银纳米线分散液;3)制备分散均匀的ReS2纳米片;4)将银纳米线分散液与ReS2纳米片进行水热复合,即得银纳米线‑ReS2功能复合材料。本发明的制备方法,能够提供强度更高的拉曼散射,极大的提高了SERS活性。
Description
技术领域
本发明属于纳米材料制备、光催化及拉曼增强技术领域,涉及一种银纳米线-ReS2功能复合材料,本发明还涉及该种银纳米线-ReS2功能复合材料的制备方法。
背景技术
表面拉曼增强技术是目前最灵敏有效的分析技术之一。20世纪70年代中期,人们首次在银电极上观察到表面增强拉曼散射现象。表面拉曼散射是由于金属的表面等离子体的耦合作用,拉曼光谱在金属表面和待测分子附近形成时会受到强烈的信号增强,从而形成表面增强拉曼光谱。表面增强拉曼散射在分析检测领域中具有重要地位,然而随着其不断发展,贵金属SERS 基底在实际应用中受到限制。而基于C、Ti、Zn、Cu、Mo、W等非贵金属纳米材料的SERS基底相比于贵金属基底具有更优异的经济性、稳定性、选择性以及生物相容性,逐渐被广泛研究和应用。但SERS基底其拉曼活性点是随机分布的,很容易受到周围环境的干扰,信号不稳定。
为解决全球能源危机和环境污染问题,开发和利用清洁、可再生能源已变得十分紧迫。利用半导体光催化剂太阳能分解水制氢是基于可再生资源的一项很有前途的技术。自首次报道了TiO2水分解作用以来,TiO2因其稳定性好、无毒、成本低、在紫外光照射下具有较高的光催化活性而被广泛研究。而TiO2只能吸收约占阳光5%的紫外光,导致光利用效率较低。
因量子尺寸效应的存在,金属纳米线具有光、电、磁、热、力学等独特的性能,然而,未修饰的金属纳米颗粒是不稳定的,易发生团聚而失去优良的性能。二维纳米材料具备比表面积大、韧度高、优良的机械强度和化学稳定性等优点,成为目前人们研究的热点。
因此,在拉曼散射检测领域,如果能制备出拉曼活性均匀、稳定性、可调控性好,增强因子提高的具有SERS活性的基底材料,将有助于对微痕量化学物质的检测;在光催化领域,开发高效的可见光-活性光催化剂是很有必要的。
发明内容
本发明的目的是提供一种银纳米线-ReS2功能复合材料,解决了现有类型复合材料的拉曼活性不均匀、稳定性不够、可调控性不好的问题。
本发明的另一目的是提供该种银纳米线-ReS2功能复合材料的制备方法。
本发明所采用的技术方案是,一种银纳米线-ReS2功能复合材料,在银纳米线表面包裹有一层ReS2纳米片。
本发明所采用的另一技术方案是,一种银纳米线-ReS2功能复合材料的制备方法,按照以下步骤实施:
步骤1、制备银纳米线,
采用多元醇法合成银纳米线;
步骤2、纯化处理银纳米线,
2.1)取银纳米线溶液中底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀;重复该洗涤沉淀过程直至获得透明的上清液,倒出上清液,获得洗涤纯化后的银纳米线;
2.2)将洗涤纯化后的银纳米线分散在溶剂中;
2.3)将分散后的银纳米线溶液在离心机中离心,将离心后的沉淀物超声分散20~60min,得到银纳米线分散液;
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块制成ReS2粉末,收集球磨后的ReS2粉末并进行密封保存;
3.2)将1~5mg的ReS2粉末分散溶于2~10ml乙醇中;之后在恒温水浴条件下磁力搅拌使其分散均匀,得到ReS2分散液;
3.3)将ReS2分散液在室温下静置3~5小时后,放置在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;分别采用乙醇和去离子水将沉淀物各清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,得到分散均匀的ReS2纳米片;
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热复合,即得银纳米线-ReS2功能复合材料。
本发明的有益效果是,1)将ReS2纳米片包裹在银纳米线表面(银纳米线的缩略词是AgNWs),ReS2纳米片与银纳米线互相交错的结点区域可以产生拉曼“热点”,能够提供强度更高的拉曼散射,极大的提高了SERS活性; 2)相对于贵金属材料基底,本发明的金属-半导体纳米复合结构中,等离激元与激子的相互作用可以促进半导体的光学、光电以及光化学属性,该复合材料还可用于光催化技术领域;3)本发明的银纳米线-ReS2功能复合材料(又称为SERS基底复合材料),抗氧化能力强,具有一定的循坏使用能力,且水热法制备的过程简单、成本低廉,工艺重复性好。
附图说明
图1是本发明制备方法的流程框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的银纳米线-ReS2功能复合材料的结构是,在银纳米线表面包裹有一层ReS2纳米片。这种金属/半导体复合材料作为SERS基底复合材料相对于单一材料表现出了优异的性能,且在可见光下具有一定的催化活性。
参照图1,本发明的银纳米线-ReS2功能复合材料的制备方法,按照以下步骤实施:
步骤1、制备银纳米线,
采用多元醇法合成银纳米线,其中,溶剂/还原剂选用乙二醇或丙三醇,包覆剂选用聚乙烯吡咯烷酮(属于高分子表面活性剂,Mw=40000),银源采用硝酸银,控制剂采用氯化钠或三氯化铁;在一定温度下,将银前驱体还原,得到五重孪晶颗粒,再将五重孪晶颗粒进一步定向生长得到银纳米线。
具体过程是,以多元醇法选用丙三醇为例,
1.1)在一个三颈圆底烧瓶中将100~250mL的丙三醇与2.5~6.5g的聚乙烯吡咯烷酮混合均匀,在80℃~170℃下强磁搅拌10~60min;
1.2)将温度自然下降至30℃~120℃,向烧瓶中加入含0.1~1.5mL水和45~78mg氯化钠的丙三醇溶液5~20mL,再强磁搅拌1~15min;
1.3)然后将0.57~2.89g的硝酸银快速加入烧瓶中,轻轻搅拌(搅拌速度为30~100rpm),随后在10~80min内将反应温度从30℃~120℃加热至 160℃~230℃;
1.4)停止加热,将烧瓶中的溶液立即倒入500mL或1000mL的烧杯中,然后以1:1~5的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液(即AgNWs溶液);
整个步骤1的反应过程在回流条件下进行。
步骤2、纯化处理银纳米线,
2.1)取银纳米线溶液中底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀;重复该洗涤沉淀过程直至获得透明的上清液,倒出上清液,获得洗涤纯化后的银纳米线;
2.2)为获得具有良好稳定性、不易发生团聚的含有银纳米线的溶液,将洗涤纯化后的银纳米线分散在溶剂中;溶剂选用单一的乙醇、或者选用由 PVP、N-甲基吡咯烷酮、乙二醇和甘油四种物质均等组成的混合溶液;
2.3)将分散后的银纳米线溶液在离心机中离心(转速控制在5500~ 8000rpm,离心时间为5~15min),将离心后的沉淀物超声分散20~60min,得到银纳米线分散液(即AgNWs分散液)。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块制成ReS2粉末,球磨时间为6~10h,球磨转数为300~500rpm,收集球磨后的ReS2粉末并进行密封保存;
3.2)将1~5mg的ReS2粉末分散溶于2~10ml乙醇中;之后在恒温水浴条件下磁力搅拌使其分散均匀,搅拌时间为2~5h,得到ReS2分散液;
3.3)将ReS2分散液在室温下静置3~5小时后,放置在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;分别采用乙醇和去离子水将沉淀物各清洗多次,然后转移到玻璃培养皿上;最后进行干燥(冷冻温度为-40℃,冷冻干燥时间3~10h),得到分散均匀的ReS2纳米片;本步骤中两处离心操作的转速和时间是一致的,离心转速为4000~7000rpm,离心时间10~25min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热复合,其中ReS2纳米片占银纳米线-ReS2功能复合材料的10%~60%,反应温度为40℃~90℃,反应时间为1~3h,即得银纳米线-ReS2功能复合材料。
以下实施例,都是在银纳米线表面包裹一层ReS2纳米片,并应用于制备SERS基底。
实施例1
步骤1、制备银纳米线,
1.1)将120mL丙三醇和4.9g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在90℃下强磁搅拌15min;
1.2)当温度自然下降至40℃时,向烧瓶中加入含0.3mL水和48mg氯化钠的丙三醇溶液7mL,强磁搅拌8min;
1.3)然后将1.21g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在40min内将反应温度从40℃升至170℃;
1.4)当温度达到170℃,停止加热,将烧瓶中的溶液立即倒入500mL 的烧杯中,然后以1:1的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程均在回流条件下进行。
步骤2、纯化处理银纳米线,
2.1)取底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀,重复该过程直至获得透明的上清液,然后倒出上清液,获得洗涤纯化后的银纳米线;
2.2)为获得具有良好稳定性、不易发生团聚的含有银纳米线的溶液,需将银纳米线分散在溶剂中,溶剂选为乙醇;
2.3)得到上述银纳米线溶液,然后在离心机中中速(8000rpm)离心,离心时间为5min,将得到的离心沉淀物超声分散40min,得到银纳米线分散液。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为10h,球磨转数为300rpm,收集球磨后的粉末并进行密封保存。
3.2)将4mg的ReS2粉末分散溶于10ml乙醇中;之后在恒温水浴(20℃) 条件下磁力搅拌使其分散均匀,搅拌时间为5h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置4小时后,在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥(3h),得到分散均匀的ReS2纳米片。两次离心操作中,离心机离心的转速均为 5000rpm,离心时间均为20min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备的ReS2纳米片进行水热复合,其中ReS2占银纳米线-ReS2功能复合材料的10%,反应温度为40℃,反应时间为3h,可得银纳米线-ReS2功能复合材料。
实施例2
步骤1、制备银纳米线,
1.1)将120mL乙二醇和4.9g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在90℃下强磁搅拌15min;
1.2)当温度自然下降至60℃时,向烧瓶中加入含0.7mL水和72mg氯化钠的乙二醇溶液7mL,强磁搅拌8min;
1.3)将1.21g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在 50min内将反应温度从60℃升至210℃;
1.4)当温度达到210℃,停止加热,将烧瓶中的溶液立即倒入1000mL 的烧杯中,然后以1:2的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程均在回流条件下进行。
步骤2、纯化处理银纳米线,
与实施例1的区别在于步骤2.3)中在离心机中中速(7000rpm)离心,离心时间为8min,将得到的离心沉淀物超声分散50min,得到银纳米线分散液。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为8h,球磨转数为400rpm,收集球磨后的ReS2粉末并进行密封保存。
3.2)将3mg的ReS2粉末分散溶于8ml乙醇中;之后在恒温水浴(25℃) 条件下磁力搅拌使其分散均匀,搅拌时间为4h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置数小时后,在离心机中离心得到上清液;再将上清液离心,收集离心管上的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥(5h),得到分散均匀的ReS2纳米片,两次离心操作中,离心机离心的转速为5500rpm,离心时间20min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备的ReS2纳米片进行水热复合,其中ReS2纳米片占银纳米线-ReS2功能复合材料的30%,反应温度为50℃,反应时间为2.5h,即得银纳米线-ReS2功能复合材料。
实施例3
步骤1、制备银纳米线,
1.1)将150mL丙三醇和5.14g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在100℃下强磁搅拌20min;
1.2)当温度自然下降至50℃时,向烧瓶中加入含1.2mL水和16mg的三氯化铁的丙三醇溶液7mL,强磁搅拌8min;
1.3)然后将1.21g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在40min内将反应温度从50℃升至230℃;
1.4)当温度达到230℃,停止加热,将烧瓶中的溶液立即倒入1000mL 的烧杯中,然后以1:3的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程均在回流条件下进行。
步骤2、纯化处理银纳米线,
与实施例1、2的区别在于步骤3)中在离心机中中速(6000rpm)离心,离心时间为10min,将得到的离心沉淀物超声分散30min,得到银纳米线分散液。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为7h,球磨转数为400rpm,收集球磨后的ReS2粉末并进行密封保存。
3.2)将2mg的ReS2粉末分散溶于6ml乙醇中;之后在恒温水浴(30℃) 条件下磁力搅拌使其分散均匀,搅拌时间为4h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置3.5小时后,在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,得到均匀分散的ReS2纳米片,两次离心操作中,离心机离心的转速为6000rpm,离心时间15min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备的ReS2纳米片进行水热复合,其中ReS2占银纳米线-ReS2功能复合材料的50%,反应温度为60℃,反应时间为2h,即得银纳米线-ReS2功能复合材料。
实施例4
步骤1、制备银纳米线
1.1)将100mL乙二醇和2.75g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在100℃下强磁搅拌25min;
1.2)当温度自然下降至50℃时,向烧瓶中加入含1.5mL水和20mg的三氯化铁的乙二醇溶液8mL,强磁搅拌15min;
1.3)然后将0.698g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在1h内将反应温度从50℃升至190℃;
1.4)当温度达到190℃,停止加热,将烧瓶中的溶液立即倒入1000mL 的烧杯中,然后以1:4的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液(整个步骤1的反应过程均在回流条件下进行)。
步骤2、纯化处理银纳米线
与实施例1、2、3的区别在于步骤3)中在离心机中中速(5500rpm) 离心,离心时间为12min,将得到的离心沉淀物超声分散30min,得到银纳米线分散液。
步骤3、ReS2纳米片的制备
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为6h,球磨转数为500rpm,收集球磨后的ReS2粉末并进行密封保存。
3.2)将1mg的ReS2粉末分散溶于4ml乙醇中;之后在恒温水浴(35℃) 条件下磁力搅拌使其分散均匀,搅拌时间为4.5h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置数5小时后,在离心机中离心得上清液;再将上清液离心,收集离心管中的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,即可得到分散均匀的ReS2纳米片,两次离心操作中,离心机离心的转速为7000rpm,离心时间5min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热法复合,其中ReS2纳米片占银纳米线-ReS2功能复合材料的60%,反应温度为90℃,反应时间为1h,即得银纳米线-ReS2功能复合材料。
Claims (5)
1.一种银纳米线-ReS2功能复合材料的制备方法,该银纳米线-ReS2功能复合材料,在银纳米线表面包裹有一层ReS2纳米片,其特征在于,按照以下步骤实施:
步骤1、制备银纳米线,
采用多元醇法合成银纳米线;
步骤2、纯化处理银纳米线,
2.1)取银纳米线溶液中底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀;重复该洗涤沉淀过程直至获得透明的上清液,倒出上清液,获得洗涤纯化后的银纳米线;
2.2)将洗涤纯化后的银纳米线分散在溶剂中;
2.3)将分散后的银纳米线溶液在离心机中离心,将离心后的沉淀物超声分散20min~60min,得到银纳米线分散液;
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块制成ReS2粉末,收集球磨后的ReS2粉末并进行密封保存;
3.2)将1mg~5mg的ReS2粉末分散溶于2mL~10mL乙醇中;之后在恒温水浴条件下磁力搅拌使其分散均匀,得到ReS2分散液;
3.3)将ReS2分散液在室温下静置3小时~5小时后,放置在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;分别采用乙醇和去离子水将沉淀物各清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,得到分散均匀的ReS2纳米片;
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热复合,即得银纳米线-ReS2功能复合材料。
2.根据权利要求1所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤1中,采用多元醇法时,溶剂/还原剂选用乙二醇或丙三醇,包覆剂选用聚乙烯吡咯烷酮,银源采用硝酸银,控制剂采用氯化钠或三氯化铁;具体过程是,以多元醇法采用丙三醇为例,
1.1)在一个三颈圆底烧瓶中将100mL~250mL的丙三醇与2.5g~6.5g的聚乙烯吡咯烷酮混合均匀,在80℃~170℃下强磁搅拌10min~60min;
1.2)将温度自然下降至30℃~120℃,向烧瓶中加入含0.1mL~1.5mL水和45mg~78mg氯化钠的丙三醇溶液5mL~20mL,再强磁搅拌1min~15min;
1.3)然后将0.57g~2.89g的硝酸银快速加入烧瓶中,轻轻搅拌,随后在10min~80min内将反应温度从30℃~120℃加热至160℃~230℃;
1.4)停止加热,将烧瓶中的溶液立即倒入500mL或1000mL的烧杯中,然后以1:1~5的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程在回流条件下进行。
3.根据权利要求1所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤2.2)中,溶剂选用单一的乙醇,或者选用由等量体积份的PVP、N-甲基吡咯烷酮、乙二醇和甘油四种物质组成的混合溶液。
4.根据权利要求1所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤3中,具体过程是:球磨时间为6h~10h,球磨转数为300rpm~500rpm;搅拌时间为2h~5h;冷冻温度为-40℃,冷冻干燥时间3h~10h;两处离心操作的离心转速为4000rpm~7000rpm,离心时间为10min~25min。
5.根据权利要求1所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤4中,具体过程是:ReS2纳米片占银纳米线-ReS2功能复合材料的10%~60%,反应温度为40℃~90℃,反应时间为1h~3h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011119663.7A CN112156793B (zh) | 2020-10-19 | 2020-10-19 | 一种银纳米线-ReS2功能复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011119663.7A CN112156793B (zh) | 2020-10-19 | 2020-10-19 | 一种银纳米线-ReS2功能复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112156793A CN112156793A (zh) | 2021-01-01 |
CN112156793B true CN112156793B (zh) | 2023-03-24 |
Family
ID=73867431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011119663.7A Active CN112156793B (zh) | 2020-10-19 | 2020-10-19 | 一种银纳米线-ReS2功能复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112156793B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114891349B (zh) * | 2022-04-12 | 2023-05-02 | 中山大学 | 一种具有sers效应的复合物及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101811193A (zh) * | 2010-04-06 | 2010-08-25 | 浙江大学 | 一种银纳米片自组装体材料的制备方法 |
CN102313727A (zh) * | 2011-05-31 | 2012-01-11 | 苏州方昇光电装备技术有限公司 | 一种表面增强拉曼散射基底的制备方法 |
CN105424672A (zh) * | 2014-09-04 | 2016-03-23 | 中国科学院苏州纳米技术与纳米仿生研究所 | 非化学计量氧化物sers衬底及其制备方法 |
CN111337472A (zh) * | 2020-02-28 | 2020-06-26 | 江苏大学 | 一种表面增强拉曼散射基底及制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2528430A (en) * | 2014-05-16 | 2016-01-27 | Univ Manchester | Improved plasmonic structures and devices |
WO2018045271A1 (en) * | 2016-09-02 | 2018-03-08 | Northwestern University | Core-shell heterostructures composed of metal nanoparticle core and transition metal dichalcogenide shell |
-
2020
- 2020-10-19 CN CN202011119663.7A patent/CN112156793B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101811193A (zh) * | 2010-04-06 | 2010-08-25 | 浙江大学 | 一种银纳米片自组装体材料的制备方法 |
CN102313727A (zh) * | 2011-05-31 | 2012-01-11 | 苏州方昇光电装备技术有限公司 | 一种表面增强拉曼散射基底的制备方法 |
CN105424672A (zh) * | 2014-09-04 | 2016-03-23 | 中国科学院苏州纳米技术与纳米仿生研究所 | 非化学计量氧化物sers衬底及其制备方法 |
CN111337472A (zh) * | 2020-02-28 | 2020-06-26 | 江苏大学 | 一种表面增强拉曼散射基底及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112156793A (zh) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Strategic combination of nitrogen-doped carbon quantum dots and g-C3N4: efficient photocatalytic peroxydisulfate for the degradation of tetracycline hydrochloride and mechanism insight | |
Wang et al. | Ag-bridged Z-scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights | |
Khalid et al. | Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review | |
Li et al. | Mesoporous ferriferrous oxide nanoreactors modified on graphitic carbon nitride towards improvement of physical, photoelectrochemical properties and photocatalytic performance | |
Zhao et al. | Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review | |
Zhang et al. | Hybrid 0D–2D nanoheterostructures: in situ growth of amorphous silver silicates dots on g-C3N4 nanosheets for full-spectrum photocatalysis | |
Zhang et al. | N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight | |
Fang et al. | Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting | |
Ahmad et al. | Facile and inexpensive synthesis of Ag doped ZnO/CNTs composite: Study on the efficient photocatalytic activity and photocatalytic mechanism | |
Guan et al. | Photocatalytic performance and mechanistic research of ZnO/g-C3N4 on degradation of methyl orange | |
Hou et al. | Embedding ZnCdS@ ZnIn2S4 into thiazole-modified g-C3N4 by electrostatic self-assembly to build dual Z-scheme heterojunction with spatially separated active centers for photocatalytic H2 evolution and ofloxacin degradation | |
CN103480398B (zh) | 一种微纳结构石墨烯基复合可见光催化材料及其制备方法 | |
CN105709782B (zh) | 一种Ag/AgBr/BiOCl‐(001)纳米复合材料的制备及应用 | |
Reheman et al. | Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag2CO3 nanocomposites with enhanced photocatalytic oxidation activity for tetracycline | |
Zheng et al. | Enhanced photocatalytic activity of TiO2 nanoparticles using WS2/g-C3N4 hybrid as co-catalyst | |
Lv et al. | Facile synthesis of g-C3N4/TiO2/CQDs/Au Z-scheme heterojunction composites for solar-driven efficient photocatalytic hydrogen | |
CN106492849A (zh) | 一种BiOCl超薄纳米片光催化剂的制备方法 | |
Gan et al. | Ag@ AgCl decorated graphene-like TiO2 nanosheets with nearly 100% exposed (0 0 1) facets for efficient solar light photocatalysis | |
Liang et al. | Remarkably efficient charge transfer through a double heterojunction mechanism by a CdS-SnS-SnS2/rGO composite with excellent photocatalytic performance under visible light | |
Xu et al. | Fabrication of polyaniline sensitized grey-TiO2 nanocomposites and enhanced photocatalytic activity | |
Zou et al. | Tuning wall thickness of TiO2 microtubes for an enhanced photocatalytic activity with thickness-dependent charge separation efficiency | |
CN102527366A (zh) | 一种二氧化钛纳米管石墨烯混合光催化剂及制备方法 | |
Zhao et al. | Two-dimensional Ti3C2TX-nanosheets/Cu2O composite as a high-performance photocatalyst for decomposition of tetracycline | |
Wang et al. | The Ovs surface defecting of an S-scheme g-C3N4/H2Ti3O7 nanoheterostructures with accelerated spatial charge transfer | |
CN106622202A (zh) | 石墨烯‑TiO2纳米管/FTO双层复合膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |