CN112156793A - 一种银纳米线-ReS2功能复合材料及其制备方法 - Google Patents

一种银纳米线-ReS2功能复合材料及其制备方法 Download PDF

Info

Publication number
CN112156793A
CN112156793A CN202011119663.7A CN202011119663A CN112156793A CN 112156793 A CN112156793 A CN 112156793A CN 202011119663 A CN202011119663 A CN 202011119663A CN 112156793 A CN112156793 A CN 112156793A
Authority
CN
China
Prior art keywords
res
silver
composite material
silver nanowire
functional composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011119663.7A
Other languages
English (en)
Other versions
CN112156793B (zh
Inventor
王哲
杜丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202011119663.7A priority Critical patent/CN112156793B/zh
Publication of CN112156793A publication Critical patent/CN112156793A/zh
Application granted granted Critical
Publication of CN112156793B publication Critical patent/CN112156793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种银纳米线‑ReS2功能复合材料,在银纳米线表面包裹有一层ReS2纳米片。本发明还公开了该种银纳米线‑ReS2功能复合材料的制备方法,步骤包括:1)采用多元醇法合成银纳米线;2)纯化处理银纳米线,获得洗涤纯化后的银纳米线;将洗涤纯化后的银纳米线分散在溶剂中;将分散后的银纳米线溶液在离心机中离心,将离心后的沉淀物超声分散,得到银纳米线分散液;3)制备分散均匀的ReS2纳米片;4)将银纳米线分散液与ReS2纳米片进行水热复合,即得银纳米线‑ReS2功能复合材料。本发明的制备方法,能够提供强度更高的拉曼散射,极大的提高了SERS活性。

Description

一种银纳米线-ReS2功能复合材料及其制备方法
技术领域
本发明属于纳米材料制备、光催化及拉曼增强技术领域,涉及一种银纳米线-ReS2功能复合材料,本发明还涉及该种银纳米线-ReS2功能复合材料的制备方法。
背景技术
表面拉曼增强技术是目前最灵敏有效的分析技术之一。20世纪70年代中期,人们首次在银电极上观察到表面增强拉曼散射现象。表面拉曼散射是由于金属的表面等离子体的耦合作用,拉曼光谱在金属表面和待测分子附近形成时会受到强烈的信号增强,从而形成表面增强拉曼光谱。表面增强拉曼散射在分析检测领域中具有重要地位,然而随着其不断发展,贵金属SERS基底在实际应用中受到限制。而基于C、Ti、Zn、Cu、Mo、W等非贵金属纳米材料的SERS基底相比于贵金属基底具有更优异的经济性、稳定性、选择性以及生物相容性,逐渐被广泛研究和应用。但SERS基底其拉曼活性点是随机分布的,很容易受到周围环境的干扰,信号不稳定。
为解决全球能源危机和环境污染问题,开发和利用清洁、可再生能源已变得十分紧迫。利用半导体光催化剂太阳能分解水制氢是基于可再生资源的一项很有前途的技术。自首次报道了TiO2水分解作用以来,TiO2因其稳定性好、无毒、成本低、在紫外光照射下具有较高的光催化活性而被广泛研究。而TiO2只能吸收约占阳光5%的紫外光,导致光利用效率较低。
因量子尺寸效应的存在,金属纳米线具有光、电、磁、热、力学等独特的性能,然而,未修饰的金属纳米颗粒是不稳定的,易发生团聚而失去优良的性能。二维纳米材料具备比表面积大、韧度高、优良的机械强度和化学稳定性等优点,成为目前人们研究的热点。
因此,在拉曼散射检测领域,如果能制备出拉曼活性均匀、稳定性、可调控性好,增强因子提高的具有SERS活性的基底材料,将有助于对微痕量化学物质的检测;在光催化领域,开发高效的可见光-活性光催化剂是很有必要的。
发明内容
本发明的目的是提供一种银纳米线-ReS2功能复合材料,解决了现有类型复合材料的拉曼活性不均匀、稳定性不够、可调控性不好的问题。
本发明的另一目的是提供该种银纳米线-ReS2功能复合材料的制备方法。
本发明所采用的技术方案是,一种银纳米线-ReS2功能复合材料,在银纳米线表面包裹有一层ReS2纳米片。
本发明所采用的另一技术方案是,一种银纳米线-ReS2功能复合材料的制备方法,按照以下步骤实施:
步骤1、制备银纳米线,
采用多元醇法合成银纳米线;
步骤2、纯化处理银纳米线,
2.1)取银纳米线溶液中底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀;重复该洗涤沉淀过程直至获得透明的上清液,倒出上清液,获得洗涤纯化后的银纳米线;
2.2)将洗涤纯化后的银纳米线分散在溶剂中;
2.3)将分散后的银纳米线溶液在离心机中离心,将离心后的沉淀物超声分散20~60min,得到银纳米线分散液;
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块制成ReS2粉末,收集球磨后的ReS2粉末并进行密封保存;
3.2)将1~5mg的ReS2粉末分散溶于2~10ml乙醇中;之后在恒温水浴条件下磁力搅拌使其分散均匀,得到ReS2分散液;
3.3)将ReS2分散液在室温下静置3~5小时后,放置在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;分别采用乙醇和去离子水将沉淀物各清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,得到分散均匀的ReS2纳米片;
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热复合,即得银纳米线-ReS2功能复合材料。
本发明的有益效果是,1)将ReS2纳米片包裹在银纳米线表面(银纳米线的缩略词是AgNWs),ReS2纳米片与银纳米线互相交错的结点区域可以产生拉曼“热点”,能够提供强度更高的拉曼散射,极大的提高了SERS活性;2)相对于贵金属材料基底,本发明的金属-半导体纳米复合结构中,等离激元与激子的相互作用可以促进半导体的光学、光电以及光化学属性,该复合材料还可用于光催化技术领域;3)本发明的银纳米线-ReS2功能复合材料(又称为SERS基底复合材料),抗氧化能力强,具有一定的循坏使用能力,且水热法制备的过程简单、成本低廉,工艺重复性好。
附图说明
图1是本发明制备方法的流程框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的银纳米线-ReS2功能复合材料的结构是,在银纳米线表面包裹有一层ReS2纳米片。这种金属/半导体复合材料作为SERS基底复合材料相对于单一材料表现出了优异的性能,且在可见光下具有一定的催化活性。
参照图1,本发明的银纳米线-ReS2功能复合材料的制备方法,按照以下步骤实施:
步骤1、制备银纳米线,
采用多元醇法合成银纳米线,其中,溶剂/还原剂选用乙二醇或丙三醇,包覆剂选用聚乙烯吡咯烷酮(属于高分子表面活性剂,Mw=40000),银源采用硝酸银,控制剂采用氯化钠或三氯化铁;在一定温度下,将银前驱体还原,得到五重孪晶颗粒,再将五重孪晶颗粒进一步定向生长得到银纳米线。
具体过程是,以多元醇法选用丙三醇为例,
1.1)在一个三颈圆底烧瓶中将100~250mL的丙三醇与2.5~6.5g的聚乙烯吡咯烷酮混合均匀,在80℃~170℃下强磁搅拌10~60min;
1.2)将温度自然下降至30℃~120℃,向烧瓶中加入含0.1~1.5mL水和45~78mg氯化钠的丙三醇溶液5~20mL,再强磁搅拌1~15min;
1.3)然后将0.57~2.89g的硝酸银快速加入烧瓶中,轻轻搅拌(搅拌速度为30~100rpm),随后在10~80min内将反应温度从30℃~120℃加热至160℃~230℃;
1.4)停止加热,将烧瓶中的溶液立即倒入500mL或1000mL的烧杯中,然后以1:1~5的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液(即AgNWs溶液);
整个步骤1的反应过程在回流条件下进行。
步骤2、纯化处理银纳米线,
2.1)取银纳米线溶液中底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀;重复该洗涤沉淀过程直至获得透明的上清液,倒出上清液,获得洗涤纯化后的银纳米线;
2.2)为获得具有良好稳定性、不易发生团聚的含有银纳米线的溶液,将洗涤纯化后的银纳米线分散在溶剂中;溶剂选用单一的乙醇、或者选用由PVP、N-甲基吡咯烷酮、乙二醇和甘油四种物质均等组成的混合溶液;
2.3)将分散后的银纳米线溶液在离心机中离心(转速控制在5500~8000rpm,离心时间为5~15min),将离心后的沉淀物超声分散20~60min,得到银纳米线分散液(即AgNWs分散液)。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块制成ReS2粉末,球磨时间为6~10h,球磨转数为300~500rpm,收集球磨后的ReS2粉末并进行密封保存;
3.2)将1~5mg的ReS2粉末分散溶于2~10ml乙醇中;之后在恒温水浴条件下磁力搅拌使其分散均匀,搅拌时间为2~5h,得到ReS2分散液;
3.3)将ReS2分散液在室温下静置3~5小时后,放置在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;分别采用乙醇和去离子水将沉淀物各清洗多次,然后转移到玻璃培养皿上;最后进行干燥(冷冻温度为-40℃,冷冻干燥时间3~10h),得到分散均匀的ReS2纳米片;本步骤中两处离心操作的转速和时间是一致的,离心转速为4000~7000rpm,离心时间10~25min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热复合,其中ReS2纳米片占银纳米线-ReS2功能复合材料的10%~60%,反应温度为40℃~90℃,反应时间为1~3h,即得银纳米线-ReS2功能复合材料。
以下实施例,都是在银纳米线表面包裹一层ReS2纳米片,并应用于制备SERS基底。
实施例1
步骤1、制备银纳米线,
1.1)将120mL丙三醇和4.9g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在90℃下强磁搅拌15min;
1.2)当温度自然下降至40℃时,向烧瓶中加入含0.3mL水和48mg氯化钠的丙三醇溶液7mL,强磁搅拌8min;
1.3)然后将1.21g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在40min内将反应温度从40℃升至170℃;
1.4)当温度达到170℃,停止加热,将烧瓶中的溶液立即倒入500mL的烧杯中,然后以1:1的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程均在回流条件下进行。
步骤2、纯化处理银纳米线,
2.1)取底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀,重复该过程直至获得透明的上清液,然后倒出上清液,获得洗涤纯化后的银纳米线;
2.2)为获得具有良好稳定性、不易发生团聚的含有银纳米线的溶液,需将银纳米线分散在溶剂中,溶剂选为乙醇;
2.3)得到上述银纳米线溶液,然后在离心机中中速(8000rpm)离心,离心时间为5min,将得到的离心沉淀物超声分散40min,得到银纳米线分散液。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为10h,球磨转数为300rpm,收集球磨后的粉末并进行密封保存。
3.2)将4mg的ReS2粉末分散溶于10ml乙醇中;之后在恒温水浴(20℃)条件下磁力搅拌使其分散均匀,搅拌时间为5h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置4小时后,在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥(3h),得到分散均匀的ReS2纳米片。两次离心操作中,离心机离心的转速均为5000rpm,离心时间均为20min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备的ReS2纳米片进行水热复合,其中ReS2占银纳米线-ReS2功能复合材料的10%,反应温度为40℃,反应时间为3h,可得银纳米线-ReS2功能复合材料。
实施例2
步骤1、制备银纳米线,
1.1)将120mL乙二醇和4.9g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在90℃下强磁搅拌15min;
1.2)当温度自然下降至60℃时,向烧瓶中加入含0.7mL水和72mg氯化钠的乙二醇溶液7mL,强磁搅拌8min;
1.3)将1.21g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在50min内将反应温度从60℃升至210℃;
1.4)当温度达到210℃,停止加热,将烧瓶中的溶液立即倒入1000mL的烧杯中,然后以1:2的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程均在回流条件下进行。
步骤2、纯化处理银纳米线,
与实施例1的区别在于步骤2.3)中在离心机中中速(7000rpm)离心,离心时间为8min,将得到的离心沉淀物超声分散50min,得到银纳米线分散液。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为8h,球磨转数为400rpm,收集球磨后的ReS2粉末并进行密封保存。
3.2)将3mg的ReS2粉末分散溶于8ml乙醇中;之后在恒温水浴(25℃)条件下磁力搅拌使其分散均匀,搅拌时间为4h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置数小时后,在离心机中离心得到上清液;再将上清液离心,收集离心管上的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥(5h),得到分散均匀的ReS2纳米片,两次离心操作中,离心机离心的转速为5500rpm,离心时间20min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备的ReS2纳米片进行水热复合,其中ReS2纳米片占银纳米线-ReS2功能复合材料的30%,反应温度为50℃,反应时间为2.5h,即得银纳米线-ReS2功能复合材料。
实施例3
步骤1、制备银纳米线,
1.1)将150mL丙三醇和5.14g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在100℃下强磁搅拌20min;
1.2)当温度自然下降至50℃时,向烧瓶中加入含1.2mL水和16mg的三氯化铁的丙三醇溶液7mL,强磁搅拌8min;
1.3)然后将1.21g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在40min内将反应温度从50℃升至230℃;
1.4)当温度达到230℃,停止加热,将烧瓶中的溶液立即倒入1000mL的烧杯中,然后以1:3的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程均在回流条件下进行。
步骤2、纯化处理银纳米线,
与实施例1、2的区别在于步骤3)中在离心机中中速(6000rpm)离心,离心时间为10min,将得到的离心沉淀物超声分散30min,得到银纳米线分散液。
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为7h,球磨转数为400rpm,收集球磨后的ReS2粉末并进行密封保存。
3.2)将2mg的ReS2粉末分散溶于6ml乙醇中;之后在恒温水浴(30℃)条件下磁力搅拌使其分散均匀,搅拌时间为4h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置3.5小时后,在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,得到均匀分散的ReS2纳米片,两次离心操作中,离心机离心的转速为6000rpm,离心时间15min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备的ReS2纳米片进行水热复合,其中ReS2占银纳米线-ReS2功能复合材料的50%,反应温度为60℃,反应时间为2h,即得银纳米线-ReS2功能复合材料。
实施例4
步骤1、制备银纳米线
1.1)将100mL乙二醇和2.75g的聚乙烯吡咯烷酮两者混合在一个三颈圆底烧瓶中,在100℃下强磁搅拌25min;
1.2)当温度自然下降至50℃时,向烧瓶中加入含1.5mL水和20mg的三氯化铁的乙二醇溶液8mL,强磁搅拌15min;
1.3)然后将0.698g的硝酸银快速加入溶液中,轻轻搅拌(60rpm),随后在1h内将反应温度从50℃升至190℃;
1.4)当温度达到190℃,停止加热,将烧瓶中的溶液立即倒入1000mL的烧杯中,然后以1:4的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液(整个步骤1的反应过程均在回流条件下进行)。
步骤2、纯化处理银纳米线
与实施例1、2、3的区别在于步骤3)中在离心机中中速(5500rpm)离心,离心时间为12min,将得到的离心沉淀物超声分散30min,得到银纳米线分散液。
步骤3、ReS2纳米片的制备
3.1)通过球磨法将ReS2单晶块磨成ReS2粉末,球磨时间为6h,球磨转数为500rpm,收集球磨后的ReS2粉末并进行密封保存。
3.2)将1mg的ReS2粉末分散溶于4ml乙醇中;之后在恒温水浴(35℃)条件下磁力搅拌使其分散均匀,搅拌时间为4.5h,得到ReS2分散液。
3.3)将ReS2分散液在室温下静置数5小时后,在离心机中离心得上清液;再将上清液离心,收集离心管中的沉淀物;将沉淀物依次经过乙醇和去离子水清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,即可得到分散均匀的ReS2纳米片,两次离心操作中,离心机离心的转速为7000rpm,离心时间5min。
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热法复合,其中ReS2纳米片占银纳米线-ReS2功能复合材料的60%,反应温度为90℃,反应时间为1h,即得银纳米线-ReS2功能复合材料。

Claims (6)

1.一种银纳米线-ReS2功能复合材料,其特征在于:在银纳米线表面包裹有一层ReS2纳米片。
2.一种银纳米线-ReS2功能复合材料的制备方法,其特征在于,按照以下步骤实施:
步骤1、制备银纳米线,
采用多元醇法合成银纳米线;
步骤2、纯化处理银纳米线,
2.1)取银纳米线溶液中底部沉淀的银纳米线,轮流用去离子水、丙酮、氨水和乙醇清洗静置,倒出上清液,仅留下底部沉淀;重复该洗涤沉淀过程直至获得透明的上清液,倒出上清液,获得洗涤纯化后的银纳米线;
2.2)将洗涤纯化后的银纳米线分散在溶剂中;
2.3)将分散后的银纳米线溶液在离心机中离心,将离心后的沉淀物超声分散20~60min,得到银纳米线分散液;
步骤3、制备ReS2纳米片,
3.1)通过球磨法将ReS2单晶块制成ReS2粉末,收集球磨后的ReS2粉末并进行密封保存;
3.2)将1~5mg的ReS2粉末分散溶于2~10ml乙醇中;之后在恒温水浴条件下磁力搅拌使其分散均匀,得到ReS2分散液;
3.3)将ReS2分散液在室温下静置3~5小时后,放置在离心机中离心得到上清液;再将上清液离心,收集离心管中的沉淀物;分别采用乙醇和去离子水将沉淀物各清洗多次,然后转移到玻璃培养皿上;最后进行冷冻干燥,得到分散均匀的ReS2纳米片;
步骤4、制备银纳米线-ReS2功能复合材料,
将步骤2制备好的银纳米线分散液与步骤3制备好的ReS2纳米片进行水热复合,即得银纳米线-ReS2功能复合材料。
3.根据权利要求2所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤1中,采用多元醇法时,溶剂/还原剂选用乙二醇或丙三醇,包覆剂选用聚乙烯吡咯烷酮,银源采用硝酸银,控制剂采用氯化钠或三氯化铁;具体过程是,以多元醇法采用丙三醇为例,
1.1)在一个三颈圆底烧瓶中将100~250mL的丙三醇与2.5~6.5g的聚乙烯吡咯烷酮混合均匀,在80℃~170℃下强磁搅拌10~60min;
1.2)将温度自然下降至30℃~120℃,向烧瓶中加入含0.1~1.5mL水和45~78mg氯化钠的丙三醇溶液5~20mL,再强磁搅拌1~15min;
1.3)然后将0.57~2.89g的硝酸银快速加入烧瓶中,轻轻搅拌,随后在10~80min内将反应温度从30℃~120℃加热至160℃~230℃;
1.4)停止加热,将烧瓶中的溶液立即倒入500mL或1000mL的烧杯中,然后以1:1~5的比例加入去离子水以降低温度,在室温下放置两天,除去上清液,得到银纳米线溶液;
整个步骤1的反应过程在回流条件下进行。
4.根据权利要求2所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤2.2)中,溶剂选用单一的乙醇,或者选用由PVP、N-甲基吡咯烷酮、乙二醇和甘油四种物质均等组成的混合溶液。
5.根据权利要求2所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤3中,具体过程是:球磨时间为6~10h,球磨转数为300~500rpm;搅拌时间为2~5h;冷冻温度为-40℃,冷冻干燥时间3~10h;两处离心操作的离心转速为4000~7000rpm,离心时间为10~25min。
6.根据权利要求2所述的银纳米线-ReS2功能复合材料的制备方法,其特征在于,所述的步骤4中,具体过程是:ReS2纳米片占银纳米线-ReS2功能复合材料的10%~60%,反应温度为40℃~90℃,反应时间为1~3h。
CN202011119663.7A 2020-10-19 2020-10-19 一种银纳米线-ReS2功能复合材料及其制备方法 Active CN112156793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011119663.7A CN112156793B (zh) 2020-10-19 2020-10-19 一种银纳米线-ReS2功能复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011119663.7A CN112156793B (zh) 2020-10-19 2020-10-19 一种银纳米线-ReS2功能复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112156793A true CN112156793A (zh) 2021-01-01
CN112156793B CN112156793B (zh) 2023-03-24

Family

ID=73867431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011119663.7A Active CN112156793B (zh) 2020-10-19 2020-10-19 一种银纳米线-ReS2功能复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112156793B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891349A (zh) * 2022-04-12 2022-08-12 中山大学 一种具有sers效应的复合物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811193A (zh) * 2010-04-06 2010-08-25 浙江大学 一种银纳米片自组装体材料的制备方法
CN102313727A (zh) * 2011-05-31 2012-01-11 苏州方昇光电装备技术有限公司 一种表面增强拉曼散射基底的制备方法
CN105424672A (zh) * 2014-09-04 2016-03-23 中国科学院苏州纳米技术与纳米仿生研究所 非化学计量氧化物sers衬底及其制备方法
US20170090077A1 (en) * 2014-05-16 2017-03-30 The University Of Manchester Improved plasmonic structures and devices
US20190250101A1 (en) * 2016-09-02 2019-08-15 Northwestern University Core-shell heterostructures composed of metal nanoparticle core and transition metal dichalcogenide shell
CN111337472A (zh) * 2020-02-28 2020-06-26 江苏大学 一种表面增强拉曼散射基底及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811193A (zh) * 2010-04-06 2010-08-25 浙江大学 一种银纳米片自组装体材料的制备方法
CN102313727A (zh) * 2011-05-31 2012-01-11 苏州方昇光电装备技术有限公司 一种表面增强拉曼散射基底的制备方法
US20170090077A1 (en) * 2014-05-16 2017-03-30 The University Of Manchester Improved plasmonic structures and devices
CN105424672A (zh) * 2014-09-04 2016-03-23 中国科学院苏州纳米技术与纳米仿生研究所 非化学计量氧化物sers衬底及其制备方法
US20190250101A1 (en) * 2016-09-02 2019-08-15 Northwestern University Core-shell heterostructures composed of metal nanoparticle core and transition metal dichalcogenide shell
CN111337472A (zh) * 2020-02-28 2020-06-26 江苏大学 一种表面增强拉曼散射基底及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891349A (zh) * 2022-04-12 2022-08-12 中山大学 一种具有sers效应的复合物及其制备方法和应用

Also Published As

Publication number Publication date
CN112156793B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
Wang et al. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@ CeO2 heterostructured microspheres: Structural characterization and reaction mechanism
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Khalid et al. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review
Chen et al. Strategic combination of nitrogen-doped carbon quantum dots and g-C3N4: efficient photocatalytic peroxydisulfate for the degradation of tetracycline hydrochloride and mechanism insight
Ma et al. Effective photoinduced charge separation and photocatalytic activity of hierarchical microsphere-like C60/BiOCl
Su et al. Decoration of TiO 2/gC 3 N 4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin
Gadhi et al. Efficient α/β-Bi2O3 composite for the sequential photodegradation of two-dyes mixture
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
Wang et al. Visible-light-driven double-shell SnIn4S8/TiO2 heterostructure with enhanced photocatalytic activity for MO removal and Cr (VI) cleanup
Gao et al. Accurate guided alternating atomic layer enhance internal electric field to steering photogenerated charge separation for enhance photocatalytic activity
CN105709782B (zh) 一种Ag/AgBr/BiOCl‐(001)纳米复合材料的制备及应用
Xu et al. Enhanced photocatalytic discoloration of acid fuchsine wastewater by TiO2/schorl composite catalyst
Ahmad et al. Novel prism shaped C 3 N 4-doped Fe@ Co 3 O 4 nanocomposites and their dye degradation and bactericidal potential with molecular docking study
CN110639620A (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
Gan et al. Ag@ AgCl decorated graphene-like TiO2 nanosheets with nearly 100% exposed (0 0 1) facets for efficient solar light photocatalysis
CN102527366A (zh) 一种二氧化钛纳米管石墨烯混合光催化剂及制备方法
Zhao et al. Enhanced photocatalytic performance of layered carbon microsphere/BiOCl composite with oxygen vacancies
Durai et al. Layered KTO/BiOCl nanostructures for the efficient visible light photocatalytic degradation of harmful dyes
CN108079993B (zh) 氧化亚铁/氧化亚铜纳米复合材料的制备方法
Li et al. Synthesis of flower-like AgI/BiOCOOH pn heterojunctions with enhanced visible-light photocatalytic performance for the removal of toxic pollutants
Ma et al. Polydopamine-induced fabrication of Ag-TiO2 hollow nanospheres and their application in visible-light photocatalysis
Prabhavathy et al. Visible light-induced Silver and Lanthanum co-doped BiVO4 nanoparticles for photocatalytic dye degradation of organic pollutants
Li et al. A novel Z-type heterojunction Bi3O4Cl/Bi4O5I2 photocatalytic composite with broad-spectrum antibacterial activity and degradation properties
CN112156793B (zh) 一种银纳米线-ReS2功能复合材料及其制备方法
Wu et al. Enhanced photocatalytic activity of Jamun-like Zn 2 V 2 O 7/C-dots/gC 3 N 4 nanocomposites for Rhodamine B degradation under the visible light radiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant