CN112156766A - 一种二维层状金属钙/铟双氢氧化物及其制备方法和应用 - Google Patents

一种二维层状金属钙/铟双氢氧化物及其制备方法和应用 Download PDF

Info

Publication number
CN112156766A
CN112156766A CN202011026916.6A CN202011026916A CN112156766A CN 112156766 A CN112156766 A CN 112156766A CN 202011026916 A CN202011026916 A CN 202011026916A CN 112156766 A CN112156766 A CN 112156766A
Authority
CN
China
Prior art keywords
double hydroxide
indium
calcium
dimensional layered
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011026916.6A
Other languages
English (en)
Other versions
CN112156766B (zh
Inventor
封伟
王宇
冯奕钰
梁雪静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202011026916.6A priority Critical patent/CN112156766B/zh
Publication of CN112156766A publication Critical patent/CN112156766A/zh
Application granted granted Critical
Publication of CN112156766B publication Critical patent/CN112156766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种二维层状金属钙/铟双氢氧化物,具有如下的晶体结构:由带正电的二维骨架结构以及层间阴离子和结合水构成,元素比1:2的铟和钙元素与以它们成八面体构型的羟基构成带正电的二维骨架,在两层二维骨架之间由碳酸根中和多余正电荷,同时结合水、碳酸根以及骨架上的羟基三者之间形成稳定的氢键结构。本发明还给出此种二维层状金属钙/铟双氢氧化物的制备方法,及其在光催化产氢的应用。

Description

一种二维层状金属钙/铟双氢氧化物及其制备方法和应用
技术领域
本发明涉及光催化技术领域,尤其涉及一种二维层状金属(钙/铟)双氢氧化物及其制备方法和应用。
背景技术
随着能源短缺、气候变暖、环境污染等全球性问题的日益突出,太阳能、风能、氢能等可再生能源的开发已成为日益紧迫的科技问题。氢气作为一种新的可再生能源,由于其能量密度高、无污染等优点,引起了人们的极大研究热情。最常见的制氢方法有电解法、电催化法和光催化法。特别是光催化分解水是一种非常环保、有效、有发展前景的方法,其中光催化剂是最关键的因素,它需要合适的带隙、能带结构和高比表面积。因此,二维纳米材料由于本身的结构特性而成为光催化剂的理想材料。二维纳米材料是指在厚度方向只有1到几个原子厚度且横向尺寸可到微米以上的新型纳米材料,包括石墨烯、锗烯、磷烯、过渡金属二硫基化物、六方氮化硼、二维共价有机骨架、二维金属有机骨架、二维钙钛矿和层状金属双氢氧化物等。
二维纳米材料的高比表面积能提供更多的活性位点,有利于提高催化反应效率。然而,一般的二维层状金属双氢氧化物都是通过金属盐类在恒定PH的碱性溶液中共沉淀得到,制备条件相对严苛。而且已知的二维层状金属双氢氧化物的带隙都普遍较大,对长波长方向的光利用不足。因此,开发出具有较低带隙的二维层状金属(钙/铟)双氢氧化物是一种有效利用长波长的光的途径,并且此种方法产量大,操作简单。具有较低带隙的二维层状金属(钙/铟)双氢氧化物不仅可以提供更多活性位点,同时低带隙也能更好地利用长波长光,再者层内羟基、层间阴离子以及结合水能有效水分子进行光催化分解,可以作为光催化产氢材料应用于新型清洁能源领域。
发明内容
有鉴于此,本发明提供一种二维层状金属(钙/铟)双氢氧化物及其制备方法和应用,制备的二维层状金属(钙/铟)双氢氧化物具有较高的光催化产氢效率。技术方案如下:
本发明提供了一种二维层状金属钙/铟双氢氧化物,具有如下的晶体结构:由带正电的二维骨架结构以及层间阴离子和结合水构成,元素比1:2的铟和钙元素与以它们成八面体构型的羟基构成带正电的二维骨架,在两层二维骨架之间由碳酸根中和多余正电荷,同时结合水、碳酸根以及骨架上的羟基三者之间形成稳定的氢键结构。
进一步地,二维层状金属钙/铟双氢氧化物的层厚在3.91nm,由5层二维骨架堆叠而成,具有1.24eV的带隙。
实验结果表明,上述二维层状金属(钙/铟)双氢氧化物在大于420nm波长的光照下,添加3wt.%铂作为助催化剂,以甲醇作为空穴牺牲剂,其光催化产氢速率可达467.2μmol/g/h。
本发明还提供了上述二维层状金属钙/铟双氢氧化物的制备方法,包括以下步骤:
(1)将金属钙、金属铟和红磷按照(0.4-1):(2.0-3.0):(0.5-1.0)的质量配比,混合后真空封装,将封装好的混合物置于炉中,于惰性气气氛下,加热到800-1000℃,保温一段时间后,冷却到室温;
(2)取出制备好的前驱体在室温下放置于空气中一段时间,得到中间体;
(3)将中间体在去离子水中超声一段时间后,得到二维层状金属钙/铟双氢氧化物的悬浊液;
(4)洗涤并干燥二维层状金属钙/铟双氢氧化物的悬浊液,得到二维层状金属钙/铟双氢氧化物的粉末样品。
本发明提供了上述二维层状金属(钙/铟)双氢氧化物或上述制备方法制备的二维层状金属(钙/铟)双氢氧化物催化剂材料作为光催化分解水产氢的应用。所述光催化分解水产氢应用可应用于新型清洁能源领域。
与现有技术相比,本发明提供了一种新型的二维层状金属(钙/铟)双氢氧化物。二维纳米材料的高比表面积能提供更多的活性位点,有利于提高催化反应效率。然而,一般的二维层状金属双氢氧化物都是通过金属盐类在恒定PH的碱性溶液中共沉淀得到,制备条件相对严苛。而且已知的二维层状金属双氢氧化物的带隙都普遍较大,对长波长方向的光利用不足。因此,开发出具有较低带隙的二维层状金属(钙/铟)双氢氧化物是一种有效利用长波长的光的途径,并且此种方法产量大,操作简单。具有较低带隙的二维层状金属(钙/铟)双氢氧化物不仅可以提供更多活性位点,同时低带隙也能更好地利用长波长光,再者层内羟基、层间阴离子以及结合水能有效水分子进行光催化分解,可以作为光催化产氢材料应用于新型清洁能源领域。
附图说明
图1为二维层状金属(钙/铟)双氢氧化物的X射线衍射图。
图2为二维层状金属(钙/铟)双氢氧化物的红外图。
图3为二维层状金属(钙/铟)双氢氧化物扫描图。
图4为二维层状金属(钙/铟)双氢氧化物的原子力显微镜图。
图5为二维层状金属(钙/铟)双氢氧化物的带隙图。
图6为二维层状金属(钙/铟)双氢氧化物光催化产氢速率图。
图7为二维层状金属(钙/铟)双氢氧化物的晶体结构示意图
具体实施方式
本发明提供了一种二维层状金属(钙/铟)双氢氧化物,具有如图7所示晶体结构。层状金属双氢氧化物由带正电的二维骨架结构以及层间阴离子和结合水构成。元素比1:2的铟和钙元素与以它们成八面体构型的羟基构成带正电的二维骨架,在两层骨架之间由碳酸根中和多余正电荷,同时结合水、碳酸根以及骨架上的羟基三者之间形成稳定的氢键结构。制备得到的二维层状金属(钙/铟)双氢氧化物厚度在3.91nm,约有5层二维骨架堆叠而成,其横向尺寸可达微米级别。此外,这种二维层状金属(钙/铟)双氢氧化物具有1.24eV的带隙。二维纳米材料由于其较大的比表面积可以提供更多的活性位点而广泛应用于催化领域,而且由于二维层状金属(钙/铟)双氢氧化物可以吸附水分子,所以可以促进催化分解水的进行。因此,二维层状金属(钙/铟)双氢氧化物用作光催化剂在可见光下催化分解水制取氢气具有不错的活性,在新型清洁能源领域具有优秀的应用潜力。
为了进一步说明本发明,下面结合实施例对本发明提供的二维层状金属(钙/铟)双氢氧化物及其制备方法和应用进行详细描述。
实施例1
将金属钙(0.4g),金属铟(2.0g)和红磷(0.5g)置于玻璃管中真空封装,将封装好的玻璃管置于管式炉中,于氩气气氛下,加热到850℃,保温24h,冷却到室温。取出制备好的前驱体在室温下放置于空气中3天,得到的中间体在去离子水中超声1天后,二维层状金属(钙/铟)双氢氧化物的悬浊液用去离子水、乙醇分别洗涤三次,室温下真空干燥24h,得到二维层状金属(钙/铟)双氢氧化物的粉末样品。取30mg粉末样品与3wt.%铂助催化剂混合置于10mL甲醇和90mL水的混合溶液中超声分散30min,在氙灯下测量氢气产量。
经检测,其光催化产氢速率可达467.2μmol/g/h。
图1为二维层状金属(钙/铟)双氢氧化物的X射线衍射图。具有典型的层状金属双氢氧化物的(003)、(006)晶面,可以算得其相邻两层二维金属骨架晶面间距为7.98nm。
图2为二维层状金属(钙/铟)双氢氧化物的红外图。3464cm-1的峰属于层间结合水以及层内羟基的伸缩振动,1637cm-1的峰属于层间结合水的弯曲振动,1396cm-1的峰属于碳酸根的振动。
图3为二维层状金属(钙/铟)双氢氧化物扫描图。可以看出明显的层状结构,横向尺寸可以达到微米以上。
图4为二维层状金属(钙/铟)双氢氧化物的原子力显微镜图。片层厚度3.91nm,大约由5层二维金属骨架堆叠而成。
图5为二维层状金属(钙/铟)双氢氧化物的带隙图。可以得到其带隙为1.24eV。
图6为二维层状金属(钙/铟)双氢氧化物光催化产氢速率图。可算出光催化产氢速率可达467.2μmol/g/h。
实施例2
将金属钙(0.5g),金属铟(2.5g)和红磷(0.6g)置于玻璃管中真空封装,将封装好的玻璃管置于管式炉中,于氩气气氛下,加热到850℃,保温24h,冷却到室温。取出制备好的前驱体在室温下放置于空气中3天,得到的中间体在去离子水中超声1天后,二维层状金属(钙/铟)双氢氧化物的悬浊液用去离子水、乙醇分别洗涤三次,室温下真空干燥24h,得到二维层状金属(钙/铟)双氢氧化物的粉末样品。取30mg粉末样品与3wt.%铂助催化剂混合置于10mL甲醇和90mL水的混合溶液中超声分散30min,在氙灯下测量氢气产量。
经检测,其光催化产氢速率可达475.8μmol/g/h。
实施例3
将金属钙(0.5g),金属铟(2.5g)和红磷(0.6g)置于玻璃管中真空封装,将封装好的玻璃管置于管式炉中,于氩气气氛下,加热到950℃,保温24h,冷却到室温。取出制备好的前驱体在室温下放置于空气中3天,得到的中间体在去离子水中超声1天后,二维层状金属(钙/铟)双氢氧化物的悬浊液用去离子水、乙醇分别洗涤三次,室温下真空干燥24h,得到二维层状金属(钙/铟)双氢氧化物的粉末样品。取30mg粉末样品与3wt.%铂助催化剂混合置于10mL甲醇和90mL水的混合溶液中超声分散30min,在氙灯下测量氢气产量。
经检测,其光催化产氢速率可达458.6μmol/g/h。
实施例4
将金属钙(0.5g),金属铟(2.5g)和红磷(0.6g)置于玻璃管中真空封装,将封装好的玻璃管置于管式炉中,于氩气气氛下,加热到950℃,保温24h,冷却到室温。取出制备好的前驱体在室温下放置于空气中4天,得到的中间体在去离子水中超声1天后,二维层状金属(钙/铟)双氢氧化物的悬浊液用去离子水、乙醇分别洗涤三次,室温下真空干燥24h,得到二维层状金属(钙/铟)双氢氧化物的粉末样品。取30mg粉末样品与3wt.%铂助催化剂混合置于10mL甲醇和90mL水的混合溶液中超声分散30min,在氙灯下测量氢气产量。
经检测,其光催化产氢速率可达450.0μmol/g/h。
实施例5
将金属钙(0.5g),金属铟(2.5g)和红磷(0.6g)置于玻璃管中真空封装,将封装好的玻璃管置于管式炉中,于氩气气氛下,加热到950℃,保温24h,冷却到室温。取出制备好的前驱体在室温下放置于空气中4天,得到的中间体在去离子水中超声3天后,二维层状金属(钙/铟)双氢氧化物的悬浊液用去离子水、乙醇分别洗涤三次,室温下真空干燥24h,得到二维层状金属(钙/铟)双氢氧化物的粉末样品。取30mg粉末样品与3wt.%铂助催化剂混合置于10mL甲醇和90mL水的混合溶液中超声分散30min,在氙灯下测量氢气产量。
经检测,其光催化产氢速率可达476.4μmol/g/h。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

1.一种二维层状金属钙/铟双氢氧化物,具有如下的晶体结构:由带正电的二维骨架结构以及层间阴离子和结合水构成,元素比1:2的铟和钙元素与以它们成八面体构型的羟基构成带正电的二维骨架,在两层二维骨架之间由碳酸根中和多余正电荷,同时结合水、碳酸根以及骨架上的羟基三者之间形成稳定的氢键结构。
2.根据权利要求1所述的二维层状金属钙/铟双氢氧化物,其特征在于,二维层状金属钙/铟双氢氧化物的层厚在3.91nm,由5层二维骨架堆叠而成,具有1.24eV的带隙。
3.一种二维层状金属钙/铟双氢氧化物的制备方法,包括以下步骤:
(1)将金属钙、金属铟和红磷按照(0.4-1):(2.0-3.0):(0.5-1.0)的质量配比,混合后真空封装,将封装好的混合物置于炉中,于惰性气气氛下,加热到800-1000℃,保温一段时间后,冷却到室温;
(2)取出制备好的前驱体在室温下放置于空气中一段时间,得到中间体;
(3)将中间体在去离子水中超声一段时间后,得到二维层状金属钙/铟双氢氧化物的悬浊液;
(4)洗涤并干燥二维层状金属钙/铟双氢氧化物的悬浊液,得到二维层状金属钙/铟双氢氧化物的粉末样品。
4.根据权利要求3所述的制备方法,其特征在于,前驱体的制备需在炉中,保温24-48h。
5.根据权利要求3所述的制备方法,其特征在于,中间体的制备需要在室温下放置于空气中3-7天。
6.根据权利要求3所述的制备方法,其特征在于,二维层状金属钙/铟氢氧化物的悬浊液的制备需要中间体在去离子水中超声1-4天。
7.根据权利要求3所述的制备方法,其特征在于,二维层状金属钙/铟双氢氧化物的粉末样品需要将悬浊液用去离子水、乙醇分别洗涤三次,室温下真空干燥24h。
8.权利要求1或3所述、或按权利要求3-7所述的制备方法制备的二维层状金属钙/铟双氢氧化物作为光催化产氢的应用。
9.根据权利要求8所述的作为光催化产氢的应用,具体操作为:取二维层状金属钙/铟双氢氧化物粉末与3wt.%铂助催化剂混合后分散在置于甲醇和水的混合溶液中。
CN202011026916.6A 2020-09-25 2020-09-25 一种二维层状金属钙/铟双氢氧化物及其制备方法和应用 Active CN112156766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011026916.6A CN112156766B (zh) 2020-09-25 2020-09-25 一种二维层状金属钙/铟双氢氧化物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011026916.6A CN112156766B (zh) 2020-09-25 2020-09-25 一种二维层状金属钙/铟双氢氧化物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112156766A true CN112156766A (zh) 2021-01-01
CN112156766B CN112156766B (zh) 2022-08-19

Family

ID=73864097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011026916.6A Active CN112156766B (zh) 2020-09-25 2020-09-25 一种二维层状金属钙/铟双氢氧化物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112156766B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132143A1 (en) * 2015-02-19 2016-08-25 Scg Chemicals Co., Ltd. Process for preparing small size layered double hydroxide particles
CN109174143A (zh) * 2018-10-26 2019-01-11 江苏大学 一种钙钛矿基复合纳米光催化材料及制备方法与用途
CN109399678A (zh) * 2018-11-14 2019-03-01 大连理工大学 一种纳米级金属氢氧化物的制备方法
CN110416560A (zh) * 2018-04-26 2019-11-05 天津大学 一种钙锰氧化物材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132143A1 (en) * 2015-02-19 2016-08-25 Scg Chemicals Co., Ltd. Process for preparing small size layered double hydroxide particles
CN107531503A (zh) * 2015-02-19 2018-01-02 Scg化学有限公司 制备小尺寸分层双氢氧化物颗粒的方法
CN110416560A (zh) * 2018-04-26 2019-11-05 天津大学 一种钙锰氧化物材料及其制备方法和应用
CN109174143A (zh) * 2018-10-26 2019-01-11 江苏大学 一种钙钛矿基复合纳米光催化材料及制备方法与用途
CN109399678A (zh) * 2018-11-14 2019-03-01 大连理工大学 一种纳米级金属氢氧化物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MÁRTON SZABADOS ET AL.: "Mechanochemical and wet chemical syntheses of CaIn-layered double hydroxide and its performance in a transesterification reaction compared to those of other Ca2M(III) hydrocalumites (Al, Sc, V, Cr, Fe,Ga) and Mg(II), Ni(II), Co(II)orZn based hydrotalcites", 《JOURNAL OF CATALYSIS》 *
刘倩: "基于含铟层状双金属氢氧化物的光催化材料制备及其催化性能", 《万方学位论文》 *

Also Published As

Publication number Publication date
CN112156766B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
Li et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction
Zhou et al. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution
Fajrina et al. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture
Tang et al. Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production
Yuan et al. Origin of enhancing the photocatalytic performance of TiO2 for artificial photoreduction of CO2 through a SiO2 coating strategy
Wang et al. Photocatalytic reduction of CO2 to methane over PtOx-loaded ultrathin Bi2WO6 nanosheets
CN109647445B (zh) 一种MoS2纳米片包覆KNbO3纳米线压电/光催化材料的制备方法
Zhang et al. g‐C3N4 Nanosheet Nanoarchitectonics: H2 Generation and CO2 Reduction
CN106378160B (zh) 一种制备CdS/MoS2复合空心方块光催化剂的方法
CN109225298B (zh) 一种具有高可见光活性的MnISCN纳米复合材料及其制备方法和应用
CN109012731A (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
Zhao et al. Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes
Akple et al. Bio-inspired honeycomb-like graphitic carbon nitride for enhanced visible light photocatalytic CO2 reduction activity
Abbood et al. Square CdS micro/nanosheets as efficient photo/piezo-bi-catalyst for hydrogen production
Tang et al. An exploration on in-situ synthesis of europium doped g-C3N4 for photocatalytic water splitting
CN111632614A (zh) 三维花瓣状NiAl-LDH/Ti3C2复合光催化剂及其制备方法和应用
CN113058617A (zh) 一种光催化剂及其制备方法和应用
Wang et al. Hollow core–shell Co 9 S 8@ In 2 S 3 nanotube heterojunctions toward optimized photothermal–photocatalytic performance
CN107020073A (zh) 一种基于石墨烯的光催化剂材料的制备方法
CN107814408B (zh) 一种富含S空缺位的SnS2超薄纳米片的制备方法
CN102716747A (zh) (001)面暴露的铁掺二氧化钛多级催化剂及制备方法
Ma et al. Robust hydrogen generation over layered crystalline silicon materials via integrated H2 evolution routes
CN110102349B (zh) 一种α-Fe2O3/TpPa-2复合材料的制备及光解水制氢
CN112156766B (zh) 一种二维层状金属钙/铟双氢氧化物及其制备方法和应用
CN111807336B (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant