CN112152461A - 基于移相全桥控制的双有源dcdc电路拓扑研究方法 - Google Patents

基于移相全桥控制的双有源dcdc电路拓扑研究方法 Download PDF

Info

Publication number
CN112152461A
CN112152461A CN202010778921.6A CN202010778921A CN112152461A CN 112152461 A CN112152461 A CN 112152461A CN 202010778921 A CN202010778921 A CN 202010778921A CN 112152461 A CN112152461 A CN 112152461A
Authority
CN
China
Prior art keywords
active
bridge
phase
double
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010778921.6A
Other languages
English (en)
Inventor
宋建国
王炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lifu Intelligent Equipment Suzhou Co ltd
Original Assignee
Lifu Intelligent Equipment Suzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lifu Intelligent Equipment Suzhou Co ltd filed Critical Lifu Intelligent Equipment Suzhou Co ltd
Priority to CN202010778921.6A priority Critical patent/CN112152461A/zh
Publication of CN112152461A publication Critical patent/CN112152461A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种基于移相全桥控制的双有源DCDC电路拓扑研究方法。所述基于移相全桥控制的双有源DCDC电路拓扑研究方法包括以下步骤:S1:确定双有源桥拓扑结构,通过双有源桥拓扑结构获得双有源桥变压器变比;S2:所述S1中,移相角在初级与次级电感中转换,可以对双有源桥拓扑结构进行简化,获得双有源桥简化电路,所述简化电路中,v'cd=N*vcd,其中v'cd为变压器副边电压映射在原边侧量,N为变比,vcd为变压器副边电压;S3:通过改变移相角φ,使变压器原边谐振电感电流在周期内发生变化。本发明提供的基于移相全桥控制的双有源DCDC电路拓扑研究方法具有可以实现软开关控制、开关管关断时损耗低、效率高,且可以双向控制的优点。

Description

基于移相全桥控制的双有源DCDC电路拓扑研究方法
技术领域
本发明涉及新能源电动汽车技术领域,尤其涉及一种基于移相全桥控制的双有源DCDC电路拓扑研究方法。
背景技术
新能源汽车的兴起,进一步推动了大功率开关电源的应用。功率器件在市场的应用也越来越广泛了,从电力二极管到可控硅器件再到IGBT,人们对开关器件的要求也越来越严格了,因此高频、可靠、耐压高、通态电阻小的元器件就成为了开关电源拓扑结构中功率器件的首选了。设计一款高效、双向隔离的双有源充电机成为了当下炙手可热的难点。SiC-MOSEFT器件的电子迁移率和介电常数与Si-MOSFET开关管相比要小,而且SiC-MOSFET的临界击穿场强是Si-MOSFET的10多倍,这就意味着同等耐压下,SiC-MOSFET漂移层会薄得多,通态电阻也会小很多,同时与IGBT相比SiC-MOSFET又保留又MOSFET的特性,能够在高频条件下工作。
目前,双有源开关电源拓扑结构种类良多,正激式结构无法实现软开关控制,开关管关断时损耗较大,效率较低;全桥逆变采用二极管同步整流方式,该方法在算法上采用了硬开关控制,效率相对于正激式有所上升,但同步整流阶段二极管同态损耗较大,且不能双向控制。
因此,有必要提供一种新的基于移相全桥控制的双有源DCDC电路拓扑研究方法解决上述技术问题。
发明内容
为解决上述技术问题,本发明提供的基于移相全桥控制的双有源DCDC电路拓扑研究方法包括以下步骤:S1:确定双有源桥拓扑结构,通过双有源桥拓扑结构获得双有源桥变压器变比;
S2:所述S1中,移相角在初级与次级电感中转换,可以对双有源桥拓扑结构进行简化,获得双有源桥简化电路,所述简化电路中,v'cd=N*vcd,其中v'cd为变压器副边电压映射在原边侧量,N为变比,vcd为变压器副边电压;
S3:通过改变移相角φ,使变压器原边谐振电感电流在周期内发生变化;
S4:将双有源桥拓扑结构降阶处理,忽略谐振电感的动态变化,得到等效变换电路;
S5:通过等效电路得出,当功率管的应力小且ZVS导通时是线性的变压器理想输出功率具有高密度,在周期内的均值为:
Figure BDA0002619501410000021
Figure BDA0002619501410000022
其中Po为输出功率,N为匝数比,V1为输入电压,V2为输出电压,f为开关频,Lrp为谐振电感;
S6:通过
Figure BDA0002619501410000023
可以的得出等效电路表达式<i2>,取正向角
Figure BDA0002619501410000024
S7:通过引入相移扰动
Figure BDA0002619501410000025
进一步得到扰动下电流
Figure BDA0002619501410000026
Figure BDA0002619501410000027
从而得出输出电压
Figure BDA0002619501410000028
与移相角
Figure BDA0002619501410000029
的传递函数,
Figure BDA00026195014100000210
S8:通过推导,得出输出电压与移相角传递函数,可知系统开环传递函数为二型系统时可实现稳态无静差,开环传递函数为
Figure BDA00026195014100000211
其中H(s)为电压反馈系数,Fm(s)为输入滤波时间,W(s)为PI调节器;
Figure BDA0002619501410000031
Figure BDA0002619501410000032
S9:搭建仿真实验,所述仿真实验基于Psipse软件平台搭建,选择实验参数;
S10:将实验参数放入仿真模型中各个元器件中,得到仿真结果;
S11:设计实验验证移改进的移相全桥拓扑结构的可行性;
S12:通过多次实验将实验数据不断记录。
优选的,所述S1中,双有源桥变压器变比为14。
优选的,所述S2中,变压器原边谐振电感电流在周期内呈梯形变化。
优选的,所述S9中,实验参数与所述S1-S8保持一致。
优选的,所述S10中,仿真系统采用离散控制模式,仿真步长为1us,PWM频率为100KHz,算法执行周期为30us。
优选的,所述S11中,实验主控芯片为TI的UCC28950移相芯片,驱动芯片采用英飞凌2ED020I12-F1自举型驱动芯片。
优选的,所述S11中,该驱动不隔离,在驱动高压侧SiC-MOSFET时,需用变压器将高低压隔离。
与相关技术相比较,本发明提供的基于移相全桥控制的双有源DCDC电路拓扑研究方法具有如下有益效果:
1)采用全桥结构有利于通过高频变压器实现电气隔离,将高压动力电池与低压配电电池隔离开来,转换器移动逆变桥的移相角来控制对管将能量传递到二次侧;
2)通过同步整流方式将能量传递到低压电池,在高压电池故障或者是电动汽车启动瞬间带来的电流冲击,将反向充电代替高压电池短时输出作用;
3)能量可以双向流动,并在变压器原边串联了谐振电感,以达到前级H桥在移相控制中实现软开关控制,减小开关损耗;
4)在主功率变压器回路中串联了一个隔直电容,抑制原边电流的反向通路,在滞后桥臂并联二极管和电容,增大滞后桥臂在重载时,加快对原边电压充放电速度,以达到零点压关断,提升系统整体效率;
5)通过将电路进行模块化动态建模,对电路每个周期内的自发的动态变化进行模型化验证,利用Pspice搭建模型进行仿真验证;
6)通过实验台架验证了理论分析,为实际设计开发具有更宽动态性能的转换器提供理论依据。
附图说明
图1为本发明中双有源桥拓扑结构图;
图2为本发明中双有源桥简化电路图;
图3为本发明中转换器的运行原理图;
图4为本发明中双有源桥拓扑降阶等效电路图;
图5为本发明中双有源功率输出曲线图;
图6为本发明中
Figure BDA0002619501410000041
波特图;
图7为本发明中系统控制结构图;
图8为系统开环传递函数波特图;
图9为本发明中仿真实验参数图;
图10为本发明中仿真实验逆变桥开关管PWM波形;
图11为本发明中仿真实验变压器两侧电压图;
图12为本发明中仿真实验SiC-MOSEFT损耗分析;
图13为本发明中仿真实验输出电压电流波形图;
图14为本发明中仿真实验稳态结果图;
图15为本发明中升压实验开关管初始状态图;
图16为本发明中升压实验Boost升压过程图;
图17为本发明中降压实验逆变桥四个功率管GS端PWM波形图;
图18为本发明中降压实验变压器原边电压与原边电流波形图;
图19为本发明中降压实验输出响应波形图。
具体实施方式
下面结合附图和实施方式对本发明作进一步说明。
一种基于移相全桥控制的双有源DCDC电路拓扑研究方法包括以下步骤:S1:结合参阅说明书附图1,双有源结构代表着有两个电源V1和V2,通过移相全桥软开关技术实现两个电源间能量双向流动,由于本文采用的是高压电池给低压电池充电,变压器原边是高压小电流输出,所以原边侧采用四个SiC-MOSEFT构成的H桥,H桥前级会加入低通滤波器对输入电压电流进行滤波,Lrp为谐振电感,Crp为谐振电容,变压器右边是低压大电流输出,所以整流桥摈弃传统的二极管同步整流,采用了MOSFET同步整流控制,Lo为输出滤波电感,Co为输出滤波电容,Do为续流二极管,可以确定双有源桥拓扑结构,通过双有源桥拓扑结构获得双有源桥变压器变比;
S2:结合参阅说明书附图2,所述S1中,移相角在初级与次级电感中转换,可以对双有源桥拓扑结构进行简化,获得双有源桥简化电路,所述简化电路中,v'cd=N*vcd,其中v'cd为变压器副边电压映射在原边侧量,N为变比,vcd为变压器副边电压;
S3:结合参阅说明书附图3,通过改变移相角φ,使变压器原边谐振电感电流在周期内发生变化,变化曲线如说明书附图3所示;
S4:结合参阅说明书附图4,将双有源桥拓扑结构降阶处理,忽略谐振电感的动态变化,得到等效变换电路,电路图如说明书附图4所示;
S5:结合参阅说明书附图5,通过等效电路得出,当功率管的应力小且ZVS导通时是线性的变压器理想输出功率具有高密度,在周期内的均值为:
Figure BDA0002619501410000051
Figure BDA0002619501410000061
其中Po为输出功率,N为匝数比,V1为输入电压,V2为输出电压,f为开关频,Lrp为谐振电感;
S6:结合参阅说明书附图6,通过
Figure BDA0002619501410000062
可以的得出等效电路表达式<i2>,取正向角
Figure BDA0002619501410000063
S7:通过引入相移扰动
Figure BDA0002619501410000064
进一步得到扰动下电流
Figure BDA0002619501410000065
Figure BDA0002619501410000066
从而得出输出电压
Figure BDA0002619501410000067
与移相角
Figure BDA0002619501410000068
的传递函数,
Figure BDA0002619501410000069
S8:结合参阅说明书附图7和图8,通过推导,得出输出电压与移相角传递函数,可知系统开环传递函数为二型系统时可实现稳态无静差,因此,控制环节设计如说明书附图7,开环传递函数为
Figure BDA00026195014100000610
其中H(s)为电压反馈系数,Fm(s)为输入滤波时间,W(s)为PI调节器;
Figure BDA00026195014100000611
Figure BDA00026195014100000612
S9:结合参阅说明书附图9,搭建仿真实验,所述仿真实验基于Psipse软件平台搭建,选择实验参数,实验参数如说明书附图9所示;
S10:结合参阅说明书附图10-14,将实验参数放入仿真模型中各个元器件中,得到仿真结果仿真步长为1us,PWM频率为100KHz,算法执行周期为30us,得到如下仿真结果;说明书附图10为逆变桥开关管PWM,移相角最大为180°,通过不断改变移相角使逆变桥对角开关管重叠时间长,以便有更多能量传递到二次侧;说明书附图11为变压器两侧波形,由于仿真平台趋于理想平台,变压器两侧能量传递效率接近于99%,也未出现开关管引起的电压尖峰;说明书附图12中,将其中一个开关管的损耗测试,在温度线性上升过程中,开关管损耗并未有明显上升,并且损耗量对于整个系统来讲,损耗基本不大;说明书附图13为输出电压电流响应曲线,电压上升速率快,无超调;说明书附图14为仿真稳态时结果,在移相控制中不断改变负载,输出电压能够快速恢复稳定,鲁棒性较好;
S11:结合参阅说明书附图15-19,设计实验验证移改进的移相全桥拓扑结构的可行性,分别设计升压和降压实验;说明书附图15为升压过程初始值,开关管EF以最小占空比50%开始慢慢展开;说明书附图16为Boost升压过程,开关管EF重叠量为续能过程,储能电感向副边传递能量经二极管续能,变压器副边向原边传递能量,原边逆变桥不动作,利用逆变桥内部二极管进行整流,向高压电池滤波电容充电。该实验为转换器反向工作实验结果;说明书附图17为逆变桥四个功率管GS端PWM波形图,通过波形可看出,QA与QB互补,QC与QD互补,通过改变QC与QD的移相角,来控制逆变桥工作,进而通过变压器讲一次侧能量传递到二次侧,移相角从0°到180°改变;说明书附图18为变压器原边电压与原边电流,通过波形可看出正向导通过程逆变桥实现了零电压开断功能,波形完好,未出现尖峰;说明书附图19为转换器启动过程,启动过程顺利,输出电压无超调,无扰动,响应速度快,能够快速趋于稳定。
S12:通过多次实验将实验数据不断记录,在不同输入情况下,在轻载时,由于输出功率低,损耗功率变化并不明显,导致轻载时效果略低,但系统效率在重载情况下效率趋近于98%以上,损耗基本落在变压器两侧与高低压采样电阻上,开关管上损耗极低近乎没有,转换器在复杂扰动下抗干扰能力强。
所述S1中,双有源桥变压器变比为14。
所述S2中,变压器原边谐振电感电流在周期内呈梯形变化。
所述S9中,实验参数与所述S1-S8保持一致。
所述S10中,仿真系统采用离散控制模式,仿真步长为1us,PWM频率为100KHz,算法执行周期为30us。
所述S11中,实验主控芯片为TI的UCC28950移相芯片,驱动芯片采用英飞凌2ED020I12-F1自举型驱动芯片。
所述S11中,该驱动不隔离,在驱动高压侧SiC-MOSFET时,需用变压器将高低压隔离。
本发明在主功率变压器回路中串联了一个隔直电容,抑制原边电流的反向通路,在滞后桥臂并联二极管和电容,增大滞后桥臂在重载时,加快对原边电压充放电速度,以达到零点压关断,提升系统整体效率;
本发明采用了移相全桥软开关控制,对转换器工作模式进行了模块化理论分析,通过小信号分析得到系统各个参数以及系统零极点分配,从波特图可以看出,系统具有良好的鲁棒性,对于不同的负载扰动,都可以快速恢复系统稳定性,通过仿真与实验进一步验证了该理论的可靠性,在宽范围的输入下,系统效率都趋于98%以上,为实际开发提供一个更具优良性的产品,同时也为车载充电机的安全性与稳定性提供参考。
与相关技术相比较,本发明提供的基于移相全桥控制的双有源DCDC电路拓扑研究方法具有如下有益效果:
1)采用全桥结构有利于通过高频变压器实现电气隔离,将高压动力电池与低压配电电池隔离开来,转换器移动逆变桥的移相角来控制对管将能量传递到二次侧;
2)通过同步整流方式将能量传递到低压电池,在高压电池故障或者是电动汽车启动瞬间带来的电流冲击,将反向充电代替高压电池短时输出作用;
3)能量可以双向流动,并在变压器原边串联了谐振电感,以达到前级H桥在移相控制中实现软开关控制,减小开关损耗;
4)在主功率变压器回路中串联了一个隔直电容,抑制原边电流的反向通路,在滞后桥臂并联二极管和电容,增大滞后桥臂在重载时,加快对原边电压充放电速度,以达到零点压关断,提升系统整体效率;
5)通过将电路进行模块化动态建模,对电路每个周期内的自发的动态变化进行模型化验证,利用Pspice搭建模型进行仿真验证;
6)通过实验台架验证了理论分析,为实际设计开发具有更宽动态性能的转换器提供理论依据。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种基于移相全桥控制的双有源DCDC电路拓扑研究方法,其特征在于,包括以下步骤:
S1:确定双有源桥拓扑结构,通过双有源桥拓扑结构获得双有源桥变压器变比;
S2:所述S1中,移相角在初级与次级电感中转换,可以对双有源桥拓扑结构进行简化,获得双有源桥简化电路,所述简化电路中,v'cd=N*vcd,其中v'cd为变压器副边电压映射在原边侧量,N为变比,vcd为变压器副边电压;
S3:通过改变移相角φ,使变压器原边谐振电感电流在周期内发生变化;
S4:将双有源桥拓扑结构降阶处理,忽略谐振电感的动态变化,得到等效变换电路;
S5:通过等效电路得出,当功率管的应力小且ZVS导通时是线性的变压器理想输出功率具有高密度,在周期内的均值为:
Figure FDA0002619501400000011
Figure FDA0002619501400000012
其中Po为输出功率,N为匝数比,V1为输入电压,V2为输出电压,f为开关频,Lrp为谐振电感;
S6:通过
Figure FDA0002619501400000013
可以的得出等效电路表达式<i2>,取正向角
Figure FDA0002619501400000014
S7:通过引入相移扰动
Figure FDA0002619501400000015
进一步得到扰动下电流
Figure FDA0002619501400000016
从而得出输出电压
Figure FDA0002619501400000017
与移相角
Figure FDA0002619501400000018
的传递函数,
Figure FDA0002619501400000019
S8:通过推导,得出输出电压与移相角传递函数,可知系统开环传递函数为二型系统时可实现稳态无静差,开环传递函数为
Figure FDA0002619501400000021
其中H(s)为电压反馈系数,Fm(s)为输入滤波时间,W(s)为PI调节器;
Figure FDA0002619501400000022
Figure FDA0002619501400000023
S9:搭建仿真实验,所述仿真实验基于Psipse软件平台搭建,选择实验参数;
S10:将实验参数放入仿真模型中各个元器件中,得到仿真结果;
S11:设计实验验证移改进的移相全桥拓扑结构的可行性;
S12:通过多次实验将实验数据不断记录。
2.根据权利要求1所述的基于移相全桥控制的双有源DCDC电路拓扑研究方法,其特征在于,所述S1中,双有源桥变压器变比为14。
3.根据权利要求1所述的基于移相全桥控制的双有源DCDC电路拓扑研究方法,其特征在于,所述S2中,变压器原边谐振电感电流在周期内呈梯形变化。
4.根据权利要求1所述的基于移相全桥控制的双有源DCDC电路拓扑研究方法,其特征在于,所述S9中,实验参数与所述S1-S8保持一致。
5.根据权利要求1所述的基于移相全桥控制的双有源DCDC电路拓扑研究方法,其特征在于,所述S10中,仿真系统采用离散控制模式,仿真步长为1us,PWM频率为100KHz,算法执行周期为30us。
6.根据权利要求1所述的基于移相全桥控制的双有源DCDC电路拓扑研究方法,其特征在于,所述S11中,实验主控芯片为TI的UCC28950移相芯片,驱动芯片采用英飞凌2ED020I12-F1自举型驱动芯片。
7.根据权利要求1所述的基于移相全桥控制的双有源DCDC电路拓扑研究方法,其特征在于,所述S11中,该驱动不隔离,在驱动高压侧SiC-MOSFET时,需用变压器将高低压隔离。
CN202010778921.6A 2020-08-05 2020-08-05 基于移相全桥控制的双有源dcdc电路拓扑研究方法 Pending CN112152461A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010778921.6A CN112152461A (zh) 2020-08-05 2020-08-05 基于移相全桥控制的双有源dcdc电路拓扑研究方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010778921.6A CN112152461A (zh) 2020-08-05 2020-08-05 基于移相全桥控制的双有源dcdc电路拓扑研究方法

Publications (1)

Publication Number Publication Date
CN112152461A true CN112152461A (zh) 2020-12-29

Family

ID=73888375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010778921.6A Pending CN112152461A (zh) 2020-08-05 2020-08-05 基于移相全桥控制的双有源dcdc电路拓扑研究方法

Country Status (1)

Country Link
CN (1) CN112152461A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765408A (zh) * 2021-10-08 2021-12-07 山东大学 基于预测控制的dab变换器关断损耗优化控制方法及系统
CN115912917A (zh) * 2022-12-07 2023-04-04 常熟理工学院 一种谐振双有源桥变换器的不平衡占空比调制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271698A (zh) * 2018-09-10 2019-01-25 国电南瑞科技股份有限公司 一种谐振型双有源桥变换器建模、降阶、设计方法、装置及系统
US20190267907A1 (en) * 2015-03-13 2019-08-29 Ionel Jitaru Phase-shifted full-bridge topology with current injection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190267907A1 (en) * 2015-03-13 2019-08-29 Ionel Jitaru Phase-shifted full-bridge topology with current injection
CN109271698A (zh) * 2018-09-10 2019-01-25 国电南瑞科技股份有限公司 一种谐振型双有源桥变换器建模、降阶、设计方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏志冬: "固态变压器双有源直流变换器研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765408A (zh) * 2021-10-08 2021-12-07 山东大学 基于预测控制的dab变换器关断损耗优化控制方法及系统
CN113765408B (zh) * 2021-10-08 2022-07-12 山东大学 基于预测控制的dab变换器关断损耗优化控制方法及系统
CN115912917A (zh) * 2022-12-07 2023-04-04 常熟理工学院 一种谐振双有源桥变换器的不平衡占空比调制方法及系统
CN115912917B (zh) * 2022-12-07 2023-12-08 常熟理工学院 一种谐振双有源桥变换器的不平衡占空比调制方法及系统

Similar Documents

Publication Publication Date Title
Bi et al. A capacitor clamped H-type boost DC-DC converter with wide voltage-gain range for fuel cell vehicles
Bhat Fixed-frequency PWM series-parallel resonant converter
Yamamoto et al. Bidirectional DC-DC converter with full-bridge/push-pull circuit for automobile electric power systems
Zhou et al. Soft-switching high gain three-port converter based on coupled inductor for renewable energy system applications
Hu et al. A duty-cycle control method to ensure soft-switching operation of a high-power three-phase dual-active bridge converter
Xue et al. A novel bi-directional DC-DC converter for distributed energy storage device
CN112152461A (zh) 基于移相全桥控制的双有源dcdc电路拓扑研究方法
Wang et al. A Dynamic Control Method for Buck+ $ LLC $ Cascaded Converter With a Wide Input Voltage Range
Zhao et al. A structure-reconfigurable LLC resonant converter with wide gain range
Zanatta et al. A two-stage isolated resonant DC-DC converter for wide voltage range operation
Xu et al. A high step up SEPIC-based partial-power converter with wide input range
Hiraki et al. An isolated bidirectional DC-DC soft switching converter for super capacitor based energy storage systems
Mohamed et al. Design and analysis of full bridge LLC resonant converter for wireless power transfer applications
CN109742957B (zh) 一种双环全谐振型软开关变换器
Tsukiyama et al. A new 98% soft-switching full-bridge DC-DC converter based on secondary-side LC resonant principle for PV generation systems
CN115173714A (zh) 一种三相clllc谐振变换器轻载运行控制系统及方法
Le et al. Analysis, design and implementation of a bidirectional three-phase push-pull converter for wide voltage range application
Maurya et al. Design and Simulation of an Half-Bridge LLC Resonant Converter for Battery Charger in EV
Sha et al. Unequal PWM control for a current-fed dc-dc converter for battery application
Liu et al. A hybrid pulse frequency modulation control strategy for L-LLC resonant converter
Sahin et al. A Novel PWM DC–DC Boost Converter with Reduced Voltage Across Filter Capacitance
Nigam et al. Soft switched low stress high efficient ZVT PWM DC-DC converter for renewable energy applications
CN115955122B (zh) 一种双桥串联谐振变换器的无回流调制方法及系统
Mohebifar et al. Dual-output step-down soft switching current-fed full-bridge DC-DC converter
Hasan et al. An Effective DC-DC Charging System Using Voltage Doubler Based Resonant LCC and LLC Converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201229

WD01 Invention patent application deemed withdrawn after publication