CN112147999A - 一种自动驾驶实验agv车辆平台 - Google Patents

一种自动驾驶实验agv车辆平台 Download PDF

Info

Publication number
CN112147999A
CN112147999A CN202010872136.7A CN202010872136A CN112147999A CN 112147999 A CN112147999 A CN 112147999A CN 202010872136 A CN202010872136 A CN 202010872136A CN 112147999 A CN112147999 A CN 112147999A
Authority
CN
China
Prior art keywords
data
agv
personal computer
electric vehicle
industrial personal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010872136.7A
Other languages
English (en)
Other versions
CN112147999B (zh
Inventor
张辉
周绍栋
张思龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202010872136.7A priority Critical patent/CN112147999B/zh
Publication of CN112147999A publication Critical patent/CN112147999A/zh
Application granted granted Critical
Publication of CN112147999B publication Critical patent/CN112147999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开一种自动驾驶实验AGV车辆平台,由环境感知系统感知复杂交通环境的变化;由定位导航系统实现精准定位;由路由器提供可移动的网络数据;由控制决策系统依靠工控机为核心处理器开展各类计算进行实车控制和车辆数据的收发;由路径规划系统主要在电子地图中进行路径规划;由人机交互系统进行工控机的指令输入,以及提供可视化操作界面;由数据传输总线实现车辆实时数据传输;由运动控制系统依靠AGV电动车底盘进行执行,控制AGV电动车底盘的运动控制。还设计人工接管系统,为遥控器,拥有控制的最高权限,在紧急情况下实现对AGV电动车底盘的一键接管。本发明是一种低成本、多功能、多平台的自动驾驶实验AGV车辆平台。

Description

一种自动驾驶实验AGV车辆平台
技术领域
本发明属于一种可用于高校或科研院所开展自动驾驶实验教学与测试的车辆,具体涉及一种自动驾驶实验AGV车辆平台。
背景技术
自动驾驶汽车能够集先进传感器、人工智能、通信技术、大数据和云技术于一身,被认为是引领新一代科技革命的代表性的产品。开展自动驾驶汽车技术的开发成汽车产业和学术机构研究的热点。而自动驾驶相关领域的产品开发、技术测试、功能验证以及人才培养也随之成为推动技术进步和市场应用的关键。
当前工程师和科学家开展的自动驾驶领域试验与测试的主要方法有大概六类:一是基于数据集的试验方法,通过传感器采集道路与环境数据,通过对数据的离线处理实现算法提升和技术研究成果的论证。二是基于仿真环境的,通过虚拟的仿真软件如Carsim、Panosim与Matlab,Simulink联合在虚拟环境中进行自动驾驶模型和算法的验证。三是基于硬件在环的仿真实验。将车辆全部或部分关键硬件在仿真的软件虚拟环境中进行测试和开发。四是用小型模型车在搭建的微型赛道和按比例缩小版场景中进行测试算法以取得更直观的演示效果。五是在封闭测试场测试,采用实车改造的方式,通过对真车加装传感器和工控机进行自动驾驶试验。六是在开放道路的测试,通过对现有道路和交通环境进行一定的改造升级,在划出的开放式道路区域内进行试验。以上可以总结为仿真实验、硬件在环实验和实车测试。以上各有优点也都存在严重不足。仿真实验存在数据量有限以及与真实环境存在差异的弊端,硬件在环虽能够结合硬件,但依然无法面向真实的复杂的交通场景。实车测试又存在安全性、成本高、改造技术门槛高的问题。
因此,设计一种面向真实交通场景的在线测试低成本自动驾驶实验车平台是开展自动驾驶实验和教学硬件保障的关键。不论是对于自动驾驶感知、路径规划和控制的技术开发,还是更加实际和直观的进行车辆学科、计算机学科、自动化学科的人才培养都具有积极意义。
发明内容
针对上述问题,本发明的目的在于提供能够开展自动驾驶课程实验实训和相关领域技术开发与测试的一种低成本、多功能、多平台的自动驾驶实验AGV车辆平台。
本发明自动驾驶实验AGV车辆平台,包括环境感知系统、定位导航系统、路径规划系统、控制决策系统、运动控制系统、人工接管系统与人机交互系统、数据传输总线、路由器与电池组;
所述环境感知系统用于感知复杂交通环境的变化,通过对多传感器的融合和数据处理,识别交通场景、道路、行人、红绿灯、障碍物和基础设置。所述定位导航系统用于精准定位。所述路径规划系统为工控机内设计的路径规划模块,用于在电子地图中进行路径规划。所述控制决策系统为工控机内设计的控制决策模块,依靠工控机通过对当前车辆位置与规划轨迹的偏差,计算控制量,从而得到车辆的目标速度与目标转角,实现车辆的横纵向控制,再将控制指令变为CAN报文下发给AGV电动车底盘执行。
上述工控机通过接收来自惯导模块的定位数据、激光雷达采集的激光点云数据、相机的图像数据、毫米波雷达的前方障碍物距离数据、超声波雷达采集超声波反射的距离数据、路由器的网络数据以及车辆反馈的转向数据和加减速数据。同时,工控机输出指令控制车辆的转向控制系统、油门系统和制动系统以及各个传感器的可视化图形界面。
所述运动控制系统用于对AGV电动车底盘进行控制。所述人机交互系统用于工控机数据及控制指令的输入,以及为用户提供可视化操作界面。所述人工接管系统为遥控器,拥控制的最高权限,在紧急情况下实现对AGV电动车底盘的一键接管。所述数据传输总线主要用于传输车辆实时数据包括速度、转向等参数。数据传输总线发送给AGV电动车底盘的执行机构指令,反馈来自AGV电动车底盘的速度和转角,使用者可以通过遥控器或者工控机发送控制命令控制AGV电动车底盘,反馈信号也通过数据传输总线反馈电机转速、电机扭矩和故障信息。所述路由器用于为工控机提供可移动的网络数据。所述电池组用于为上述设备供电。
本发明的优点在于:
1、本发明自动驾驶实验AGV车辆平台,能够实现多功能的测试和实验,功能包括自动驾驶导航、循迹、车道线检测、模式识别、视觉图像处理、SLAM、多传感器融合等功能。
2、本发明自动驾驶实验AGV车辆平台,实现了软硬件一体化设计,能够帮助技术开发者和使用者进入实车试验,方便开发人员和实验者自行对小车的硬件根据需要进行改装,加速自动驾驶研发进程。
3、本发明自动驾驶实验AGV车辆平台,提供的方案兼顾硬件性能配置与成本,在保证硬件性能的前提下,选择最优配置和最低成本,能够促进产品的推广和应用。
4、本发明自动驾驶实验AGV车辆平台,具备安全性高,在实验过程中一旦发生危险后,使用者可以通过遥控器进行一键接管,进行紧急制动。
附图说明
图1为本发明自动驾驶实验AGV车辆平台结构示意图。
图2为本发明自动驾驶实验AGV车辆平台系统示意图。
图1:
1-激光雷达 2-GNSS天线 3-惯导模块
4-后雷达支架 5-工控机 6-后轮
7-相机 8-显示器 9-电池组
10-毫米波雷达 11-前雷达支架 12-超声波雷达
13-可拓展支架 14-前轮 15-路由器
16-AGV电动车底盘 17-传感器支架
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明自动驾驶实验AGV车辆平台,包括环境感知系统、定位导航系统、路径规划系统、控制决策系统、运动控制系统、人工接管系统与人机交互系统、数据传输总线以及路由器15与电池组9;
所述环境感知系统包括激光雷达1、相机7、毫米波雷达10、超声波雷达12与信息处理系统,用于感知复杂交通环境的变化,通过对多传感器的融合和数据处理,识别交通场景、道路、行人、红绿灯、障碍物和基础设施。
其中,激光雷达1为16线激光雷达,通过传感器支架17架设在AGV电动车底盘16中部安装的竖直设置的支架顶端,高于AGV电动车底盘16上的其他设备,保证其四周无遮挡,用来实时采集并发送周围物体与激光雷达1间的距离,有效测量范围可达100m,垂直测量角度为30°,在ROS系统中构建实时地图或录制三维数据。也可根据使用者需求在AGV电动车底盘16前端与后端安装的支架顶部安装激光雷达1。上述激光雷达1的连接线束两端,一端接在激光雷达1上,另一端接在激光雷达1的分线盒上。分线盒的数据传输线通过以太网接口RJ45接口与工控机5相连,将激光雷达1采集的数据处理后发送给工控机5做进一步处理。分线盒由电池组9提供12V直流电压进行供电。
所述相机7安装于前述AGV电动车底盘16中部的竖直支架上,靠近支架顶端处分支处的传感器支架17上,使相机7位于激光雷达1下方,分辨率不小于1920*1080,支持H.264、SVC、UVC 1.5视频编码,相机7亦可增设为双目甚至三目,前瞻角能够覆盖前方道路。相机7用于进行车道线检测、车道线保持、多目标识别与分类的实验。相机7所采集的图像信号传输到工控机5中做进一步的图像处理。
所述毫米波雷达10安装于车辆前端面上方,为长距离77GHz毫米波雷达10,实时扫描,确定AGV电动车底盘16前端与物体的距离,具有每秒17次的实时扫描功能。能够发送和接收电磁波,通过发送与接收的电磁波相位差,检测得到原始数据,通过毫米波雷达10内部处理芯片与算法,得到有效目标的距离、相对速度和两个对象的角度关系。毫米波雷达10通过CAN结构,以CAN报文的形式,将有效目标的距离、相对速度和两个对象的角度关系发送给工控机5。
所述超声波雷达12安装于AGV电动车底盘16前端安装的前雷达支架11与后端安装的后雷达支架4上,利用多普勒效应,通过采集处理超声波信号和对采集到的信号进行避障算法处理等,实时检测AGV电动车底盘16前端与前方障碍物的距离,或后端与后方障碍物的距离,可开展基于超声波雷达12的测距与避障实验等。
所述信息处理系统为工控机5中设计的信息处理模块,用于实现前述激光雷达1采集数据、相机7采集图像信号、毫米波雷达10采集的有效目标的距离、相对速度和两个对象的角度关系以及超声波雷达12采集到的超声波信号进行过处理。
所述定位导航系统包括GNSS天线2与惯导模块3。
其中,GNSS天线2安装于AGV电动车底盘16前部与后部的支撑架上,通过GNSS天线2底部强吸力磁铁吸附固定于支撑架顶面。GNSS天线2用来进行GNSS-RTK的差分定位,在无高楼、隧道等遮蔽物遮挡信号条件良好的情况下定位精度能够达到厘米级,与惯导模块3配合使用,GNSS天线2线束均与惯导模块3相连。
所述惯导模块3安装于AGV电动车底盘16后轴正中心位置上方,固定于前述AGV电动车底盘16后部GNSS天线2所在的支撑架顶面下表面上。惯导模块3共有两个GNSS天线2的插口,GNSS天线2的数据传输给惯导模块3结合使用实现更精准的定位。惯导模块3表面下方还有一个综合的线束插口,分出多个接口与其他设备相连,具体为:惯导模块3综合线束中的一个网线接口与路由器15相连,通过路由器15接收附近基站传来的GNSS差分信息,减少定位误差。惯导模块3综合线束分出的另一个USB接口与工控机5相连,为工控机5传输融合GNSS天线2和惯导模块3数据后的定位信息。惯导模块3综合线束有激光雷达1的授时分线束,主要是对激光雷达1进行授时,统一惯导模块3与激光雷达1的同步时间。
所述路径规划系统为工控机5内设计的路径规划模块;其中,路径规划模块用于在电子地图中进行路径规划。电子地图可以是通过预先录制于工控机5内的高精度地图,也可以是通过本实验平台的激光雷达1或相机7录制的数据。
所述控制决策系统为工控机5内设计的控制决策模块,主要依靠工控机5通过对当前车辆位置与规划轨迹的偏差,计算控制量,从而得到车辆的目标速度与目标转角,实现车辆的横纵向控制,再将控制指令变为CAN报文下发给AGV电动车底盘16执行。
所述人机交互系统主要包括显示器8与键盘。
其中,显示器8用于显示车辆状态和传感器数据处理结果,包括对激光点云数据进行可视化、车道线识别结果、多目标的识别和分类、自动驾驶循迹、各个传感器的可视化图形界面等可视化操作界面,为使用者提供实验结果。
键盘用于向工控机5输入数据或控制指令的输入。键盘为无线键盘,通过无线USB模块与工控机5相连。在底盘控制实验中,使用者通过键盘设置AGV电动车底盘16数据和发送油门、制动和转向指令,也可以过键盘输入其他实验程序代码,操作自动驾驶实验AGV车辆平台的系统运行。
上述工控机5安装固定于AGV电动车底盘16一侧的平台上,支持GPU高端显卡的工业级宽温型车载嵌入式工控机5,有高速的内存、储存配合,完全具备实现自动驾驶相应功能的计算处理条件,提供丰富的包括可扩展CAN总线的采集卡插槽。工控机5分别通过接收来自惯导模块3的定位数据、激光雷达1采集的激光点云数据、相机7的图像数据、毫米波雷达毫米波雷达10的前方障碍物距离数据、超声波雷达12采集超声波反射的距离数据、路由器15的网络数据以及车辆反馈的转向数据和加减速数据。同时,工控机5输出指令控制车辆的转向控制系统、油门系统和制动系统以及各个传感器的可视化图形界面。
所述路由器15安装于AGV电动车底盘16上信号遮挡不严重位置,其内有工业物联网不低于4G数据标准的SIM卡,可以接收移动互联网的数据,路由器15有一个网线接口与工控机5相连,为工控机5提供可移动的网络数据。路由器15由电池组9提供12V电源。
所述电池组9安装于AGV电动车底盘16一侧的安装平台上,位置与工控机5相对。电池组9分别能够提供5V,12V和24V多种直流和220v交流电源输出,24V的直流电源输出为工控机5供电,12V直流电源分别为环境感知系统的传感器供电和4G路由器15供电,220V交流电源主要为显示器8供电,220V交流电是通过逆变器进行的转换。
所述可拓展支架13安装于AGV电动车底盘16前部与后部的GNSS支撑架上表面固定的横梁左右两端,分别位于AGV电动车底盘16周向四角位置,设计为可安装各类传感器的矩形平台,使用者可根据自身研究工作需要增设超声波雷达12或者毫米波雷达10,同时起到碰撞防护、保护车载设备受损的作用。
上述提及的AGV电动车底盘16尺寸长度位于1米~1.4米,宽度0.5米~0.7米,高度不高于0.4米,质量小于40kg,最大速递85km/h,日常实验常规速度不大于30km/h。AGV电动车底盘16包括车身、悬架、数据传输总线(can)、前轮14、后轮6。所述前轮14为转向轮,所述后轮6为驱动轮,两个驱动轮分别由两个驱动电机提供动力。悬架为赛车三弹簧设计,可有效抑制车辆俯仰和侧倾。
AGV电动车底盘16具有运动控制系统进行控制,包括速度控制系统、转向控制系统。其中,速度控制系统包括油门系统和制动系统。油门系统通过油门机构进行执行,独立驱动两个驱动轮的驱动电机。制动系统通过电机减速执行。转向控制系统,依靠转向机构执行,直接作用于前轮14。
所述人工接管系统为遥控器18,在实验过程中,遥控器拥自动驾驶实验AGV车辆平台控制的最高权限,在紧急情况下实现对AGV电动车底盘16的一键接管。遥控器18数据直接通过无线信号与车辆数据总线上的信号接收器通信,可以控制车辆的油门系统和制动系统进行加减速和刹车,控制转向控制系统操控AGV电动车底盘16转向。
所述数据传输总线主要用于传输车辆实时数据包括速度、转向等参数。数据传输总线通过工控机5上的CAN卡驱动与工控机5相连,发送给AGV电动车底盘16的执行机构指令,反馈来自AGV电动车底盘16的速度和转角,使用者可以通过遥控器或者工控机5发送控制命令控制AGV电动车底盘16,反馈信号也通过数据传输总线反馈电机转速、电机扭矩和故障信息。
通过本发明提供的一种自动驾驶实验AGV车辆平台,可以开展底盘通信与控制实验、激光雷达1建图与定位实验、视觉车道线检测实验、多目标识别实验、车道线保持实验、超声波避障实验、激光雷达1实验、基于RTK的自动驾驶循迹实验等教学实验,可以开展自动驾驶感知算法的试验测试和控制理论和算法的研究验证。

Claims (7)

1.一种自动驾驶实验AGV车辆平台,其特征在于:包括环境感知系统、定位导航系统、路径规划系统、控制决策系统、运动控制系统、人工接管系统与人机交互系统、数据传输总线、路由器与电池组;
所述环境感知系统用于感知复杂交通环境的变化,通过对多传感器的融合和数据处理,识别交通场景、道路、行人、红绿灯、障碍物和基础设置;
所述定位导航系统用于精准定位;
所述路径规划系统为工控机内设计的路径规划模块,用于在电子地图中进行路径规划。
所述控制决策系统为工控机内设计的控制决策模块,依靠工控机通过对当前车辆位置与规划轨迹的偏差,计算控制量,从而得到车辆的目标速度与目标转角,实现车辆的横纵向控制,再将控制指令变为CAN报文下发给AGV电动车底盘执行;
上述工控机通过接收来自惯导模块的定位数据、激光雷达采集的激光点云数据、相机的图像数据、毫米波雷达的前方障碍物距离数据、超声波雷达采集超声波反射的距离数据、路由器的网络数据以及车辆反馈的转向数据和加减速数据;同时,工控机输出指令控制车辆的转向控制系统、油门系统和制动系统以及各个传感器的可视化图形界面;
所述运动控制系统用于对AGV电动车底盘进行控制;
所述人机交互系统用于工控机数据及控制指令的输入,以及为用户提供可视化操作界面;
所述人工接管系统为遥控器,拥有控制的最高权限,在紧急情况下实现对AGV电动车底盘的一键接管;
所述数据传输总线主要用于传输车辆实时数据包括速度、转向等参数;数据传输总线发送给AGV电动车底盘的执行机构指令,反馈来自AGV电动车底盘的速度和转角,使用者可以通过遥控器或者工控机发送控制命令控制AGV电动车底盘,反馈信号也通过数据传输总线反馈电机转速、电机扭矩和故障信息;
所述路由器用于为工控机提供可移动的网络数据;
所述电池组用于为上述设备供电。
2.如权利要求1所述一种自动驾驶实验AGV车辆平台,其特征在于:环境感知系统包括激光雷达、相机、毫米波雷达、超声波雷达与信息处理系统;其中,激光雷达用来实时采集并发送周围物体与激光雷达间的距离,在ROS系统中构建实时地图或录制三维数据;相机用于进行车道线检测、车道线保持、多目标识别与分类的实验;毫米波雷达通过发送与接收的电磁波相位差,检测得到原始数据,通过毫米波雷达内部处理芯片与算法,得到有效目标的距离、相对速度和两个对象的角度关系;超声波雷达通过采集处理超声波信号和对采集到的信号进行避障算法处理等,实时检测AGV电动车底盘前端与前方障碍物的距离;信息处理系统为工控机中设计的信息处理模块,用于实现前述激光雷达采集数据、相机采集图像信号、毫米波雷达采集的有效目标的距离、相对速度和两个对象的角度关系以及超声波雷达采集到的超声波信号进行过处理。
3.如权利要求1所述一种自动驾驶实验AGV车辆平台,其特征在于:定位导航系统包括GNSS天线与惯导模块;其中,GNSS天线用来进行GNSS-RTK的差分定位;惯导模块共有两个GNSS天线的插口,GNSS天线的数据传输给惯导模块结合使用实现更精准的定位;惯导模块表面下方还有一个综合的线束插口,分出多个接口与其他设备相连,具体为:惯导模块综合线束中的一个网线接口与路由器相连,通过路由器接收附近基站传来的GNSS差分信息,减少定位误差;惯导模块综合线束分出的另一个USB接口与工控机相连,为工控机传输融合GNSS天线和惯导模块数据后的定位信息;惯导模块综合线束有激光雷达的授时分线束,对激光雷达进行授时,统一惯导模块与激光雷达的同步时间。
4.如权利要求1所述一种自动驾驶实验AGV车辆平台,其特征在于:人机交互系统包括显示器与键盘;其中,显示器用于显示车辆状态和传感器数据处理结果,包括对激光点云数据进行可视化、车道线识别结果、多目标的识别和分类、自动驾驶循迹、各个传感器的可视化图形界面等可视化操作界面,为使用者提供实验结果;键盘用于向工控机输入数据或控制指令的输入,采用无线键盘,通过无线USB模块与工控机相连;使用者通过键盘设置AGV电动车底盘数据和发送油门、制动和转向指令,也可以过键盘输入其他实验程序代码,操作自动驾驶实验AGV车辆平台的系统运行。
5.如权利要求1所述一种自动驾驶实验AGV车辆平台,其特征在于:电池组能提供5V,12V和24V多种直流和220v交流电源输出,24V的直流电源输出为工控机供电,12V直流电源分别为环境感知系统的传感器供电和4G路由器供电,220V交流电源主要为显示器8供电,220V交流电是通过逆变器进行的转换。
6.如权利要求1所述一种自动驾驶实验AGV车辆平台,其特征在于:运动控制系统包括速度控制系统、转向控制系统;其中,速度控制系统包括油门系统和制动系统;油门系统通过油门机构进行执行,独立驱动两个驱动轮的驱动电机;制动系统通过电机减速执行。转向控制系统,依靠转向机构执行,直接作用于前轮。
7.如权利要求1所述一种自动驾驶实验AGV车辆平台,其特征在于:激光雷达为线激光雷达,通过传感器支架架设在AGV电动车底盘中部安装的竖直设置的支架顶端,有效测量范围可达100m,垂直测量角度为30°;相机安装于前述AGV电动车底盘中部的竖直支架上,靠近支架顶端处分支处的传感器支架上,使相机位于激光雷达下方;相机分辨率不小于1920*1080,支持H.264、SVC、UVC 1.5视频编码,相机可增设为双目甚至三目,前瞻角能够覆盖前方道路;毫米波雷达安装于车辆前端面上方,为长距离77GHz毫米波雷达;超声波雷达安装于AGV电动车底盘前端面下方安装的支架前端;GNSS天线安装于AGV电动车底盘前部与后部的支撑架上,通过GNSS天线底部强吸力磁铁吸附固定于支撑架顶面;惯导模块安装于AGV电动车底盘后轴正中心位置上方,固定于前述AGV电动车底盘后部GNSS天线所在的支撑架顶面下表面上;工控机安装固定于AGV电动车底盘一侧的平台上;电池组安装于AGV电动车底盘一侧的安装平台上,位置与工控机相对。
CN202010872136.7A 2020-08-26 2020-08-26 一种自动驾驶实验agv车辆平台 Active CN112147999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010872136.7A CN112147999B (zh) 2020-08-26 2020-08-26 一种自动驾驶实验agv车辆平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010872136.7A CN112147999B (zh) 2020-08-26 2020-08-26 一种自动驾驶实验agv车辆平台

Publications (2)

Publication Number Publication Date
CN112147999A true CN112147999A (zh) 2020-12-29
CN112147999B CN112147999B (zh) 2021-09-21

Family

ID=73888881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010872136.7A Active CN112147999B (zh) 2020-08-26 2020-08-26 一种自动驾驶实验agv车辆平台

Country Status (1)

Country Link
CN (1) CN112147999B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242531A (zh) * 2021-05-07 2021-08-10 上海振华重工(集团)股份有限公司 Agv遥控器和agv车辆匹配方法及agv匹配系统
CN113419122A (zh) * 2021-05-14 2021-09-21 同济大学 一种自动驾驶汽车感知系统测试平台及测试方法
CN113515118A (zh) * 2021-04-21 2021-10-19 北京理工大学 可移动教学平台
CN113740077A (zh) * 2021-09-13 2021-12-03 广州文远知行科技有限公司 车辆底盘测试方法、装置、设备及存储介质
CN113885515A (zh) * 2021-10-25 2022-01-04 北京轻舟智航科技有限公司 一种连接多种自动驾驶传感器的网络架构系统
CN114063497A (zh) * 2021-11-04 2022-02-18 上海智能网联汽车技术中心有限公司 基于四轮驱动及转向底盘的远程控制循迹系统及方法
CN114228626A (zh) * 2021-12-17 2022-03-25 广东皓行科技有限公司 自动驾驶控制系统、农业运输设备及其运输方法
CN114415666A (zh) * 2021-12-21 2022-04-29 东风悦享科技有限公司 一种交互式多驾驶模式自动驾驶小车控制方法
CN114844811A (zh) * 2022-03-31 2022-08-02 广西玉柴机器股份有限公司 一种车载终端的测试方法及测试系统
CN114879620A (zh) * 2022-05-26 2022-08-09 宁波舜宇贝尔自动化有限公司 一种基于ros的agv控制系统
CN115214494A (zh) * 2022-07-14 2022-10-21 安徽一维新能源技术有限公司 一种支持ros系统的高精度底盘控制系统
CN116989799A (zh) * 2023-09-27 2023-11-03 武汉理工大学 自定义全覆盖路径规划算法及机器人实验平台
CN117521422A (zh) * 2024-01-05 2024-02-06 吉林省知云科技有限公司 一种基于沉浸式分队行为仿真系统及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206421229U (zh) * 2017-01-22 2017-08-18 无锡卡尔曼导航技术有限公司 一种基于北斗的农机自动驾驶控制装置
CN107214680A (zh) * 2017-06-14 2017-09-29 成都跃龙科技有限公司 一种用于教学实验的运动控制机器人
US20170312916A1 (en) * 2015-01-06 2017-11-02 Discovery Robotics Apparatus and methods for providing a reconfigurable robotic platform
CN107422730A (zh) * 2017-06-09 2017-12-01 武汉市众向科技有限公司 基于视觉导引的agv运输系统及其驾驶控制方法
CN108445885A (zh) * 2018-04-20 2018-08-24 鹤山东风新能源科技有限公司 一种基于纯电动物流车的自动驾驶系统及其控制方法
CN108845579A (zh) * 2018-08-14 2018-11-20 苏州畅风加行智能科技有限公司 一种港口车辆的自动驾驶系统及其方法
CN109187041A (zh) * 2018-07-19 2019-01-11 山东省科学院自动化研究所 一种用于自动驾驶测试场的无人测试车平台及方法
CN109752008A (zh) * 2019-03-05 2019-05-14 长安大学 智能车多模式协同定位系统、方法及智能车辆
CN111169389A (zh) * 2020-01-20 2020-05-19 中汽数据(天津)有限公司 一种多传感器融合智能集成车及其装调方法
CN111367273A (zh) * 2019-12-31 2020-07-03 天嘉智能装备制造江苏股份有限公司 基于路径跟踪的无人驾驶小型扫路车控制系统及其控制方法
CN111462481A (zh) * 2020-03-03 2020-07-28 北京理工大学 包含多功能无人车的云大脑智能交通系统
EP3686705A1 (de) * 2019-01-25 2020-07-29 Siemens Aktiengesellschaft Roboter und verfahren zur steuerung eines mobilen roboters in einem raum

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170312916A1 (en) * 2015-01-06 2017-11-02 Discovery Robotics Apparatus and methods for providing a reconfigurable robotic platform
CN206421229U (zh) * 2017-01-22 2017-08-18 无锡卡尔曼导航技术有限公司 一种基于北斗的农机自动驾驶控制装置
CN107422730A (zh) * 2017-06-09 2017-12-01 武汉市众向科技有限公司 基于视觉导引的agv运输系统及其驾驶控制方法
CN107214680A (zh) * 2017-06-14 2017-09-29 成都跃龙科技有限公司 一种用于教学实验的运动控制机器人
CN108445885A (zh) * 2018-04-20 2018-08-24 鹤山东风新能源科技有限公司 一种基于纯电动物流车的自动驾驶系统及其控制方法
CN109187041A (zh) * 2018-07-19 2019-01-11 山东省科学院自动化研究所 一种用于自动驾驶测试场的无人测试车平台及方法
CN108845579A (zh) * 2018-08-14 2018-11-20 苏州畅风加行智能科技有限公司 一种港口车辆的自动驾驶系统及其方法
EP3686705A1 (de) * 2019-01-25 2020-07-29 Siemens Aktiengesellschaft Roboter und verfahren zur steuerung eines mobilen roboters in einem raum
CN109752008A (zh) * 2019-03-05 2019-05-14 长安大学 智能车多模式协同定位系统、方法及智能车辆
CN111367273A (zh) * 2019-12-31 2020-07-03 天嘉智能装备制造江苏股份有限公司 基于路径跟踪的无人驾驶小型扫路车控制系统及其控制方法
CN111169389A (zh) * 2020-01-20 2020-05-19 中汽数据(天津)有限公司 一种多传感器融合智能集成车及其装调方法
CN111462481A (zh) * 2020-03-03 2020-07-28 北京理工大学 包含多功能无人车的云大脑智能交通系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王兴松: "《Mecanum轮全方位移动机器人原理与应用》", 30 June 2018, 《东南大学出版社》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113515118A (zh) * 2021-04-21 2021-10-19 北京理工大学 可移动教学平台
CN113242531A (zh) * 2021-05-07 2021-08-10 上海振华重工(集团)股份有限公司 Agv遥控器和agv车辆匹配方法及agv匹配系统
CN113419122A (zh) * 2021-05-14 2021-09-21 同济大学 一种自动驾驶汽车感知系统测试平台及测试方法
CN113740077A (zh) * 2021-09-13 2021-12-03 广州文远知行科技有限公司 车辆底盘测试方法、装置、设备及存储介质
CN113885515B (zh) * 2021-10-25 2023-06-09 北京轻舟智航科技有限公司 一种连接多种自动驾驶传感器的网络架构系统
CN113885515A (zh) * 2021-10-25 2022-01-04 北京轻舟智航科技有限公司 一种连接多种自动驾驶传感器的网络架构系统
CN114063497A (zh) * 2021-11-04 2022-02-18 上海智能网联汽车技术中心有限公司 基于四轮驱动及转向底盘的远程控制循迹系统及方法
CN114228626A (zh) * 2021-12-17 2022-03-25 广东皓行科技有限公司 自动驾驶控制系统、农业运输设备及其运输方法
CN114415666A (zh) * 2021-12-21 2022-04-29 东风悦享科技有限公司 一种交互式多驾驶模式自动驾驶小车控制方法
CN114844811A (zh) * 2022-03-31 2022-08-02 广西玉柴机器股份有限公司 一种车载终端的测试方法及测试系统
CN114844811B (zh) * 2022-03-31 2024-03-01 广西玉柴机器股份有限公司 一种车载终端的测试方法及测试系统
CN114879620A (zh) * 2022-05-26 2022-08-09 宁波舜宇贝尔自动化有限公司 一种基于ros的agv控制系统
CN115214494A (zh) * 2022-07-14 2022-10-21 安徽一维新能源技术有限公司 一种支持ros系统的高精度底盘控制系统
CN116989799A (zh) * 2023-09-27 2023-11-03 武汉理工大学 自定义全覆盖路径规划算法及机器人实验平台
CN117521422A (zh) * 2024-01-05 2024-02-06 吉林省知云科技有限公司 一种基于沉浸式分队行为仿真系统及方法

Also Published As

Publication number Publication date
CN112147999B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN112147999B (zh) 一种自动驾驶实验agv车辆平台
CN105892489A (zh) 一种基于多传感器融合的自主避障无人机系统及控制方法
CN110550029B (zh) 障碍物避让方法及装置
CN214151498U (zh) 一种车辆控制系统及车辆
CN104732835B (zh) 一种体育场智能缩微车辆教学装置
CN106774291A (zh) 一种自动驾驶电动汽车的电控系统
CN108062111A (zh) 一种多旋翼无人机自主避障装置和避障方法
CN111813130A (zh) 一种输变电站智能巡检机器人自主导航避障系统
CN112526968B (zh) 映射真实世界道路条件的自动驾驶虚拟测试平台搭建方法
CN111824180A (zh) 具有融合避障功能的无人矿车自动驾驶控制系统
CN111459172A (zh) 围界安防无人巡逻车自主导航系统
CN109976327A (zh) 一种巡逻机器人
CN212515475U (zh) 一种输变电站智能巡检机器人自主导航避障系统
CN109828587A (zh) 一种避障系统及避障方法
CN112947377A (zh) 一种自动驾驶汽车整车在环测试的目标车运动承载平台
CN113140140A (zh) 一种具有自动驾驶功能的教育培训用驾驶车
CN115951678A (zh) 一种用于电子导向胶轮车的自动驾驶系统
CN112611374A (zh) 基于激光雷达和深度相机的路径规划及避障的方法及系统
CN116069037A (zh) 无人车编队轨迹规划控制方法、装置、设备及存储介质
CN114167752A (zh) 一种车辆主动安全系统的仿真测试方法和系统装置
CN112162540B (zh) 一种用于adas实验和自动驾驶测试的载人车辆实验平台
JP2019519051A (ja) 知的照明システム、照明デバイス、車両、車載端末、車両運転支援システム及び車両運転支援方法
Liu et al. The multi-sensor fusion automatic driving test scene algorithm based on cloud platform
CN212683969U (zh) 一种果园多机器人物理模型
CN108227720A (zh) 一种四轮驱动高速全天候无人驾驶巡逻车系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant