CN112133830A - A 2-T perovskite tandem solar cell module and its preparation method - Google Patents

A 2-T perovskite tandem solar cell module and its preparation method Download PDF

Info

Publication number
CN112133830A
CN112133830A CN202010956503.1A CN202010956503A CN112133830A CN 112133830 A CN112133830 A CN 112133830A CN 202010956503 A CN202010956503 A CN 202010956503A CN 112133830 A CN112133830 A CN 112133830A
Authority
CN
China
Prior art keywords
layer
perovskite
charge transport
transport layer
tandem solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010956503.1A
Other languages
Chinese (zh)
Inventor
毕恩兵
陈汉
邵冒磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Liyuan New Energy Technology Co ltd
Original Assignee
Shanghai Liyuan New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Liyuan New Energy Technology Co ltd filed Critical Shanghai Liyuan New Energy Technology Co ltd
Priority to CN202010956503.1A priority Critical patent/CN112133830A/en
Publication of CN112133830A publication Critical patent/CN112133830A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention discloses a 2-T perovskite laminated solar cell module and a preparation method thereof, wherein a plurality of single 2-T perovskite laminated solar cells are connected in series through a connecting structure, the connecting structure comprises a P1 insulating region for dividing two adjacent single 2-T perovskite laminated solar cell TCO conducting layers, a P2 connecting region for connecting two adjacent single 2-T perovskite laminated solar cells in series and a P3 separating region for dividing two adjacent single 2-T perovskite laminated solar cell counter electrode layers, and the plurality of single 2-T perovskite laminated solar cells are respectively arranged on the same piece of substrate transparent conducting glass. The preparation process provided by the invention can divide the large-area 2-T perovskite tandem solar cell into the sub-cell series connection structure, the structure is stable, the filling factor is improved, the open-circuit voltage is increased, the sunlight utilization rate is high, the conversion efficiency of a large-area cell module is further improved, and the cell module prepared by the commercial value of the tandem solar cell is embodied.

Description

一种2-T钙钛矿叠层太阳能电池模块及其制备方法A 2-T perovskite tandem solar cell module and its preparation method

技术领域technical field

本发明涉及太阳能电池技术领域,尤其涉及一种2-T钙钛矿叠层太阳能电池模块及其制备方法。The invention relates to the technical field of solar cells, in particular to a 2-T perovskite stacked solar cell module and a preparation method thereof.

背景技术Background technique

近几年来叠层太阳能电池由于其光谱利用率较高,具有比单节太阳能电池更高的转换效率的特点受到了越来越多的关注。钙钛矿太阳能电池(PSC)的迅速崛起,使研究人员的目光不约而同地汇聚到了钙钛矿叠层太阳能电池上,经过大量研究,目前PSC/Si、PSC/CIGS等叠层结构的电池取得了较大成果,但由于大部分叠层电池采用4-T叠层方式,因其顶电池与底电池需分别制备,工艺繁杂,损耗较多,成本较高,不适用于大面积模块制备。In recent years, tandem solar cells have attracted more and more attention due to their higher spectral utilization and higher conversion efficiency than single-cell solar cells. The rapid rise of perovskite solar cells (PSCs) has led researchers to focus on perovskite tandem solar cells. However, since most of the stacked cells adopt the 4-T stacking method, the top cell and the bottom cell need to be prepared separately, the process is complicated, the loss is high, and the cost is high, so it is not suitable for large-area module preparation.

现有申请号为201920080160.X的中国专利公开了一种2-T锡钙钛矿-钙钛矿电池叠层电池,该电池利用两种不同成分钙钛矿的带隙不同,从而使得太阳光得到充分有效地吸收,提高电池的光电转换效率,但是该叠层电池与钙钛矿电池的固有限制一样,仅能在小面积的器件上有所建树,无法在大面积电池上体现出更高的转换效率,从而无法实现其商业化价值。现有申请公布号为CN110797460A的中国专利公开了一次切割的钙钛矿太阳能电池组件及其制备方法,其包括若干个依次串联的子电池,每个子电池由下往上包括基底、导电层、前电性传输层、钙钛矿层、后电性传输层和背电极,相邻两个子电池之间设置切割线,切割线从上往下依次切断背电极、后电性传输层、钙钛矿层、前电性传输层和导电层,从第二个子电池开始往后至第n个子电池的一侧分别设置了刮膜线,刮膜线从上往下依次切断背电极、后电性传输层、钙钛矿层和前电性传输层,使得该子电池在其导电层上露出导电段;在电池组件上还设置了若干导线将前一个子电池的背电极与后一个子电池的导电段连接。但是,该现有技术只涉及到单种带隙的钙钛矿材料,太阳光无法得到更有效地利用,继而减弱其竞争力,且在实际操作上较难实现将导电线焊于厚度仅有微米级的子电池两侧,这样成本也比较高。The Chinese patent with the existing application number of 201920080160.X discloses a 2-T tin perovskite-perovskite battery tandem battery, which utilizes the different band gaps of two different perovskite components, so that sunlight It can be fully and effectively absorbed to improve the photoelectric conversion efficiency of the battery. However, the tandem battery, like the inherent limitation of the perovskite battery, can only make achievements in small-area devices, and cannot be reflected in large-area batteries. conversion efficiency, so that its commercial value cannot be realized. The Chinese patent with the existing application publication number CN110797460A discloses a perovskite solar cell assembly and a preparation method thereof that is cut once, which includes several sub-cells connected in series in sequence, and each sub-cell includes a substrate, a conductive layer, a front The electrical transport layer, the perovskite layer, the back electrical transport layer and the back electrode, a cutting line is set between the two adjacent sub-cells, and the cutting line cuts the back electrode, the back electrical transport layer, the perovskite layer, The front electrical transmission layer and the conductive layer are respectively provided with scraping lines from the second sub-battery to the side of the n-th sub-battery, and the scraping lines cut off the back electrode, the rear electrical transport layer, The perovskite layer and the front electrical transport layer make the sub-battery expose conductive segments on its conductive layer; a number of wires are also arranged on the battery component to connect the back electrode of the former sub-battery with the conductive segments of the latter sub-battery. However, the prior art only involves perovskite materials with a single bandgap, and sunlight cannot be used more effectively, thereby weakening its competitiveness, and it is difficult to realize the practical operation of bonding conductive wires to only a thickness of On both sides of the micron-scale sub-cell, the cost is also relatively high.

因此设计提供一种适用于大面积、可一体化制备的叠层太阳能电池模块及其制备方法是业界亟待解决的问题。Therefore, it is an urgent problem to be solved in the industry to design and provide a tandem solar cell module suitable for large-area and integrated fabrication and a fabrication method thereof.

发明内容SUMMARY OF THE INVENTION

本发明的目的是针对现有技术中的不足,提供一种2-T钙钛矿叠层太阳能电池模块及其制备方法,该电池模块结构稳定,太阳光利用率高,且具有较高的光电转换效率。The purpose of the present invention is to provide a 2-T perovskite laminated solar cell module and a preparation method thereof in view of the deficiencies in the prior art. The cell module has stable structure, high utilization rate of sunlight, and high photoelectricity. conversion efficiency.

为实现上述目的,本发明采取的技术方案是:For realizing the above-mentioned purpose, the technical scheme that the present invention takes is:

本发明第一方面提供一种2-T钙钛矿叠层太阳能电池模块,由若干单节2-T钙钛矿叠层太阳能电池通过连接结构串联而成,所述连接结构包括分割相邻两个所述单节2-T钙钛矿叠层太阳能电池TCO导电层的P1绝缘区、串联相邻两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区以及分割相邻两个所述单节2-T钙钛矿叠层太阳能电池对电极层的P3隔断区,若干所述单节2-T钙钛矿叠层太阳能电池分置于同一块基底透明导电玻璃上。A first aspect of the present invention provides a 2-T perovskite tandem solar cell module, which is formed by connecting a plurality of single-cell 2-T perovskite tandem solar cells in series through a connection structure, wherein the connection structure includes dividing two adjacent The P1 insulating region of the TCO conductive layer of the single-cell 2-T perovskite tandem solar cell, the P2 connecting region of the two adjacent single-cell 2-T perovskite tandem solar cells in series, and the dividing adjacent regions Two of the single-cell 2-T perovskite tandem solar cells are opposed to the P3 blocking region of the electrode layer, and a plurality of the single-cell 2-T perovskite tandem solar cells are placed on the same base transparent conductive glass.

优选地,所述单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃、TCO导电层、第一电荷传输层、至少能吸收短波长光线而使长波长光线完全通过的第一钙钛矿吸光层、第二电荷传输层、透明导电电极、第三电荷传输层、能吸收太阳光绝大部分波长光线的第二钙钛矿吸光层、第四电荷传输层和对电极层,所述单节2-T钙钛矿叠层太阳能电池的对电极层与其相邻所述单节2-T钙钛矿叠层太阳能电池的TCO导电层串联连接。Preferably, the single-cell 2-T perovskite tandem solar cell comprises a base transparent conductive glass, a TCO conductive layer, a first charge transport layer, a substrate capable of at least absorbing short-wavelength light and allowing long-wavelength light to pass through, which are connected in sequence. The first perovskite light absorption layer, the second charge transport layer, the transparent conductive electrode, the third charge transport layer, the second perovskite light absorption layer that can absorb most wavelengths of sunlight, the fourth charge transport layer and the counter electrode layer, the counter electrode layer of the single-cell 2-T perovskite tandem solar cell is connected in series with the TCO conductive layer of the adjacent single-cell 2-T perovskite tandem solar cell.

优选地,所述第一钙钛矿吸光层为宽带隙的钙钛矿薄膜,所述第一钙钛矿吸光层的带隙为1.7-1.9eV;所述第二钙钛矿吸光层为窄带隙的钙钛矿薄膜,所述第二钙钛矿吸光层的带隙为0.8-1.2eV。Preferably, the first perovskite light absorbing layer is a perovskite film with a wide band gap, the band gap of the first perovskite light absorbing layer is 1.7-1.9 eV; the second perovskite light absorbing layer is a narrow band A perovskite thin film with a gap, the band gap of the second perovskite light absorbing layer is 0.8-1.2 eV.

优选地,所述第一钙钛矿吸光层的材料为FA0.83Cs0.17Pb(I0.5Br0.5)3;所述第二钙钛矿吸光层的材料为FA0.75Cs0.25Sn0.5Pb0.5I3Preferably, the material of the first perovskite light absorbing layer is FA 0.83 Cs 0.17 Pb(I 0.5 Br 0.5 ) 3 ; the material of the second perovskite light absorbing layer is FA 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 .

优选地,所述第一电荷传输层为空穴传输层,所述第二电荷传输层为电子传输层,所述第三电荷传输层为空穴传输层,所述第四电荷传输层为电子传输层;或者所述第一电荷传输层为电子传输层,所述第二电荷传输层为空穴传输层,所述第三电荷传输层为电子传输层,所述第四电荷传输层为空穴传输层。Preferably, the first charge transport layer is a hole transport layer, the second charge transport layer is an electron transport layer, the third charge transport layer is a hole transport layer, and the fourth charge transport layer is an electron transport layer transport layer; or the first charge transport layer is an electron transport layer, the second charge transport layer is a hole transport layer, the third charge transport layer is an electron transport layer, and the fourth charge transport layer is empty hole transport layer.

优选地,所述空穴传输层采用无机空穴传输材料和/或有机空穴传输材料;所述电子传输层采用无机电子传输材料和/或有机电子传输材料;所述对电极层采用金属电极材料或非金属电极材料。Preferably, the hole transport layer adopts inorganic hole transport material and/or organic hole transport material; the electron transport layer adopts inorganic electron transport material and/or organic electron transport material; the counter electrode layer adopts metal electrode material or non-metallic electrode material.

优选地,所述无机空穴传输材料为NiO、Cu2O和MoO3中的一种或几种,所述有机空穴传输材料为Spiro-OMeTAD、P3HT、PEDOT:PSS和PTAA中的一种或几种;所述无机电子传输材料为TiO2、ZnO和SnO2中的一种或几种,所述有机电子传输材料为C60和/或PCBM;所述金属电极材料为Cu、Al、Ag、Au、Mo和Cr中的一种或几种,所述非金属电极材料为碳电极。Preferably, the inorganic hole transport material is one or more of NiO, Cu 2 O and MoO 3 , and the organic hole transport material is Spiro-OMeTAD, P 3 HT, PEDOT:PSS and PTAA one or more; the inorganic electron transport material is one or more of TiO 2 , ZnO and SnO 2 , the organic electron transport material is C 60 and/or PCBM; the metal electrode material is Cu, One or more of Al, Ag, Au, Mo and Cr, and the non-metallic electrode material is a carbon electrode.

优选地,所述透明导电电极为透明导电氧化物(TCO)、银纳米线、超薄金属和石墨烯材料中的一种或几种。Preferably, the transparent conductive electrode is one or more of transparent conductive oxide (TCO), silver nanowires, ultra-thin metals and graphene materials.

本发明第二方面提供所述的2-T钙钛矿叠层太阳能电池模块的制备方法,包括如下步骤:The second aspect of the present invention provides the preparation method of the 2-T perovskite tandem solar cell module, comprising the following steps:

S1、在基底透明导电玻璃上覆盖TCO导电层,对所述基底透明导电玻璃上覆盖的所述TCO导电层进行刻蚀,以形成两个相邻所述单节2-T钙钛矿叠层太阳能电池之间的P1绝缘区;在所述TCO导电层和P1绝缘区上覆盖电荷传输材料,制得所述第一电荷传输层;在所述第一电荷传输层上覆盖钙钛矿吸光材料,制得所述第一钙钛矿吸光层;在所述第一钙钛矿吸光层上覆盖电荷传输材料,制得所述第二电荷传输层;在所述第二电荷传输层上采用磁控溅射法制得所述透明导电电极;在所述透明导电电极上覆盖电荷传输材料,制得所述第三电荷传输层;在所述第三电荷传输层上覆盖钙钛矿吸光材料,制得所述第二钙钛矿吸光层;在所述第二钙钛矿吸光层上覆盖电荷传输材料,制得所述第四电荷传输层;S1. Cover the TCO conductive layer on the base transparent conductive glass, and etch the TCO conductive layer covered on the base transparent conductive glass to form two adjacent single-node 2-T perovskite stacks P1 insulating region between solar cells; covering the TCO conductive layer and the P1 insulating region with a charge transport material to obtain the first charge transport layer; covering the first charge transport layer with a perovskite light absorbing material , the first perovskite light-absorbing layer is prepared; the charge transport material is covered on the first perovskite light-absorbing layer to obtain the second charge transport layer; the magnetic The transparent conductive electrode is prepared by controlled sputtering method; the transparent conductive electrode is covered with a charge transport material to prepare the third charge transport layer; the third charge transport layer is covered with a perovskite light absorbing material to prepare obtaining the second perovskite light-absorbing layer; covering the second perovskite light-absorbing layer with a charge transport material to obtain the fourth charge transport layer;

S2、对所述第四电荷传输层、第二钙钛矿吸光层、第三电荷传输层、透明导电电极、第二电荷传输层、第一钙钛矿吸光层和第一电荷传输层进行刻蚀,获得刻蚀沟道;在所述第四电荷传输层和刻蚀沟道的剩余区域上覆盖对电极材料,制得所述对电极层,同时形成分割相邻两个所述单节2-T钙钛矿叠层太阳能电池对电极层的P3隔断区;对所述刻蚀沟道剩余区域中的对电极材料进行部分刻蚀,并保留覆盖于所述第四电荷传输层相应断开端处的电荷传输材料,以形成串联相邻两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区,制得所述2-T钙钛矿叠层太阳能电池模块。S2, engrave the fourth charge transport layer, the second perovskite light absorption layer, the third charge transport layer, the transparent conductive electrode, the second charge transport layer, the first perovskite light absorption layer and the first charge transport layer etch to obtain an etched channel; cover the fourth charge transport layer and the remaining area of the etched channel with a counter electrode material to obtain the counter electrode layer, and at the same time form and divide the two adjacent single segments 2 -The P3 blocking region of the counter electrode layer of the T perovskite tandem solar cell; the counter electrode material in the remaining region of the etching channel is partially etched, and the fourth charge transport layer is retained to cover the corresponding disconnection The charge transport material at the end is used to form a P2 connection region of two adjacent single-segment 2-T perovskite tandem solar cells in series, and the 2-T perovskite tandem solar cell module is prepared.

优选地,S2中,所述刻蚀采用激光刻蚀,调整所述激光刻蚀的入射角度以形成不同角度的刻蚀坡面;使用激光刻蚀时,参数设置参照本领域的常规数值即可,通过程序化的设定,可以很方便地制备2-T钙钛矿叠层太阳能电池模块。Preferably, in S2, laser etching is used for the etching, and the incident angle of the laser etching is adjusted to form etching slopes with different angles; when laser etching is used, the parameter setting can refer to the conventional values in the field , 2-T perovskite tandem solar cell modules can be easily prepared through programmed settings.

本发明采用以上技术方案,与现有技术相比,具有如下技术效果:The present invention adopts the above technical scheme, compared with the prior art, has the following technical effects:

本发明提供的制备工艺可以将整块大面积2-T钙钛矿叠层太阳能电池分成子电池串联结构,该结构稳定,不仅仅提升了填充因子,还增大开路电压,太阳光利用率高,进而提高大面积电池模块的转换效率,体现出叠层太阳能电池的商业价值制备的电池模块。The preparation process provided by the invention can divide the whole large-area 2-T perovskite tandem solar cell into a sub-cell series structure, the structure is stable, not only improves the filling factor, but also increases the open circuit voltage, and the utilization rate of sunlight is high. , thereby improving the conversion efficiency of the large-area battery module, and reflecting the commercial value of the tandem solar cell.

附图说明Description of drawings

图1为本发明中2-T钙钛矿叠层太阳能电池模块的示意图;1 is a schematic diagram of a 2-T perovskite tandem solar cell module in the present invention;

图2为本发明中实施例1、对比例1和对比例2测试的电流密度-电压曲线曲线图;Fig. 2 is the current density-voltage curve graph of Example 1, Comparative Example 1 and Comparative Example 2 tested in the present invention;

其中的各附图标记为:The reference numerals therein are:

1-基底透明导电玻璃;2-TCO导电层;3-第一电荷传输层;4-第一钙钛矿吸光层;5-第二电荷传输层;6-透明导电电极;7-第三电荷传输层;8-第二钙钛矿吸光层;9-第四电荷传输层;10-对电极层;11-P1绝缘区;12-P2连接区;13-P3隔断区;14-刻蚀沟道。1-substrate transparent conductive glass; 2-TCO conductive layer; 3-first charge transport layer; 4-first perovskite light absorption layer; 5-second charge transport layer; 6-transparent conductive electrode; 7-third charge transport layer; 8-second perovskite light absorption layer; 9-fourth charge transport layer; 10-pair electrode layer; 11-P1 insulating region; 12-P2 connecting region; 13-P3 blocking region; 14-etching trench road.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, but it is not intended to limit the present invention.

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict.

如图1所示,本发明提供一种2-T钙钛矿叠层太阳能电池模块,由若干单节2-T钙钛矿叠层太阳能电池通过连接结构串联而成,所述连接结构包括分割相邻两个所述单节2-T钙钛矿叠层太阳能电池TCO导电层2的P1绝缘区11、串联相邻两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区12以及分割相邻两个所述单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13,若干所述单节2-T钙钛矿叠层太阳能电池分置于同一块基底透明导电玻璃1上。As shown in FIG. 1 , the present invention provides a 2-T perovskite tandem solar cell module, which is formed by connecting a plurality of single-cell 2-T perovskite tandem solar cells in series through a connection structure, and the connection structure includes dividing The P1 insulating region 11 of the TCO conductive layer 2 of the two adjacent single-cell 2-T perovskite tandem solar cells is connected in series with the P2 connection of the two adjacent single-cell 2-T perovskite tandem solar cells The area 12 and the P3 blocking area 13 that separates the counter electrode layer 10 of the two adjacent single-cell 2-T perovskite tandem solar cells, and several of the single-cell 2-T perovskite tandem solar cells are placed in on the same base transparent conductive glass 1 .

作为一个优选实施例,所述单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃1、TCO导电层2、第一电荷传输层3、至少能吸收短波长光线而使长波长光线完全通过的第一钙钛矿吸光层4、第二电荷传输层5、透明导电电极6、第三电荷传输层7、能吸收太阳光绝大部分波长光线的第二钙钛矿吸光层8、第四电荷传输层9和对电极层10,所述单节2-T钙钛矿叠层太阳能电池的对电极层10与其相邻所述单节2-T钙钛矿叠层太阳能电池的TCO导电层2串联连接。As a preferred embodiment, the single-cell 2-T perovskite tandem solar cell includes a base transparent conductive glass 1, a TCO conductive layer 2, and a first charge transport layer 3 that are connected in sequence. The first perovskite light-absorbing layer 4, the second charge transport layer 5, the transparent conductive electrode 6, the third charge transport layer 7 through which the long-wavelength light completely passes, the second perovskite light-absorbing layer that can absorb most of the wavelengths of sunlight layer 8, fourth charge transport layer 9 and counter electrode layer 10, the counter electrode layer 10 of the single cell 2-T perovskite tandem solar cell is adjacent to the single cell 2-T perovskite tandem solar cell The TCO conductive layers 2 of the battery are connected in series.

作为一个优选实施例,所述第一钙钛矿吸光层4为宽带隙的钙钛矿薄膜,所述第一钙钛矿吸光层4的带隙为1.7-1.9eV;所述第二钙钛矿吸光层8为窄带隙的钙钛矿薄膜,所述第二钙钛矿吸光层8的带隙为0.8-1.2eV。所述第一钙钛矿吸光层4的材料为FA0.83Cs0.17Pb(I0.5Br0.5)3;所述第二钙钛矿吸光层8的材料为FA0.75Cs0.25Sn0.5Pb0.5I3As a preferred embodiment, the first perovskite light absorbing layer 4 is a perovskite film with a wide band gap, and the band gap of the first perovskite light absorbing layer 4 is 1.7-1.9 eV; the second perovskite The mineral light absorbing layer 8 is a perovskite thin film with a narrow band gap, and the band gap of the second perovskite light absorbing layer 8 is 0.8-1.2 eV. The material of the first perovskite light absorbing layer 4 is FA 0.83 Cs 0.17 Pb(I 0.5 Br 0.5 ) 3 ; the material of the second perovskite light absorbing layer 8 is FA 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 .

作为一个优选实施例,所述第一电荷传输层3为空穴传输层,所述第二电荷传输层5为电子传输层,所述第三电荷传输层7为空穴传输层,所述第四电荷传输层9为电子传输层;或者所述第一电荷传输层3为电子传输层,所述第二电荷传输层5为空穴传输层,所述第三电荷传输层7为电子传输层,所述第四电荷传输层9为空穴传输层。As a preferred embodiment, the first charge transport layer 3 is a hole transport layer, the second charge transport layer 5 is an electron transport layer, the third charge transport layer 7 is a hole transport layer, and the third charge transport layer 7 is a hole transport layer. Four charge transport layers 9 are electron transport layers; or the first charge transport layer 3 is an electron transport layer, the second charge transport layer 5 is a hole transport layer, and the third charge transport layer 7 is an electron transport layer , the fourth charge transport layer 9 is a hole transport layer.

作为一个优选实施例,所述空穴传输层采用无机空穴传输材料和/或有机空穴传输材料;所述电子传输层采用无机电子传输材料和/或有机电子传输材料;所述对电极层10采用金属电极材料或非金属电极材料。其中,所述无机空穴传输材料为NiO、Cu2O和MoO3中的一种或几种,所述有机空穴传输材料为Spiro-OMeTAD、P3HT、PEDOT:PSS和PTAA中的一种或几种;所述无机电子传输材料为TiO2、ZnO和SnO2中的一种或几种,所述有机电子传输材料为C60和/或PCBM;所述金属电极材料为Cu、Al、Ag、Au、Mo和Cr中的一种或几种,所述非金属电极材料为碳电极。所述透明导电电极6为透明导电氧化物(TCO)、银纳米线、超薄金属和石墨烯材料中的一种或几种。As a preferred embodiment, the hole transport layer adopts inorganic hole transport material and/or organic hole transport material; the electron transport layer adopts inorganic electron transport material and/or organic electron transport material; the counter electrode layer 10 Use metal electrode materials or non-metal electrode materials. Wherein, the inorganic hole transport material is one or more of NiO, Cu 2 O and MoO 3 , and the organic hole transport material is one of Spiro-OMeTAD, P 3 HT, PEDOT:PSS and PTAA one or more; the inorganic electron transport material is one or more of TiO 2 , ZnO and SnO 2 , the organic electron transport material is C60 and/or PCBM; the metal electrode material is Cu, Al, One or more of Ag, Au, Mo and Cr, and the non-metallic electrode material is a carbon electrode. The transparent conductive electrode 6 is one or more of transparent conductive oxide (TCO), silver nanowires, ultra-thin metal and graphene materials.

上述2-T钙钛矿叠层太阳能电池模块的制备方法,包括如下步骤:The preparation method of the above-mentioned 2-T perovskite tandem solar cell module comprises the following steps:

S1、在基底透明导电玻璃1上覆盖TCO导电层2,对所述基底透明导电玻璃1上覆盖的所述TCO导电层2进行刻蚀,以形成两个相邻所述单节2-T钙钛矿叠层太阳能电池之间的P1绝缘区11;在所述TCO导电层2和P1绝缘区11上覆盖电荷传输材料,制得所述第一电荷传输层3;在所述第一电荷传输层3上覆盖钙钛矿吸光材料,制得所述第一钙钛矿吸光层4;在所述第一钙钛矿吸光层4上覆盖电荷传输材料,制得所述第二电荷传输层5;在所述第二电荷传输层5上采用磁控溅射法制得所述透明导电电极6;在所述透明导电电极6上覆盖电荷传输材料,制得所述第三电荷传输层7;在所述第三电荷传输层7上覆盖钙钛矿吸光材料,制得所述第二钙钛矿吸光层8;在所述第二钙钛矿吸光层8上覆盖电荷传输材料,制得所述第四电荷传输层9;S1. Cover the TCO conductive layer 2 on the base transparent conductive glass 1, and etch the TCO conductive layer 2 covered on the base transparent conductive glass 1 to form two adjacent single-section 2-T calcium The P1 insulating region 11 between the titanium tandem solar cells; the TCO conductive layer 2 and the P1 insulating region 11 are covered with a charge transport material to obtain the first charge transport layer 3; in the first charge transport The layer 3 is covered with a perovskite light-absorbing material to obtain the first perovskite light-absorbing layer 4; the first perovskite light-absorbing layer 4 is covered with a charge transport material to obtain the second charge transport layer 5 ; On the second charge transport layer 5, a magnetron sputtering method is used to obtain the transparent conductive electrode 6; The transparent conductive electrode 6 is covered with a charge transport material to obtain the third charge transport layer 7; The third charge transport layer 7 is covered with a perovskite light-absorbing material to obtain the second perovskite light-absorbing layer 8; the second perovskite light-absorbing layer 8 is covered with a charge transport material to obtain the second perovskite light-absorbing layer 8 the fourth charge transport layer 9;

S2、对所述第四电荷传输层9、第二钙钛矿吸光层8、第三电荷传输层7、透明导电电极6、第二电荷传输层5、第一钙钛矿吸光层4和第一电荷传输层3进行刻蚀,获得刻蚀沟道14;在所述第四电荷传输层9和刻蚀沟道14的剩余区域上覆盖对电极材料,制得所述对电极层10,同时形成分割相邻两个所述单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13;对所述刻蚀沟道14剩余区域中的对电极材料进行部分刻蚀,并保留覆盖于所述第四电荷传输层9相应断开端处的电荷传输材料,以形成串联相邻两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区12,制得所述2-T钙钛矿叠层太阳能电池模块。S2, for the fourth charge transport layer 9, the second perovskite light absorption layer 8, the third charge transport layer 7, the transparent conductive electrode 6, the second charge transport layer 5, the first perovskite light absorption layer 4 and the first A charge transport layer 3 is etched to obtain an etching channel 14; the fourth charge transport layer 9 and the remaining area of the etching channel 14 are covered with a counter electrode material to obtain the counter electrode layer 10, and at the same time forming a P3 blocking region 13 dividing the counter electrode layers 10 of the two adjacent single-section 2-T perovskite tandem solar cells; partially etching the counter electrode material in the remaining region of the etching channel 14, And retain the charge transport material covering the corresponding disconnected ends of the fourth charge transport layer 9 to form the P2 connection region 12 of two adjacent single-section 2-T perovskite tandem solar cells in series, making The 2-T perovskite tandem solar cell module is obtained.

作为一个优选实施例,S2中,所述刻蚀采用激光刻蚀,调整所述激光刻蚀的入射角度可以形成不同角度的刻蚀坡面。As a preferred embodiment, in S2, laser etching is used for the etching, and etching slopes with different angles can be formed by adjusting the incident angle of the laser etching.

实施例1Example 1

本发明提供一种2-T钙钛矿叠层太阳能电池模块,由两个单节2-T钙钛矿叠层太阳能电池通过连接结构串联而成,所述连接结构包括分割两个所述单节2-T钙钛矿叠层太阳能电池TCO导电层2的P1绝缘区11、串联两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区12以及分割两个所述单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13,两个所述单节2-T钙钛矿叠层太阳能电池分置于同一块基底透明导电玻璃1上。其中,单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃1、TCO导电层2、NiO层、带隙1.8eV的钙钛矿薄膜、PCBM层、透明导电电极6、PEDOT:PSS层、带隙1.2eV的钙钛矿薄膜、C60/PCBM层和Ag电极,单节2-T钙钛矿叠层太阳能电池的对电极层10与其相邻单节2-T钙钛矿叠层太阳能电池的TCO导电层2串联连接。所述透明导电电极6为AZO。The present invention provides a 2-T perovskite tandem solar cell module, which is formed by connecting two single-cell 2-T perovskite tandem solar cells in series through a connection structure, wherein the connection structure comprises dividing the two single-cell 2-T perovskite tandem solar cells in series. The P1 insulating region 11 of the TCO conductive layer 2 of the 2-T perovskite tandem solar cell, the P2 connecting region 12 of the two single-section 2-T perovskite tandem solar cells in series, and the splitting of the two single-section 2-T perovskite tandem solar cells. The section 2-T perovskite tandem solar cell counters the P3 blocking region 13 of the electrode layer 10 , and the two single-section 2-T perovskite tandem solar cells are placed separately on the same base transparent conductive glass 1 . Among them, the single-cell 2-T perovskite tandem solar cell includes a substrate transparent conductive glass 1, a TCO conductive layer 2, a NiO layer, a perovskite film with a band gap of 1.8 eV, a PCBM layer, and a transparent conductive electrode 6, which are connected in sequence. PEDOT: PSS layer, perovskite film with a band gap of 1.2 eV, C60/PCBM layer and Ag electrode, the counter electrode layer 10 of a single-cell 2-T perovskite tandem solar cell and its adjacent single-cell 2-T perovskite The TCO conductive layers 2 of the tandem solar cell are connected in series. The transparent conductive electrode 6 is AZO.

上述2-T钙钛矿叠层太阳能电池模块的制备方法,包括如下步骤:The preparation method of the above-mentioned 2-T perovskite tandem solar cell module comprises the following steps:

S1、将粗糙度为10nm、尺寸为80×80mm的基底透明导电玻璃1置于夹具之中,并固定好位置,对该基底透明导电玻璃1上覆盖的TCO导电层2进行刻蚀,通过控制软件设定刻蚀的位置和参数,将激光光束聚焦在基底透明导电玻璃1表面刻蚀的位置处,然后按照设定的参数进行刻蚀,刻蚀功率为3000mW,刻蚀速度为100mm/s,刻蚀频率为30000Hz,刻蚀宽度为100μm,以形成两个相邻单节2-T钙钛矿叠层太阳能电池之间的P1绝缘区11;在TCO导电层2和P1绝缘区11上覆盖电荷传输材料,制得所述第一电荷传输层3,第一电荷传输层3为NiO层,厚度为20nm;在所述第一电荷传输层3上覆盖钙钛矿吸光材料,制得所述第一钙钛矿吸光层4,第一钙钛矿吸光层4为带隙1.8eV的FA0.83Cs0.17Pb(I0.5Br0.5)3,厚度为400nm;在第一钙钛矿吸光层4上覆盖电荷传输材料,制得第二电荷传输层5,第二电荷传输层5为PCBM层,厚度为80nm;在第二电荷传输层5上采用磁控溅射法制得透明导电电极6,厚度为120nm;在透明导电电极6上覆盖电荷传输材料,制得第三电荷传输层7,第三电荷传输层7为PEDOT:PSS层,厚度为20nm;在第三电荷传输层7上覆盖钙钛矿吸光材料,制得第二钙钛矿吸光层8,第二钙钛矿吸光层8为带隙1.2ev的FA0.75Cs0.25Sn0.5Pb0.5I3,厚度为400nm;在第二钙钛矿吸光层8上覆盖电荷传输材料,制得第四电荷传输层9,第四电荷传输层9为C60/PCBM层,厚度为80nm;S1. Place the base transparent conductive glass 1 with a roughness of 10 nm and a size of 80×80 mm in a fixture, and fix the position, and etch the TCO conductive layer 2 covered on the base transparent conductive glass 1. By controlling The software sets the etching position and parameters, focuses the laser beam on the etching position on the surface of the substrate transparent conductive glass 1, and then performs etching according to the set parameters, the etching power is 3000mW, and the etching speed is 100mm/s , the etching frequency is 30000 Hz, and the etching width is 100 μm to form the P1 insulating region 11 between two adjacent single-cell 2-T perovskite tandem solar cells; on the TCO conductive layer 2 and the P1 insulating region 11 Covering the charge transport material to prepare the first charge transport layer 3, the first charge transport layer 3 is a NiO layer with a thickness of 20 nm; covering the first charge transport layer 3 with a perovskite light absorbing material to obtain the The first perovskite light-absorbing layer 4 is described as FA 0.83 Cs 0.17 Pb(I 0.5 Br 0.5 ) 3 with a band gap of 1.8 eV and a thickness of 400 nm; in the first perovskite light-absorbing layer 4 A charge transport material is covered on top to obtain a second charge transport layer 5, which is a PCBM layer and has a thickness of 80 nm; on the second charge transport layer 5, a magnetron sputtering method is used to obtain a transparent conductive electrode 6 with a thickness of 80 nm. is 120 nm; the transparent conductive electrode 6 is covered with a charge transport material to obtain the third charge transport layer 7, which is a PEDOT:PSS layer with a thickness of 20nm; the third charge transport layer 7 is covered with perovskite The second perovskite light-absorbing layer 8 is prepared by using ore light-absorbing material, and the second perovskite light-absorbing layer 8 is FA 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 with a band gap of 1.2ev, and the thickness is 400 nm; The light absorbing layer 8 is covered with a charge transport material to obtain a fourth charge transport layer 9, and the fourth charge transport layer 9 is a C60/PCBM layer with a thickness of 80 nm;

S2、将尺寸为80×80mm且覆盖有上述所有膜层的基底透明导电玻璃1放置于夹具之中,固定好位置,通过控制软件设定刻蚀的位置和参数,用激光对上述所有膜层进行刻蚀,刻蚀功率为500mW,刻蚀速度为30mm/s,刻蚀频率为40000Hz,刻蚀宽度为350μm,产生刻蚀沟道14,在所述第四电荷传输层9和刻蚀沟道14的剩余区域上覆盖对电极材料,制得所述对电极层10,对电极层10为银电极,厚度为100nm;将尺寸为80×80mm且覆盖有上述所有膜层和银电极的基底透明导电玻璃1放置于夹具之中,固定好位置,通过控制软件设定刻蚀的位置和参数,将激光光束聚焦在刻蚀沟道14中银电极表面刻蚀位置处,刻蚀100μm,刻蚀出的区域为相邻两个单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13,刻蚀功率为400mW,刻蚀速度为20mm/s,刻蚀频率为100000Hz,保留水平厚度为200μm覆盖于PCBM层相应断开端处的对电极层10,即为相邻两个单节2-T钙钛矿叠层太阳能电池的P2连接区12,制得2-T钙钛矿叠层太阳能电池模块。S2. Place the base transparent conductive glass 1 with a size of 80×80mm and covered with all the above-mentioned film layers in the fixture, fix the position, set the etching position and parameters through the control software, and use a laser to etch all the above-mentioned film layers. Carry out etching, the etching power is 500mW, the etching speed is 30mm/s, the etching frequency is 40000Hz, and the etching width is 350μm, and the etching channel 14 is generated. The remaining area of the channel 14 is covered with the counter electrode material to prepare the counter electrode layer 10. The counter electrode layer 10 is a silver electrode with a thickness of 100 nm. The transparent conductive glass 1 is placed in the fixture, and the position is fixed. The position and parameters of the etching are set by the control software, and the laser beam is focused on the etching position of the silver electrode surface in the etching channel 14, and the etching is 100 μm. The outgoing area is the P3 partition area 13 of the counter electrode layer 10 of two adjacent single-cell 2-T perovskite tandem solar cells, the etching power is 400 mW, the etching speed is 20 mm/s, and the etching frequency is 100000 Hz. Retain the counter electrode layer 10 with a horizontal thickness of 200 μm covering the corresponding disconnected ends of the PCBM layer, that is, the P2 connection region 12 of two adjacent single-cell 2-T perovskite tandem solar cells, to obtain 2-T calcium Titanite tandem solar cell module.

对比例1Comparative Example 1

本发明提供一种2-T钙钛矿叠层太阳能电池模块,由两个单节2-T钙钛矿叠层太阳能电池通过连接结构串联而成,所述连接结构包括分割两个所述单节2-T钙钛矿叠层太阳能电池TCO导电层2的P1绝缘区11、串联两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区12以及分割两个所述单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13,两个所述单节2-T钙钛矿叠层太阳能电池分置于同一块基底透明导电玻璃1上。其中,单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃1、TCO导电层2、NiO层、带隙1.8eV的钙钛矿薄膜、PCBM层和Ag电极,单节2-T钙钛矿叠层太阳能电池的对电极层10与其相邻单节2-T钙钛矿叠层太阳能电池的TCO导电层2串联连接。The present invention provides a 2-T perovskite tandem solar cell module, which is formed by connecting two single-cell 2-T perovskite tandem solar cells in series through a connection structure, wherein the connection structure comprises dividing the two single-cell 2-T perovskite tandem solar cells in series. The P1 insulating region 11 of the TCO conductive layer 2 of the 2-T perovskite tandem solar cell, the P2 connecting region 12 of the two single-section 2-T perovskite tandem solar cells in series, and the splitting of the two single-section 2-T perovskite tandem solar cells. The section 2-T perovskite tandem solar cell counters the P3 blocking region 13 of the electrode layer 10 , and the two single-section 2-T perovskite tandem solar cells are placed separately on the same base transparent conductive glass 1 . Among them, the single-cell 2-T perovskite tandem solar cell includes a substrate transparent conductive glass 1, a TCO conductive layer 2, a NiO layer, a perovskite film with a band gap of 1.8 eV, a PCBM layer and an Ag electrode, which are connected in sequence. The counter electrode layer 10 of the 2-T perovskite tandem solar cell is connected in series with the TCO conductive layer 2 of its adjacent single-cell 2-T perovskite tandem solar cell.

上述2-T钙钛矿叠层太阳能电池模块的制备方法,包括如下步骤:The preparation method of the above-mentioned 2-T perovskite tandem solar cell module comprises the following steps:

S1、将粗糙度为10nm、尺寸为80×80mm的基底透明导电玻璃1置于夹具之中,并固定好位置,对该基底透明导电玻璃1上覆盖的TCO导电层2进行刻蚀,通过控制软件设定刻蚀的位置和参数,将激光光束聚焦在基底透明导电玻璃1表面刻蚀的位置处,然后按照设定的参数进行刻蚀,刻蚀功率为3000mW,刻蚀速度为100mm/s,刻蚀频率为30000Hz,刻蚀宽度为100μm,以形成两个相邻单节2-T钙钛矿叠层太阳能电池之间的P1绝缘区11;S1. Place the base transparent conductive glass 1 with a roughness of 10 nm and a size of 80×80 mm in a fixture, and fix the position, and etch the TCO conductive layer 2 covered on the base transparent conductive glass 1. By controlling The software sets the etching position and parameters, focuses the laser beam on the etching position on the surface of the substrate transparent conductive glass 1, and then performs etching according to the set parameters, the etching power is 3000mW, and the etching speed is 100mm/s , the etching frequency is 30000 Hz, and the etching width is 100 μm to form the P1 insulating region 11 between two adjacent single-section 2-T perovskite tandem solar cells;

S2、在TCO导电层2和P1绝缘区11上覆盖电荷传输材料,制得第一电荷传输层3,第一电荷传输层3为NiO层,厚度为20nm;在第一电荷传输层3上覆盖钙钛矿吸光材料,制得第一钙钛矿吸光层4,第一钙钛矿吸光层4为带隙1.8eV的FA0.83Cs0.17Pb(I0.5Br0.5)3,厚度为400nm;在第一钙钛矿吸光层4上覆盖电荷传输材料,制得第二电荷传输层5,第二电荷传输层5为PCBM层,厚度为80nm;将尺寸为80×80mm且覆盖有氧化镍层、FA0.83Cs0.17Pb(I0.5Br0.5)3和PCBM层的基底透明导电玻璃1放置于夹具之中,固定好位置,通过控制软件设定刻蚀的位置和参数,用激光对第一电荷传输层3、第一钙钛矿吸光层4和第二电荷传输层5进行刻蚀,刻蚀功率为300mW,刻蚀速度为30mm/s,刻蚀频率为40000Hz,刻蚀宽度为350μm,形成刻蚀沟道14,在第二电荷传输层5和刻蚀沟道14的剩余区域上覆盖对电极材料,制得对电极层10,对电极层10为银电极,厚度为100nm;将尺寸为80×80mm且覆盖有上述所有膜层和银电极的基底透明导电玻璃1放置于夹具之中,固定好位置,通过控制软件设定刻蚀的位置和参数,将激光光束聚焦在刻蚀沟道14中银电极表面刻蚀位置处,刻蚀100μm,刻蚀功率为400mW,刻蚀速度为20mm/s,刻蚀频率为100000Hz,刻蚀出的区域为相邻两个单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13,保留水平厚度为200μm覆盖于PCBM层相应断开端处的对电极层10,即为相邻两个单节2-T钙钛矿叠层太阳能电池的P2连接区12,制得2-T钙钛矿叠层太阳能电池模块。S2, cover the charge transport material on the TCO conductive layer 2 and the P1 insulating region 11 to obtain the first charge transport layer 3, the first charge transport layer 3 is a NiO layer with a thickness of 20 nm; the first charge transport layer 3 is covered with Perovskite light-absorbing material, the first perovskite light-absorbing layer 4 is prepared, and the first perovskite light-absorbing layer 4 is FA 0.83 Cs 0.17 Pb(I 0.5 Br 0.5 ) 3 with a band gap of 1.8 eV, and the thickness is 400 nm; A perovskite light-absorbing layer 4 is covered with a charge transport material to obtain a second charge transport layer 5, the second charge transport layer 5 is a PCBM layer with a thickness of 80 nm; 0.83 Cs 0.17 Pb(I 0.5 Br 0.5 ) 3 and the substrate transparent conductive glass 1 of the PCBM layer are placed in the fixture, and the position is fixed. 3. The first perovskite light-absorbing layer 4 and the second charge transport layer 5 are etched, the etching power is 300 mW, the etching speed is 30 mm/s, the etching frequency is 40000 Hz, and the etching width is 350 μm to form an etching process. The channel 14 is covered with the counter electrode material on the second charge transport layer 5 and the remaining area of the etching channel 14 to obtain the counter electrode layer 10. The counter electrode layer 10 is a silver electrode with a thickness of 100 nm; the size is 80× The base transparent conductive glass 1 of 80mm and covered with all the above-mentioned films and silver electrodes is placed in the fixture, and the position is fixed, and the position and parameters of the etching are set by the control software, and the laser beam is focused on the silver in the etching channel 14. At the etching position of the electrode surface, the etching is 100 μm, the etching power is 400 mW, the etching speed is 20 mm/s, and the etching frequency is 100000 Hz. The etched area is two adjacent single-section 2-T perovskite stacks. The P3 blocking region 13 of the counter electrode layer 10 of the multi-layer solar cell, and the counter electrode layer 10 covering the corresponding disconnected end of the PCBM layer with a horizontal thickness of 200 μm is reserved, that is, two adjacent single-cell 2-T perovskite stacked solar cells The P2 connection region 12 of the cell is used to obtain a 2-T perovskite tandem solar cell module.

对比例2Comparative Example 2

本发明提供一种2-T钙钛矿叠层太阳能电池模块,由两个单节2-T钙钛矿叠层太阳能电池通过连接结构串联而成,所述连接结构包括分割两个所述单节2-T钙钛矿叠层太阳能电池TCO导电层2的P1绝缘区11、串联两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区12以及分割两个所述单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13,两个所述单节2-T钙钛矿叠层太阳能电池分置于同一块基底透明导电玻璃1上。其中,单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃1、TCO导电层2、NiO层、带隙1.2eV的钙钛矿薄膜、PCBM层和Ag电极,单节2-T钙钛矿叠层太阳能电池的对电极层10与其相邻单节2-T钙钛矿叠层太阳能电池的TCO导电层2串联连接。The present invention provides a 2-T perovskite tandem solar cell module, which is formed by connecting two single-cell 2-T perovskite tandem solar cells in series through a connection structure, wherein the connection structure comprises dividing the two single-cell 2-T perovskite tandem solar cells in series. The P1 insulating region 11 of the TCO conductive layer 2 of the 2-T perovskite tandem solar cell, the P2 connecting region 12 of the two single-section 2-T perovskite tandem solar cells in series, and the splitting of the two single-section 2-T perovskite tandem solar cells. The section 2-T perovskite tandem solar cell counters the P3 blocking region 13 of the electrode layer 10 , and the two single-section 2-T perovskite tandem solar cells are placed separately on the same base transparent conductive glass 1 . Among them, the single-cell 2-T perovskite tandem solar cell includes a substrate transparent conductive glass 1, a TCO conductive layer 2, a NiO layer, a perovskite film with a band gap of 1.2 eV, a PCBM layer and an Ag electrode connected in sequence. The counter electrode layer 10 of the 2-T perovskite tandem solar cell is connected in series with the TCO conductive layer 2 of its adjacent single-cell 2-T perovskite tandem solar cell.

上述2-T钙钛矿叠层太阳能电池模块的制备方法,包括如下步骤:The preparation method of the above-mentioned 2-T perovskite tandem solar cell module comprises the following steps:

S1、将粗糙度为10nm、尺寸为80×80mm的基底透明导电玻璃1置于夹具之中,并固定好位置,对该基底透明导电玻璃1上覆盖的TCO导电层2进行刻蚀,通过控制软件设定刻蚀的位置和参数,将激光光束聚焦在基底透明导电玻璃1表面刻蚀的位置处,然后按照设定的参数进行刻蚀,刻蚀功率为3000mW,刻蚀速度为100mm/s,刻蚀频率为30000Hz,刻蚀宽度为100μm,以形成两个相邻单节2-T钙钛矿叠层太阳能电池之间的P1绝缘区11;S1. Place the base transparent conductive glass 1 with a roughness of 10 nm and a size of 80×80 mm in a fixture, and fix the position, and etch the TCO conductive layer 2 covered on the base transparent conductive glass 1. By controlling The software sets the etching position and parameters, focuses the laser beam on the etching position on the surface of the substrate transparent conductive glass 1, and then performs etching according to the set parameters, the etching power is 3000mW, and the etching speed is 100mm/s , the etching frequency is 30000 Hz, and the etching width is 100 μm to form the P1 insulating region 11 between two adjacent single-section 2-T perovskite tandem solar cells;

S2、在TCO导电层2和P1绝缘区11上覆盖电荷传输材料,制得所述第一电荷传输层3,第一电荷传输层3为NiO层,厚度为20nm;在第一电荷传输层3上覆盖钙钛矿吸光材料,制得第一钙钛矿吸光层4,第一钙钛矿吸光层4为带隙1.2eV的FA0.75Cs0.25Sn0.5Pb0.5I3,厚度为400nm;在第一钙钛矿吸光层4上覆盖电荷传输材料,制得第二电荷传输层5,第二电荷传输层5为PCBM层,厚度为80nm;将尺寸为80×80mm且覆盖有氧化镍层、FA0.75Cs0.25Sn0.5Pb0.5I3和PCBM层的基底透明导电玻璃1放置于夹具之中,固定好位置,通过控制软件设定刻蚀的位置和参数,用激光对第一电荷传输层3、第一钙钛矿吸光层4和第二电荷传输层5进行刻蚀,刻蚀功率为300mW,刻蚀速度为30mm/s,刻蚀频率为40000Hz,刻蚀宽度为350μm,形成刻蚀沟道14,在第二电荷传输层5和刻蚀沟道14的剩余区域上覆盖对电极材料,制得对电极层10,对电极层10为银电极,厚度为100nm;将尺寸为80×80mm且覆盖有上述所有膜层和银电极的基底透明导电玻璃1放置于夹具之中,固定好位置,通过控制软件设定刻蚀的位置和参数,将激光光束聚焦在刻蚀沟道14中银电极表面刻蚀位置处,刻蚀100μm,刻蚀功率为400mW,刻蚀速度为20mm/s,刻蚀频率为100000Hz,刻蚀出的区域为相邻两个单节2-T钙钛矿叠层太阳能电池对电极层10的P3隔断区13,保留水平厚度为200μm覆盖于PCBM层相应断开端处的对电极层10,即为相邻两个单节2-T钙钛矿叠层太阳能电池的P2连接区12,制得2-T钙钛矿叠层太阳能电池模块。S2, covering the TCO conductive layer 2 and the P1 insulating region 11 with a charge transport material to obtain the first charge transport layer 3, the first charge transport layer 3 is a NiO layer with a thickness of 20 nm; A perovskite light-absorbing material is covered on top to obtain a first perovskite light-absorbing layer 4. The first perovskite light-absorbing layer 4 is FA 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 with a band gap of 1.2 eV and a thickness of 400 nm; A perovskite light-absorbing layer 4 is covered with a charge transport material to obtain a second charge transport layer 5, the second charge transport layer 5 is a PCBM layer with a thickness of 80 nm; 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 and the substrate transparent conductive glass 1 of the PCBM layer are placed in the fixture, the position is fixed, the position and parameters of the etching are set by the control software, and the first charge transport layer 3, The first perovskite light-absorbing layer 4 and the second charge transport layer 5 are etched, the etching power is 300mW, the etching speed is 30mm/s, the etching frequency is 40000Hz, and the etching width is 350μm to form an etching channel 14. Cover the counter electrode material on the second charge transport layer 5 and the remaining area of the etching channel 14 to obtain the counter electrode layer 10, the counter electrode layer 10 is a silver electrode with a thickness of 100nm; the size is 80×80mm and The base transparent conductive glass 1 covered with all the above-mentioned films and silver electrodes is placed in the fixture, and the position is fixed. The position and parameters of the etching are set by the control software, and the laser beam is focused on the surface of the silver electrode in the etching channel 14. At the etching position, the etching is 100μm, the etching power is 400mW, the etching speed is 20mm/s, and the etching frequency is 100000Hz. The etched area is two adjacent single-cell 2-T perovskite stacked solar cells The P3 partition region 13 of the battery counter electrode layer 10 retains the counter electrode layer 10 at the corresponding disconnected end of the PCBM layer with a horizontal thickness of 200 μm, which is the adjacent two single-cell 2-T perovskite tandem solar cells. P2 connects region 12, and a 2-T perovskite tandem solar cell module is prepared.

对比例3Comparative Example 3

本发明提供一种单节2-T钙钛矿叠层太阳能电池,所述单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃1、TCO导电层2、NiO层、带隙为1.8eV的钙钛矿薄膜、PCBM层、透明导电电极6、PEDOT:PSS层、带隙为1.2eV的钙钛矿薄膜、C60/PCBM层和Ag电极,单节2-T钙钛矿叠层太阳能电池的对电极层10与其相邻单节2-T钙钛矿叠层太阳能电池的TCO导电层2串联连接。The present invention provides a single-cell 2-T perovskite tandem solar cell, wherein the single-cell 2-T perovskite tandem solar cell comprises a substrate transparent conductive glass 1, a TCO conductive layer 2, a NiO layer, Perovskite film with band gap of 1.8 eV, PCBM layer, transparent conductive electrode 6, PEDOT:PSS layer, perovskite film with band gap of 1.2 eV, C60/PCBM layer and Ag electrode, single-cell 2-T perovskite The counter electrode layer 10 of the tandem solar cell is connected in series with the TCO conductive layer 2 of the adjacent single-cell 2-T perovskite tandem solar cell.

上述单节2-T钙钛矿叠层太阳能电池的制备方法,包括如下步骤:The preparation method of the above single-cell 2-T perovskite tandem solar cell includes the following steps:

S1、选取粗糙度为10nm、尺寸为25*25mm的基底透明导电玻璃1;S1. Select the base transparent conductive glass 1 with a roughness of 10nm and a size of 25*25mm;

S2、在TCO导电层2覆盖电荷传输材料,制得第一电荷传输层3,第一电荷传输层3为NiO层,厚度为20nm;在所述第一电荷传输层3上覆盖钙钛矿吸光材料,制得所述第一钙钛矿吸光层4,第一钙钛矿吸光层4为带隙1.8eV的FA0.83Cs0.17Pb(I0.5Br0.5)3,厚度为400nm;在第一钙钛矿吸光层4上覆盖电荷传输材料,制得第二电荷传输层5,第二电荷传输层5为PCBM层,厚度为80nm;在第二电荷传输层5上采用磁控溅射法制得透明导电电极6,厚度为120nm;在透明导电电极6上覆盖电荷传输材料,制得第三电荷传输层7,第三电荷传输层7为PEDOT:PSS层,厚度为20nm;在第三电荷传输层7上覆盖钙钛矿吸光材料,制得第二钙钛矿吸光层8,第二钙钛矿吸光层8为带隙1.2ev的FA0.75Cs0.25Sn0.5Pb0.5I3,厚度为400nm;在第二钙钛矿吸光层8上覆盖电荷传输材料,制得第四电荷传输层9,第四电荷传输层9为C60/PCBM层,厚度为80nmS2. Covering the TCO conductive layer 2 with a charge transport material to obtain a first charge transport layer 3. The first charge transport layer 3 is a NiO layer with a thickness of 20 nm; the first charge transport layer 3 is covered with perovskite to absorb light materials, the first perovskite light-absorbing layer 4 is prepared, and the first perovskite light-absorbing layer 4 is FA 0.83 Cs 0.17 Pb(I 0.5 Br 0.5 ) 3 with a band gap of 1.8 eV and a thickness of 400 nm; The titanium ore light-absorbing layer 4 is covered with a charge transport material to obtain a second charge transport layer 5. The second charge transport layer 5 is a PCBM layer with a thickness of 80 nm; the second charge transport layer 5 is made of a transparent magnetron sputtering method. The conductive electrode 6 has a thickness of 120 nm; the transparent conductive electrode 6 is covered with a charge transport material to obtain a third charge transport layer 7, and the third charge transport layer 7 is a PEDOT:PSS layer with a thickness of 20nm; 7 is covered with a perovskite light-absorbing material to obtain a second perovskite light-absorbing layer 8, and the second perovskite light-absorbing layer 8 is FA 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 with a band gap of 1.2 ev and a thickness of 400 nm; The second perovskite light-absorbing layer 8 is covered with a charge transport material to obtain a fourth charge transport layer 9. The fourth charge transport layer 9 is a C60/PCBM layer with a thickness of 80 nm

S3、在所述25mm*25mm的基片上采用掩模版制得面积为1cm2的对电极层,完成单节2-T钙钛矿叠层太阳能电池的制备。S3, using a mask on the 25mm*25mm substrate to form a counter electrode layer with an area of 1cm 2 , to complete the preparation of a single-cell 2-T perovskite tandem solar cell.

对比例4Comparative Example 4

本发明提供一种单节2-T钙钛矿叠层太阳能电池,所述单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃1、TCO导电层2、NiO层、带隙1.8eV的钙钛矿薄膜、PCBM层、透明导电电极6、PEDOT:PSS层、带隙1.2eV的钙钛矿薄膜、C60/PCBM层和Ag电极,单节2-T钙钛矿叠层太阳能电池的对电极层10与其相邻单节2-T钙钛矿叠层太阳能电池的TCO导电层2串联连接。The present invention provides a single-cell 2-T perovskite tandem solar cell, wherein the single-cell 2-T perovskite tandem solar cell comprises a substrate transparent conductive glass 1, a TCO conductive layer 2, a NiO layer, 1.8eV bandgap perovskite film, PCBM layer, transparent conductive electrode 6, PEDOT:PSS layer, 1.2eV bandgap perovskite film, C60/PCBM layer and Ag electrode, single-cell 2-T perovskite stack The counter electrode layer 10 of the layer solar cell is connected in series with the TCO conductive layer 2 of its adjacent single-cell 2-T perovskite tandem solar cell.

上述单节2-T钙钛矿叠层太阳能电池的制备方法,包括如下步骤:The preparation method of the above single-cell 2-T perovskite tandem solar cell includes the following steps:

S1、选取粗糙度为10nm、尺寸为80*80mm的基底透明导电玻璃1;S1. Select a base transparent conductive glass 1 with a roughness of 10nm and a size of 80*80mm;

S2、在TCO导电层2覆盖电荷传输材料,制得第一电荷传输层3,第一电荷传输层3为NiO层,厚度为20nm;在所述第一电荷传输层3上覆盖钙钛矿吸光材料,制得所述第一钙钛矿吸光层4,第一钙钛矿吸光层4为带隙1.8eV的FA0.83Cs0.17Pb(I0.5Br0.5)3,厚度为400nm;在第一钙钛矿吸光层4上覆盖电荷传输材料,制得第二电荷传输层5,第二电荷传输层5为PCBM层,厚度为80nm;在第二电荷传输层5上采用磁控溅射法制得透明导电电极6,厚度为120nm;在透明导电电极6上覆盖电荷传输材料,制得第三电荷传输层7,第三电荷传输层7为PEDOT:PSS层,厚度为20nm;在第三电荷传输层7上覆盖钙钛矿吸光材料,制得第二钙钛矿吸光层8,第二钙钛矿吸光层8为带隙1.2ev的FA0.75Cs0.25Sn0.5Pb0.5I3,厚度为400nm;在第二钙钛矿吸光层8上覆盖电荷传输材料,制得第四电荷传输层9,第四电荷传输层9为C60/PCBM层,厚度为80nmS2. Covering the TCO conductive layer 2 with a charge transport material to obtain a first charge transport layer 3. The first charge transport layer 3 is a NiO layer with a thickness of 20 nm; the first charge transport layer 3 is covered with perovskite to absorb light materials, the first perovskite light-absorbing layer 4 is prepared, and the first perovskite light-absorbing layer 4 is FA 0.83 Cs 0.17 Pb(I 0.5 Br 0.5 ) 3 with a band gap of 1.8 eV and a thickness of 400 nm; The titanium ore light-absorbing layer 4 is covered with a charge transport material to obtain a second charge transport layer 5. The second charge transport layer 5 is a PCBM layer with a thickness of 80 nm; the second charge transport layer 5 is made of a transparent magnetron sputtering method. The conductive electrode 6 has a thickness of 120 nm; the transparent conductive electrode 6 is covered with a charge transport material to obtain a third charge transport layer 7, and the third charge transport layer 7 is a PEDOT:PSS layer with a thickness of 20nm; 7 is covered with a perovskite light-absorbing material to obtain a second perovskite light-absorbing layer 8, and the second perovskite light-absorbing layer 8 is FA 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 with a band gap of 1.2 ev and a thickness of 400 nm; The second perovskite light-absorbing layer 8 is covered with a charge transport material to obtain a fourth charge transport layer 9. The fourth charge transport layer 9 is a C60/PCBM layer with a thickness of 80 nm

S3、在所述80mm*80mm的基片上采用掩模版制得面积为36cm2的对电极层,完成单节2-T钙钛矿叠层太阳能电池的制备。S3, using a mask on the 80mm*80mm substrate to form a counter electrode layer with an area of 36cm 2 to complete the preparation of a single-cell 2-T perovskite tandem solar cell.

应用例Application example

对实施例1、对比例1和对比例2中制备的太阳能电池模块的性能进行测试实验,具体操作过程如下:The performance of the solar cell modules prepared in Example 1, Comparative Example 1 and Comparative Example 2 were tested and tested, and the specific operation process was as follows:

(1)在模拟标准太阳光照射条件下(AM 1.5G),对太阳能电池模块进行电流密度-电压曲线的测试,所有测试进行前都由标准硅电池对光源进行校正,并且用黑色遮掩膜对模块有效工作区域进行限定。(1) Under simulated standard sunlight irradiation conditions (AM 1.5G), the current density-voltage curve test of the solar cell module was carried out. The effective working area of the module is limited.

(2)太阳能电池模块的光电转换效率的稳定性测试方法为:每隔三天进行一次测试,期间太阳能电池模块储存在避光条件下,温度为25℃,湿度为50%。(2) The stability test method of the photoelectric conversion efficiency of the solar cell module is as follows: a test is carried out every three days, during which the solar cell module is stored in a dark condition, the temperature is 25°C, and the humidity is 50%.

(3)对测试结果进行记载和分析,图2为三种太阳能电池模块的电流密度-电压曲线,具体测试结果如表1所示:(3) Record and analyze the test results. Figure 2 shows the current density-voltage curves of three solar cell modules. The specific test results are shown in Table 1:

表1Table 1

Figure BDA0002678769100000121
Figure BDA0002678769100000121

由表1中数据可知:It can be seen from the data in Table 1 that:

对比例1和对比例2分别是由单层的钙钛矿电池制作的模块,但是通过将两种带隙整合串联成叠层电池模块后,将电压整体提升了50%以上,进而提升整个电池模块的光电转换效率;Comparative Example 1 and Comparative Example 2 are modules made of single-layer perovskite cells, respectively, but by integrating the two band gaps in series into a stacked battery module, the overall voltage is increased by more than 50%, thereby improving the entire battery. Photoelectric conversion efficiency of the module;

对比例3是单块小面积的叠层电池片,由数据来看,他的开路电压比一般传统工艺制作的单片电池片要高出0.7V左右,但是他的实际有效面积太小,商业价值低;Comparative Example 3 is a single small-area laminated cell. According to the data, its open circuit voltage is about 0.7V higher than that of a single cell made by a traditional process, but its actual effective area is too small. low value;

对比例4的产成品是在实施例1同等面积玻璃上复制对比例3的工艺制作而成,对比数据也可以看出如果没有切割工艺,一整块大面积的钙钛矿薄膜由于存在很多缺陷,影响电池的填充因子,从而降低了电池的光电转换效率;切割工艺可以将整块大面积电池分成子电池串联结构,不仅仅提升了填充因子,还增大开路电压,进而提高大面积电池模块的转换效率,体现出叠层太阳能电池的商业价值。The finished product of Comparative Example 4 is made by duplicating the process of Comparative Example 3 on the glass of the same area of Example 1. It can also be seen from the comparison data that if there is no cutting process, a large-area perovskite film has many defects due to , affecting the filling factor of the battery, thereby reducing the photoelectric conversion efficiency of the battery; the cutting process can divide the entire large-area battery into a sub-battery series structure, which not only improves the filling factor, but also increases the open circuit voltage, thereby improving the large-area battery module. The conversion efficiency of tandem solar cells reflects the commercial value of tandem solar cells.

以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the embodiments and protection scope of the present invention. For those skilled in the art, they should be aware of the equivalent replacements and obvious changes made by using the contents of the description of the present invention. The solutions obtained by the changes of the above should be included in the protection scope of the present invention.

Claims (10)

1.一种2-T钙钛矿叠层太阳能电池模块,其特征在于,由若干单节2-T钙钛矿叠层太阳能电池通过连接结构串联而成,所述连接结构包括分割相邻两个所述单节2-T钙钛矿叠层太阳能电池TCO导电层(2)的P1绝缘区(11)、串联相邻两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区(12)以及分割相邻两个所述单节2-T钙钛矿叠层太阳能电池对电极层(10)的P3隔断区(13),若干所述单节2-T钙钛矿叠层太阳能电池分置于同一块基底透明导电玻璃(1)上。1. A 2-T perovskite tandem solar cell module, characterized in that, a plurality of single-section 2-T perovskite tandem solar cells are connected in series through a connection structure, and the connection structure comprises dividing adjacent two The P1 insulating region (11) of the TCO conductive layer (2) of the single-cell 2-T perovskite tandem solar cells, and the P2 of the two adjacent single-cell 2-T perovskite tandem solar cells in series A connecting region (12) and a P3 blocking region (13) dividing the counter electrode layers (10) of two adjacent single-segment 2-T perovskite tandem solar cells, a plurality of single-segment 2-T perovskites The stacked solar cells are placed on the same base transparent conductive glass (1). 2.根据权利要求1所述的2-T钙钛矿叠层太阳能电池模块,其特征在于,所述单节2-T钙钛矿叠层太阳能电池包括依次连接的基底透明导电玻璃(1)、TCO导电层(2)、第一电荷传输层(3)、至少能吸收短波长光线而使长波长光线完全通过的第一钙钛矿吸光层(4)、第二电荷传输层(5)、透明导电电极(6)、第三电荷传输层(7)、能吸收太阳光绝大部分波长光线的第二钙钛矿吸光层(8)、第四电荷传输层(9)和对电极层(10),所述单节2-T钙钛矿叠层太阳能电池的对电极层(10)与其相邻所述单节2-T钙钛矿叠层太阳能电池的TCO导电层(2)串联连接。2 . The 2-T perovskite tandem solar cell module according to claim 1 , wherein the single-section 2-T perovskite tandem solar cell comprises substrate transparent conductive glass (1) connected in sequence. 3 . , a TCO conductive layer (2), a first charge transport layer (3), a first perovskite light-absorbing layer (4) capable of at least absorbing short-wavelength light and allowing long-wavelength light to pass completely, and a second charge-transport layer (5) , a transparent conductive electrode (6), a third charge transport layer (7), a second perovskite light absorbing layer (8) capable of absorbing most wavelengths of sunlight, a fourth charge transport layer (9) and a counter electrode layer (10), the counter electrode layer (10) of the single-cell 2-T perovskite tandem solar cell is connected in series with the TCO conductive layer (2) of the adjacent single-cell 2-T perovskite tandem solar cell connect. 3.根据权利要求2所述的2-T钙钛矿叠层太阳能电池模块,其特征在于,所述第一钙钛矿吸光层(4)为宽带隙的钙钛矿薄膜,所述第一钙钛矿吸光层(4)的带隙为1.7-1.9eV;所述第二钙钛矿吸光层(8)为窄带隙的钙钛矿薄膜,所述第二钙钛矿吸光层(8)的带隙为0.8-1.2eV。3. The 2-T perovskite tandem solar cell module according to claim 2, wherein the first perovskite light-absorbing layer (4) is a wide-bandgap perovskite thin film, and the first perovskite light-absorbing layer (4) The band gap of the perovskite light absorbing layer (4) is 1.7-1.9 eV; the second perovskite light absorbing layer (8) is a narrow band gap perovskite thin film, and the second perovskite light absorbing layer (8) The band gap of 0.8-1.2eV. 4.根据权利要求2所述的2-T钙钛矿叠层太阳能电池模块,其特征在于,所述第一钙钛矿吸光层(4)的材料为FA0.83Cs0.17Pb(I0.5Br0.5)3;所述第二钙钛矿吸光层(8)的材料为FA0.75Cs0.25Sn0.5Pb0.5I34. The 2-T perovskite tandem solar cell module according to claim 2, wherein the material of the first perovskite light-absorbing layer (4) is FA 0.83 Cs 0.17 Pb (I 0.5 Br 0.5 ) 3 ; the material of the second perovskite light-absorbing layer (8) is FA 0.75 Cs 0.25 Sn 0.5 Pb 0.5 I 3 . 5.根据权利要求2所述的2-T钙钛矿叠层太阳能电池模块,其特征在于,所述第一电荷传输层(3)为空穴传输层,所述第二电荷传输层(5)为电子传输层,所述第三电荷传输层(7)为空穴传输层,所述第四电荷传输层(9)为电子传输层;或者所述第一电荷传输层(3)为电子传输层,所述第二电荷传输层(5)为空穴传输层,所述第三电荷传输层(7)为电子传输层,所述第四电荷传输层(9)为空穴传输层。5. The 2-T perovskite tandem solar cell module according to claim 2, wherein the first charge transport layer (3) is a hole transport layer, and the second charge transport layer (5) ) is an electron transport layer, the third charge transport layer (7) is a hole transport layer, and the fourth charge transport layer (9) is an electron transport layer; or the first charge transport layer (3) is an electron transport layer Transport layer, the second charge transport layer (5) is a hole transport layer, the third charge transport layer (7) is an electron transport layer, and the fourth charge transport layer (9) is a hole transport layer. 6.根据权利要求5所述的2-T钙钛矿叠层太阳能电池模块,其特征在于,所述空穴传输层采用无机空穴传输材料和/或有机空穴传输材料;所述电子传输层采用无机电子传输材料和/或有机电子传输材料;所述对电极层(10)采用金属电极材料或非金属电极材料。6. The 2-T perovskite tandem solar cell module according to claim 5, wherein the hole transport layer adopts an inorganic hole transport material and/or an organic hole transport material; the electron transport The layer adopts inorganic electron transport material and/or organic electron transport material; the counter electrode layer (10) adopts metal electrode material or non-metal electrode material. 7.根据权利要求6所述的2-T钙钛矿叠层太阳能电池模块,其特征在于,所述无机空穴传输材料为NiO、Cu2O和MoO3中的一种或几种,所述有机空穴传输材料为Spiro-OMeTAD、P3HT、PEDOT:PSS和PTAA中的一种或几种;所述无机电子传输材料为TiO2、ZnO和SnO2中的一种或几种,所述有机电子传输材料为C60和/或PCBM;所述金属电极材料为Cu、Al、Ag、Au、Mo和Cr中的一种或几种,所述非金属电极材料为碳电极。7 . The 2-T perovskite tandem solar cell module according to claim 6 , wherein the inorganic hole transport material is one or more of NiO, Cu 2 O and MoO 3 . The organic hole transport material is one or more of Spiro-OMeTAD, P 3 HT, PEDOT:PSS and PTAA; the inorganic electron transport material is one or more of TiO 2 , ZnO and SnO 2 , The organic electron transport material is C60 and/or PCBM; the metal electrode material is one or more of Cu, Al, Ag, Au, Mo and Cr, and the non-metal electrode material is a carbon electrode. 8.根据权利要求2所述的2-T钙钛矿叠层太阳能电池模块,其特征在于,所述透明导电电极(6)为透明导电氧化物(TCO)、银纳米线、超薄金属和石墨烯材料中的一种或几种。8. The 2-T perovskite tandem solar cell module according to claim 2, wherein the transparent conductive electrode (6) is a transparent conductive oxide (TCO), silver nanowire, ultra-thin metal and One or more of graphene materials. 9.根据权利要求1-8中任一项所述的2-T钙钛矿叠层太阳能电池模块的制备方法,其特征在于,包括如下步骤:9. The preparation method of the 2-T perovskite tandem solar cell module according to any one of claims 1-8, characterized in that, comprising the steps of: S1、在基底透明导电玻璃(1)上覆盖TCO导电层(2),对所述基底透明导电玻璃(1)上覆盖的所述TCO导电层(2)进行刻蚀,以形成两个相邻所述单节2-T钙钛矿叠层太阳能电池之间的P1绝缘区(11);在所述TCO导电层(2)和P1绝缘区(11)上覆盖电荷传输材料,制得所述第一电荷传输层(3);在所述第一电荷传输层(3)上覆盖钙钛矿吸光材料,制得所述第一钙钛矿吸光层(4);在所述第一钙钛矿吸光层(4)上覆盖电荷传输材料,制得所述第二电荷传输层(5);在所述第二电荷传输层(5)上采用磁控溅射法制得所述透明导电电极(6);在所述透明导电电极(6)上覆盖电荷传输材料,制得所述第三电荷传输层(7);在所述第三电荷传输层(7)上覆盖钙钛矿吸光材料,制得所述第二钙钛矿吸光层(8);在所述第二钙钛矿吸光层(8)上覆盖电荷传输材料,制得所述第四电荷传输层(9);S1. Cover the TCO conductive layer (2) on the base transparent conductive glass (1), and etch the TCO conductive layer (2) covered on the base transparent conductive glass (1) to form two adjacent The P1 insulating region (11) between the single-section 2-T perovskite tandem solar cells; the TCO conductive layer (2) and the P1 insulating region (11) are covered with a charge transport material to obtain the a first charge transport layer (3); covering the first charge transport layer (3) with a perovskite light-absorbing material to prepare the first perovskite light-absorbing layer (4); on the first perovskite light-absorbing material The ore light-absorbing layer (4) is covered with a charge transport material to obtain the second charge transport layer (5); the transparent conductive electrode ( 6); covering the transparent conductive electrode (6) with a charge transport material to obtain the third charge transport layer (7); covering the third charge transport layer (7) with a perovskite light-absorbing material, preparing the second perovskite light-absorbing layer (8); covering the second perovskite light-absorbing layer (8) with a charge transport material to obtain the fourth charge transport layer (9); S2、对所述第四电荷传输层(9)、第二钙钛矿吸光层(8)、第三电荷传输层(7)、透明导电电极(6)、第二电荷传输层(5)、第一钙钛矿吸光层(4)和第一电荷传输层(3)进行刻蚀,获得刻蚀沟道(14);在所述第四电荷传输层(9)和刻蚀沟道(14)的剩余区域上覆盖对电极材料,制得所述对电极层(10),同时形成分割相邻两个所述单节2-T钙钛矿叠层太阳能电池对电极层(10)的P3隔断区(13);对所述刻蚀沟道(14)剩余区域中的对电极材料进行部分刻蚀,并保留覆盖于所述第四电荷传输层(9)相应断开端处的电荷传输材料,以形成串联相邻两个所述单节2-T钙钛矿叠层太阳能电池的P2连接区(12),制得所述2-T钙钛矿叠层太阳能电池模块。S2, to the fourth charge transport layer (9), the second perovskite light absorbing layer (8), the third charge transport layer (7), the transparent conductive electrode (6), the second charge transport layer (5), The first perovskite light absorption layer (4) and the first charge transport layer (3) are etched to obtain an etching channel (14); in the fourth charge transport layer (9) and the etching channel (14) ) is covered with a counter electrode material to prepare the counter electrode layer (10), and at the same time a P3 is formed that separates the counter electrode layers (10) of the two adjacent single-section 2-T perovskite tandem solar cells blocking region (13); partially etching the counter electrode material in the remaining region of the etching channel (14), and retaining the charge transport covering the corresponding disconnected ends of the fourth charge transport layer (9) materials to form the P2 connection region (12) of two adjacent single-section 2-T perovskite tandem solar cells in series, and the 2-T perovskite tandem solar cell module is prepared. 10.根据权利要求9所述的2-T钙钛矿叠层太阳能电池模块的制备方法,其特征在于,S2中,所述刻蚀采用激光刻蚀,调整所述激光刻蚀的入射角度以形成不同角度的刻蚀坡面。10. The method for preparing a 2-T perovskite tandem solar cell module according to claim 9, wherein in S2, the etching adopts laser etching, and the incident angle of the laser etching is adjusted to Etch slopes with different angles are formed.
CN202010956503.1A 2020-09-11 2020-09-11 A 2-T perovskite tandem solar cell module and its preparation method Pending CN112133830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010956503.1A CN112133830A (en) 2020-09-11 2020-09-11 A 2-T perovskite tandem solar cell module and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010956503.1A CN112133830A (en) 2020-09-11 2020-09-11 A 2-T perovskite tandem solar cell module and its preparation method

Publications (1)

Publication Number Publication Date
CN112133830A true CN112133830A (en) 2020-12-25

Family

ID=73846627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010956503.1A Pending CN112133830A (en) 2020-09-11 2020-09-11 A 2-T perovskite tandem solar cell module and its preparation method

Country Status (1)

Country Link
CN (1) CN112133830A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023889A (en) * 2021-11-04 2022-02-08 浙江晶科能源有限公司 Perovskite solar cell array, preparation method thereof and photovoltaic module
CN114695674A (en) * 2022-03-29 2022-07-01 无锡极电光能科技有限公司 Perovskite solar device and preparation method thereof
CN115274767A (en) * 2022-04-01 2022-11-01 国家电投集团科学技术研究院有限公司 Tandem solar cells
CN115513384A (en) * 2022-09-28 2022-12-23 深圳黑晶光电技术有限公司 Perovskite/crystalline silicon laminated solar cell packaging method
CN116528603A (en) * 2023-05-31 2023-08-01 广州追光科技有限公司 Organic solar cell and preparation method thereof
WO2025113578A1 (en) * 2023-11-30 2025-06-05 宁德时代未来能源(上海)研究院有限公司 Solar cell module and preparation method therefor, photovoltaic device, electric apparatus, and power generation apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135204A1 (en) * 2014-03-14 2015-09-17 惠州市易晖太阳能科技有限公司 Hybrid stacked type solar module and manufacturing method therefor
CN106910827A (en) * 2017-02-22 2017-06-30 苏州黎元新能源科技有限公司 A kind of perovskite solar module and preparation method thereof
CN207967053U (en) * 2017-12-30 2018-10-12 凯盛光伏材料有限公司 A kind of copper indium gallium selenide perovskite lamination solar cell
WO2018221914A1 (en) * 2017-05-29 2018-12-06 엘지전자 주식회사 Perovskite silicon tandem solar cell and manufacturing method
CN110212099A (en) * 2019-05-22 2019-09-06 上海黎元新能源科技有限公司 A kind of preparation method of calcium titanium ore bed and solar battery
CN209515739U (en) * 2019-01-17 2019-10-18 苏州协鑫纳米科技有限公司 Both ends lamination perovskite solar battery
CN111312905A (en) * 2020-05-11 2020-06-19 浙江爱旭太阳能科技有限公司 Four-end perovskite and crystalline silicon laminated assembly and preparation method thereof
CN111525031A (en) * 2020-04-06 2020-08-11 杭州纤纳光电科技有限公司 A kind of perovskite triple junction tandem solar cell and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135204A1 (en) * 2014-03-14 2015-09-17 惠州市易晖太阳能科技有限公司 Hybrid stacked type solar module and manufacturing method therefor
CN106910827A (en) * 2017-02-22 2017-06-30 苏州黎元新能源科技有限公司 A kind of perovskite solar module and preparation method thereof
WO2018221914A1 (en) * 2017-05-29 2018-12-06 엘지전자 주식회사 Perovskite silicon tandem solar cell and manufacturing method
CN207967053U (en) * 2017-12-30 2018-10-12 凯盛光伏材料有限公司 A kind of copper indium gallium selenide perovskite lamination solar cell
CN209515739U (en) * 2019-01-17 2019-10-18 苏州协鑫纳米科技有限公司 Both ends lamination perovskite solar battery
CN110212099A (en) * 2019-05-22 2019-09-06 上海黎元新能源科技有限公司 A kind of preparation method of calcium titanium ore bed and solar battery
CN111525031A (en) * 2020-04-06 2020-08-11 杭州纤纳光电科技有限公司 A kind of perovskite triple junction tandem solar cell and preparation method thereof
CN111312905A (en) * 2020-05-11 2020-06-19 浙江爱旭太阳能科技有限公司 Four-end perovskite and crystalline silicon laminated assembly and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马兰等: "《钒钛材料》", 31 January 2020, 冶金工业出版社, pages: 225 - 227 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023889A (en) * 2021-11-04 2022-02-08 浙江晶科能源有限公司 Perovskite solar cell array, preparation method thereof and photovoltaic module
CN114695674A (en) * 2022-03-29 2022-07-01 无锡极电光能科技有限公司 Perovskite solar device and preparation method thereof
CN115274767A (en) * 2022-04-01 2022-11-01 国家电投集团科学技术研究院有限公司 Tandem solar cells
CN115274767B (en) * 2022-04-01 2023-04-07 国家电投集团科学技术研究院有限公司 Stacked solar cells
CN115513384A (en) * 2022-09-28 2022-12-23 深圳黑晶光电技术有限公司 Perovskite/crystalline silicon laminated solar cell packaging method
CN116528603A (en) * 2023-05-31 2023-08-01 广州追光科技有限公司 Organic solar cell and preparation method thereof
CN116528603B (en) * 2023-05-31 2024-06-11 广州追光科技有限公司 Organic solar cell and preparation method thereof
WO2025113578A1 (en) * 2023-11-30 2025-06-05 宁德时代未来能源(上海)研究院有限公司 Solar cell module and preparation method therefor, photovoltaic device, electric apparatus, and power generation apparatus

Similar Documents

Publication Publication Date Title
CN112133830A (en) A 2-T perovskite tandem solar cell module and its preparation method
CN106910827B (en) Perovskite solar cell module and preparation method thereof
CN111430384B (en) A solar cell module, a laminated solar cell and a manufacturing method thereof
EP2416377B1 (en) Solar cell and manufacturing method thereof
TWI727728B (en) Thin film photovoltaic cell series structure and preparation process of thin film photovoltaic cell series
CN211789098U (en) Crystalline silicon-perovskite component
CN113823745B (en) A kind of solar cell module and its preparation method, photovoltaic module
CN114023889A (en) Perovskite solar cell array, preparation method thereof and photovoltaic module
CN116096113A (en) Perovskite copper indium gallium selenium laminated battery and preparation method thereof
CN109473502B (en) Solar cell lamination structure and preparation method thereof
JP3240825U (en) thin film solar cell
CN211828772U (en) Laminated solar cell
CN119343019A (en) A laminated battery and a method for preparing the same
JP2011124474A (en) Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
JPH02164077A (en) amorphous silicon solar cell
CN111540803B (en) Solar cell module and manufacturing method thereof
CN115274885A (en) Solar cell, preparation method thereof and photovoltaic module
CN222090035U (en) A photovoltaic module
CN220895515U (en) A high-efficiency thin-film battery assembly
JP2000252490A (en) Integrated thin-film solar cell and its manufacture
CN222322112U (en) A new type of stacked perovskite battery
CN219719002U (en) Perovskite-crystalline silicon laminated solar cell structure
CN218351478U (en) Solar cell and photovoltaic module
CN222674884U (en) A crystalline silicon-perovskite two-terminal stacked solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: China

Address after: No. 22 Changshan Avenue, Jiangyin City, Wuxi City, Jiangsu Province, 214437

Applicant after: Liyuan New Energy Technology (Wuxi) Co.,Ltd.

Address before: Room 2223, building 2, No. 1599, Fengpu Avenue, Fengxian District, Shanghai 201400

Applicant before: SHANGHAI LIYUAN NEW ENERGY TECHNOLOGY Co.,Ltd.

Country or region before: China

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201225