CN112133776A - 针对高辐射剂量下的性能而优化的太阳能电池设计 - Google Patents

针对高辐射剂量下的性能而优化的太阳能电池设计 Download PDF

Info

Publication number
CN112133776A
CN112133776A CN202010332722.2A CN202010332722A CN112133776A CN 112133776 A CN112133776 A CN 112133776A CN 202010332722 A CN202010332722 A CN 202010332722A CN 112133776 A CN112133776 A CN 112133776A
Authority
CN
China
Prior art keywords
solar cell
subcell
base
reflector
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010332722.2A
Other languages
English (en)
Inventor
P·T·邱
C·M·费策尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of CN112133776A publication Critical patent/CN112133776A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/041Provisions for preventing damage caused by corpuscular radiation, e.g. for space applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

针对高辐射剂量下的性能而优化的太阳能电池设计。其中,所述太阳能电池包括:包括基极和发射极的子电池;子电池的基极的厚度约2μm至3μm;子电池的基极以约1e14cm‑3至1e16cm‑3被掺杂;以及反射器,该反射器被插入到子电池的后面,以使子电池产生的电流最大化。

Description

针对高辐射剂量下的性能而优化的太阳能电池设计
技术领域
本公开总体上涉及针对高辐射剂量下的性能而优化的太阳能电池设计。
背景技术
直到最近,太空卫星都在以约为1e15e-/cm2的总有效辐射剂量在地球同步轨道(GEO)上运行。在过去的几年中,任务已经被多样化为包括那些具有比GEO远高出一个数量级的有效辐射剂量的中地轨道(MEO)。因此,太阳能电池在高辐射空间环境中的性能变得越来越关键。
先前存在解决此问题的方法。在2016年2月2日授权给Matthias Meusel等人、名称为“Monolithic Multiple Solar Cells”并转让给Azur Space Solar Power GmbH的美国专利No.9,252,313(以下称为‘313专利)中描述了一种这样的方法。
‘313专利规定了使用被设置在两个部分电池(partial cell)之间的半导体镜,通过使用镜,使镜上方的部分电池的厚度减小了一半,而不会显著降低部分电池的吸收率。但是,‘313专利的设计在约1e15e-/cm2或更高的高辐射剂量后,性能会迅速下降。
因此,需要针对高辐射剂量下的性能而优化的太阳能电池设计。
发明内容
为了克服上述限制,并且克服在阅读和理解本说明书后将变得显而易见的其他限制,本公开描述了一种器件、一种制造器件的方法以及一种使用该器件产生电流的方法,其中该器件是针对高辐射剂量下的性能而优化的太阳能电池,并且该太阳能电池包括:包括基极和发射极的子电池;子电池的基极的厚度为约2μm至3μm;子电池的基极以约1e14cm-3至1e16cm-3被掺杂;并且将反射器插入子电池的后面以使子电池产生的电流最大化。
附图说明
现在参考附图,其中相似的附图标记始终表示对应的部分:
图1A和图1B是三结太阳能电池的层示意图,其中,图1A是基准太阳能电池,而图1B是新型太阳能电池。
图2是基准太阳能电池和新型太阳能电池的内部量子效率(IQE)相对于波长(nm)的图。
图3示出了四个实验分图(split)以用于比较LIV(光电流电压)数据,包括:基准太阳能电池与新型太阳能电池之间的Voc(开路电压)、Jsc(短路电流)、Eff(最大功率点的太阳能电池效率)和FF(填充系数)。
图4是基准太阳能电池和新型太阳能电池的功率保持率(NPmp)相对于1MeV e-剂量(e-/cm2)(电子注量)的图。
图5是基准太阳能电池和新型太阳能电池的终止寿命(EOL)效率(%)相对于1MeVe-剂量(e-/cm2)(电子注量)的图。
图6A例示了制造太阳能电池、太阳能电池板和/或卫星的方法。
图6B例示了所得卫星,该所得卫星具有包括太阳能电池的太阳能电池板。
图7是功能框图的形式的太阳能电池板的例示。
具体实施方式
在下面的描述中,参考形成其一部分的附图,并且在附图中通过例示的方式示出了可以实践本公开的特定示例。应当理解,在不脱离本公开的范围的情况下,可以利用其他示例并且可以进行结构改变。
概述
标准三结(3J)空间太阳能电池在暴露于空间辐射后的功率保持率受到GaAs中间电池(即,中间子电池)保持率非常大的影响。本公开通过将中间子电池的基极的厚度减小到小于完全吸收光所需的厚度并降低中间子电池的基极的掺杂,来显著改善中间子电池的功率保持率。
优选地,中间子电池的基极的厚度为约2μm至3μm;更优选地,中间子电池的基极的厚度为约2.1μm至2.3μm;并且最优选地,中间子电池的厚度为约2.1μm。
优选地,中间子电池的基极以约1e14cm-3至1e16cm-3被p型掺杂。
在中间子电池的后面插入反射器,例如分布式布拉格反射器(DBR),以补偿中间子电池基极的减小的厚度并使中间子电池的电流最大化。优选地,反射集中在约870nm的波长处。
通过实验,已经证明了使用本公开的初始寿命(BOL)太阳能电池效率(32%)比当前行业标准相对高4%。而且,在约1e15e-/cm2至1e16e-/cm2的高电子注量下,使用本公开的太阳能电池的终止寿命(EOL)功率超过原先现有技术的太阳能电池相对12%。
器件
图1A和图1B是层示意图,各个图分别示出了包括基准(baseline)III-V太阳能电池100A和新型III-V 3J太阳能电池100B的器件的截面图,并且描述了该器件的制造方法和使用该器件产生电流的方法。
图1A示出了基准III-V 3J太阳能电池100A。太阳能电池100A包括p型掺杂锗(p-Ge)基底102、在基底102上沉积和/或制造标准(std)成核层104、缓冲层106、下隧道结108、中间子电池(MC)背面场(BSF)110、包括基极114A和发射极116的中间子电池112A(其中,基极114A包括具有约为1e14cm-3至1e16cm-3的p型掺杂砷化镓铟镓(GaInAs),并且具有约3.5μm的厚度,而发射极116包括砷化铟镓(InGaAs))、MC窗118、上隧道结120、上子电池(TC)BSF122、包括GaInP的上子电池124、包括磷化铝铟(AlInP)的窗126、以及包括GaInAs的盖128。太阳能电池100A可以包括未示出的其他特征,诸如抗反射涂层以及前后金属接触。
基准太阳能电池100A具有厚度约3.5μm的完全吸收的中间子电池112A的基极114A。中间子电池112A的基极114A的p型掺杂低至约1e14cm-3至1e16cm-3,以增加空间电荷区域。空间电荷区域收集少数载流子,而不管由辐射损伤引起的中间子电池112A的扩散长度的如何减小。这种层设计针对约1e15e-/cm2或更小的辐射剂量进行了优化。
图1B示出了根据本公开的新型III-V 3J太阳能电池100B,其中,在中间子电池112B的后面插入反射器130(即,包括砷化铝镓(AlGaAs)和砷化镓(GaAs)的DBR 130),位于缓冲层106与下隧道结108之间,并且DBR 130具有集中在约870nm波长处的反射(reflectance)。另外,中间子电池112B包括基极114B,该基极114B包括约1e14cm-3至1e16cm-3的p型掺杂的GaInAs,其厚度为约2.1μm。在其它方面,100B的结构与100A的结构相同。
新型太阳能电池100B与基准太阳能电池100A相比有两个主要变化,包括:中间子电池112A的基极114A的厚度3.5μm到中间子电池112B的基极114B的厚度2.1μm的减小,并且添加了在870nm处具有中心波长的DBR 130。
实验结果
DBR 130的使用允许中间子电池112B的基极114B变薄至约2.1μm,而不会损耗中间子电池112B产生的电流。这在图2中得以证明,图2示出了具有3.5μm厚度的中间子电池112A的基极114A的基准太阳能电池100A和具有2.1μm厚度的中间子电池112B的基极114B的新型太阳能电池100B的内部量子效率曲线。
尽管新型太阳能电池100B的中间子电池112B的基极114B的厚度几乎是基准太阳能电池100A的中间子电池112A的基极114A的厚度的一半,但内部量子效率(IQE)特征(signature)几乎相同并且积分电流在误差范围内是相同的。用于新型太阳能电池100B的更薄(2.1μm)的中间子电池112B的基极114B也有益于新型太阳能电池100B的电压。更厚(3.5μm)的中间子电池112A的基极114A在基准太阳能电池100A的背面(这里光强度低)附近具有暗电流。
部分地,作为中间子电池112B的电流(来自DBR 130)为高并且中间子电池112B的电压(由于中间子电池112B的基极114B更薄)更高的结果,新型太阳能电池100B具有出色的BOL效率。图3中总结了新型太阳能电池100B的BOL LIV特性。
图3示出了四个实验分图以用于在基准太阳能电池与新型太阳能电池之间比较LIV(光电流电压)数据,该LIV数据包括:Voc(开路电压)、Jsc(短路电流)、Eff(最大功率点的太阳能电池效率)和FF(填充系数)。虚线300示出了当前现有技术的基准太阳能电池100A的对应值。
新型太阳能电池100B比基准太阳能电池100A高近70mV。新型太阳能电池100B的电流与基准太阳能电池100A的电流相匹配。新型太阳能电池100B的整体BOL效率比基准太阳能电池100A高4%。
新型太阳能电池100B中的中间子电池112B的基极114B的低p型掺杂(约1e14cm-3至1e16cm-3)和新型太阳能电池100B中的中间子电池112B的基极114B的薄度(约2.1μm)在EOL性能方面具有显著优势,尤其是在高辐射水平下。图4示出了针对基准太阳能电池100A和新型太阳能电池100B,功率保持率(NPmp)作为1MeV电子辐射剂量(e-剂量)(e-/cm2)(电子注量)的函数的图。从图4中显然可见,对于从0至5e14e-/cm2的1MeV电子辐射剂量,新型太阳能电池100B的功率保持率与基准太阳能电池100A的功率保持率类似。
然而,从约1e15e-/cm2至1e16e-/cm2的1MeV电子辐射剂量,新型太阳能电池100B的NPmp明显大于基准太阳能电池100A的NPmp,其中,新型太阳能电池100B的NPmp与基准太阳能电池100A的NPmp的差异随着辐射剂量的增加而增加。在约1e15e-/cm2和1e16e-/cm2的1MeV电子辐射剂量下,新型太阳能电池100B的NPmp相对于基准太阳能电池100A相对改善1%和8%。
改进的BOL效率和NPmp的组合获得提高的EOL效率,其中EOL效率=BOL效率×NPmp。图5示出了基准太阳能电池100A和新型太阳能电池100B的、EOL效率作为1MeV电子辐射剂量的函数的图。
从图5中清晰可见,在所有辐射剂量下,新型太阳能电池100B的EOL效率均大于基准太阳能电池100A的EOL效率。在低剂量下,由于新型太阳能电池100B在BOL上具有4%的优势,因此EOL效率的差异约为4%。从约1e15e-/cm2的1MeV电子辐射剂量开始,由于新型太阳能电池100B相对于基准太阳能电池100A具有更优的NPmp值,因此EOL效率的差异开始增加到约4%以上。在约1e16e-/cm2的1MeV电子辐射剂量下,EOL效率的差异约为12%。这是EOL效率的显著提高,其是市场上其他太阳能电池无法比拟的。
总结
本公开是将中间子电池112B的薄的基极114B的低p型掺杂与DBR 130结合以优化中间子电池112B在高辐射环境中的保持率的第一个已知解决方案。这获得至少两个优点。
首先,在新型太阳能电池100B中,结合有效的DBR 130来使用的厚度约为2μm至3μm、更优选约为2.1μm至2.3μm、最优选约为2.1μm的中间子电池112B的基极114B会导致有效吸收长度等于在基准太阳能电池100A中没有DBR的情况下厚度约为3至3.5μm的完全吸收的中间子电池112A的基极114A。以这种方式,新型太阳能电池100B中的中间子电池112B的BOL电流以及因此新型太阳能电池100B的BOL效率不会被损耗以提高EOL效率。因此,新型太阳能电池100B仍然能够实现接近32%的BOL效率水平,该BOL效率水平比当前现有技术的基准太阳能电池100A相对高4%。
第二,新型太阳能电池100B中的中间子电池112B的相对更薄的基极114B与新型太阳能电池100B中的中间子电池112B的基极114B的低p型掺杂相结合会获得在约1e15e-/cm2至1e16e-/cm2的辐射剂量下的功率保持率,这在行业中是无法比拟的。作为结果,在这些辐射剂量下,新型太阳能电池100B的解决方案的功率保持率和EOL功率比当前现有技术的基准太阳能电池100A好12%。
本公开的结果是针对高辐射剂量下的性能而优化的新型太阳能电池100B设计,其展现了:在约1e16e-/cm2的MEO样的辐射剂量之后,型太阳能电池100B设计的EOL效率比目前的现有基准太阳能电池100A设计的EOL效率好12%。
替代和修改
已经出于例示和描述的目的呈现出上面阐述的描述,并且其不旨在是穷举的或限于所描述的示例。可以使用许多替代和修改来代替上面阐述的具体描述。
例如,尽管本公开描述了被广泛采用的三结太阳能电池100B,但是它可以扩大到覆盖包括单结或多结太阳能电池(例如,单结太阳能电池、双结太阳能电池或其他多结太阳能电池)的太阳能电池100B的任何实例。
在另一示例中,尽管将中间子电池112B描述为包括InGaAs和GaInAs,并且将DBR130描述为包括AlGaAs和GaAs,但是也可以使用其他材料。
在又一示例中,尽管本公开将中间子电池112B、基极114B和DBR 130描述为包括某些材料,但是替代方案可以将中间子电池112B、基极114B和DBR 130描述为包括这些材料或其他材料,或基本上包括这些材料或其他材料。
在又一示例中,本公开适用于任何子电池中的倒置变形(IMM)器件,以增强器件的辐射保持率。具体地,本公开可以被应用于该架构内的GaAs、GaInAs、AlGaAs、AlGaInAs、GaInAsSb、GaInAsN、GaInAsNSb、GaInAsSb、GaAsSb、GaPAsSb子电池。
在又一示例中,除DBR 130之外的反射器可以用于捕获第二次穿过子电池112B的光。这样的反射器可以嵌入在外延(epitaxy)中,例如AlAs/GaAs、AlGaInAs/GaInAs、AlGaAsSb/GaAsSb和类似的DBR,或者嵌入在应用于子电池112B背面的金属表面中,该金属表面包括低折射率材料(例如TiOx、SiOx、Al2O3),涂敷有金属层(例如Ag、Au、Al、Ti、Pt、Ni或类似的半导体器件制造中常见的金属)。
通常,子电池具有常用于p型Ge基底的n-on-p配置,这意味着子电池的发射极是n型,而基极是p型。但是,其他示例可以包括p-on-n配置,其中子电池的发射极是p型,而基极是n型。
类似地,尽管本公开描述了新型太阳能电池100B在约1e15e-/cm2至1e16e-/cm2的辐射剂量下以期望的方式运行,但是替代方式可以描述新型太阳能电池100B在大于或小于约1e15e-/cm2至1e16e-/cm2范围的辐射剂量下以期望的方式运行。
航空航天应用
可以在制造太阳能电池、太阳能电池板和/或航空航天器(例如,卫星)的方法600的背景下描述本公开的示例,方法600包括步骤602至步骤614,如图6A所示;其中,所得卫星616在图6B中示出,包括各种系统618和主体620的所得卫星616包括板622,板622包括一个或更多个新型太阳能电池100B的阵列624。
如图6A所示,在预备生产期间,示例性方法600可以包括卫星616的规格和设计602以及用于卫星616的材料采购604。在生产期间,进行卫星616的部件和分总成制造606以及系统集成608,这包括制造卫星616、板622、阵列624和新型太阳能电池100B。此后,卫星616可以经过认证和交付610以便被投入服务612中。在被发射之前,卫星616还可以被安排维护和保养614(包括修改、重新配置、翻新等)。
方法600的各个处理可以由系统集成商、第三方和/或操作员(例如,客户)进行或执行。为了便于说明,系统集成商可以包括但不限于任何数量的制造商和主要系统分包商;第三方可以包括但不限于任何数量的厂商、分包商和供应商;运营商可以是卫星公司、军事实体、服务组织等。
如图6B所示,通过示例性方法600制造的卫星616可以包括各种系统618和主体620。卫星616所包括的系统618的示例包括但不限于推进系统626、电气系统628、通信系统630和电力系统632中的一个或更多个。也可以包括任何数量的其他系统。
功能框图
图7是根据一个示例的功能框图形式的板622的例示。板622包括阵列624,阵列624包括单独地附接到板622的一个或更多个新型太阳能电池100B。太阳能电池100B可以包括单结或多结太阳能电池100B(例如,单结太阳能电池100B、双结太阳能电池100B或其他多结太阳能电池100B)。至少一个新型太阳能电池100B包括子电池112B,子电池112B包括基极114B和发射极116,基极114B的厚度为约2μm至3μm,基极114B是约1e14cm-3至1e16cm-3的p型掺杂,并且将DBR 130插入子电池112B的后面,以使子电池112B产生的电流最大化。各个新型太阳能电池100B吸收来自光源702的光700,并响应于此而产生电输出704。
此外,本公开包括根据以下条款的示例:
条款1.一种器件,所述器件包括:
针对高辐射剂量下的性能而优化的太阳能电池,其中,所述太阳能电池包括:
子电池,所述子电池包括基极和发射极;
所述子电池的所述基极的厚度为约2μm至3μm;
所述子电池的所述基极以约1e14cm-3至1e16cm-3被掺杂;以及
反射器,所述反射器被插入到所述子电池的后面,以使所述子电池产生的电流最大化。
条款2.根据条款1所述的器件,其中,所述高辐射剂量包括约1e15e-/cm2至1e16e-/cm2的辐射剂量。
条款3.根据条款1或2所述的器件,其中,所述太阳能电池是单结太阳能电池或多结太阳能电池。
条款4.根据条款1至3中任一项所述的器件,其中,所述反射器是包括砷化铝镓(AlGaAs)和砷化镓(GaAs)的分布式布拉格反射器。
条款5.根据条款1至4中任一项所述的器件,其中,所述反射器位于所述太阳能电池的缓冲层与下隧道结之间。
条款6.根据条款1至5中任一项所述的器件,其中,所述反射器具有集中在约870nm波长处的反射。
条款7.根据条款1至6中任一项所述的器件,其中,所述子电池是所述太阳能电池的中间子电池。
条款8.根据条款1至7中任一项所述的器件,其中,所述子电池的发射极包括砷化铟镓(InGaAs)。
条款9.根据条款1至8中任一项所述的器件,其中,所述子电池的基极包括砷化镓铟(GaInAs)。
条款10.根据条款1至9中任一项所述的器件,其中,所述子电池的基极的厚度约为2.1μm至2.3μm。
条款11.根据条款1至10中任一项所述的器件,其中,所述子电池的基极的厚度为约2.1μm。
条款12.根据条款1至11中任一项所述的器件,其中,与子电池的基极较厚且没有反射器的基准太阳能电池相比,所述太阳能电池针对在高辐射剂量下的性能被优化。
条款13.根据条款12所述的器件,其中,对于从约0至5e14e-/cm2的1MeV电子辐射剂量,作为1MeV电子辐射剂量的函数的、所述太阳能电池的功率保持率与所述基准太阳能电池的功率保持率类似。
条款14.根据条款12所述的器件,其中,对于从约1e15e-/cm2至1e16e-/cm2的1MeV电子辐射剂量,作为1MeV电子辐射剂量的函数的、所述太阳能电池的功率保持率大于所述基准太阳能电池的功率保持率。
条款15.根据条款12至14中任一项所述的器件,其中,在所有辐射剂量下,所述太阳能电池的初始寿命BOL效率大于所述基准太阳能电池的初始寿命BOL效率。
条款16.根据条款12至15中任一项所述的器件,其中,在所有辐射剂量下,所述太阳能电池的终止寿命EOL效率大于所述基准太阳能电池的终止寿命EOL效率。
条款17.根据条款1至16中任一项所述的器件,所述器件还包括具有所述太阳能电池的板。
条款18.根据条款17所述的器件,所述器件还包括具有所述板的航天器。
条款19.一种方法,所述方法包括以下步骤:
制造针对在高辐射剂量下的性能而优化的太阳能电池,其中,所述太阳能电池包括:
子电池,所述子电池包括基极和发射极;
所述子电池的所述基极的厚度为约2μm至3μm;
所述子电池的所述基极以约1e14cm-3至1e16cm-3被掺杂;以及
反射器,所述反射器被插入到所述子电池的后面,以使所述子电池产生的电流最大化。
条款20.一种方法,所述方法包括以下步骤:
使用针对在高辐射剂量下的性能而优化的太阳能电池产生电流,其中,所述太阳能电池包括:
子电池,所述子电池包括基极和发射极;
所述子电池的所述基极的厚度为约2μm至3μm;
所述子电池的所述基极以约1e14cm-3至1e16cm-3被掺杂;以及
反射器,所述反射器被插入到所述子电池的后面,以使所述子电池产生的电流最大化。

Claims (10)

1.一种器件,所述器件包括:
针对高辐射剂量下的性能而优化的太阳能电池(100B),其中,所述太阳能电池(100B)包括:
子电池(112B),所述子电池(112B)包括基极(114B)和发射极(116);
所述子电池(112B)的所述基极(114B)的厚度为约2μm至3μm;
所述子电池(112B)的所述基极(114B)以约1e14cm-3至1e16cm-3被掺杂;以及
反射器(130),所述反射器(130)被插入到所述子电池(112B)的后面,以使所述子电池(112B)产生的电流最大化。
2.根据权利要求1所述的器件,其中,所述高辐射剂量包括约1e15e-/cm2至1e16e-/cm2的辐射剂量。
3.根据权利要求1所述的器件,其中,所述反射器(130)是包括砷化铝镓AlGaAs和砷化镓GaAs的分布式布拉格反射器(130)。
4.根据权利要求1所述的器件,其中,所述反射器(130)位于所述太阳能电池(100B)的缓冲层(106)与下隧道结(108)之间。
5.根据权利要求1所述的器件,其中,所述反射器(130)具有集中在约870nm波长处的反射。
6.根据权利要求1所述的器件,其中,与子电池(112A)的基极(114A)较厚且没有反射器(130)的基准太阳能电池(100A)相比,所述太阳能电池(100B)针对在高辐射剂量下的性能被优化。
7.根据权利要求6所述的器件,其中,对于从约0至5e14e-/cm2的1MeV电子辐射剂量,作为1MeV电子辐射剂量的函数的、所述太阳能电池(100B)的功率保持率与所述基准太阳能电池(100A)的功率保持率类似,和/或,
其中,对于从约1e15e-/cm2至1e16e-/cm2的1MeV电子辐射剂量,作为1MeV电子辐射剂量的函数的、所述太阳能电池(100B)的功率保持率大于所述基准太阳能电池(100A)的功率保持率。
8.根据权利要求6所述的器件,其中,在所有辐射剂量下,所述太阳能电池(100B)的初始寿命BOL效率大于所述基准太阳能电池(100A)的初始寿命BOL效率,和/或,
其中,在所有辐射剂量下,所述太阳能电池(100B)的终止寿命EOL效率大于所述基准太阳能电池(100A)的终止寿命EOL效率。
9.一种方法,所述方法包括以下步骤:
制造(600-614)针对在高辐射剂量下的性能而优化的太阳能电池(100B),其中,所述太阳能电池(100B)包括:
子电池(112B),所述子电池(112B)包括基极(114B)和发射极(116);
所述子电池(112B)的所述基极(114B)的厚度为约2μm至3μm;
所述子电池(112B)的所述基极(114B)以约1e14cm-3至1e16cm-3被掺杂;以及
反射器(130),所述反射器(130)被插入到所述子电池(112B)的后面,以使所述子电池(112B)产生的电流最大化。
10.一种方法,所述方法包括以下步骤:
使用针对在高辐射剂量下的性能而优化的太阳能电池(100B)产生(704)电流,其中,所述太阳能电池(100B)包括:
子电池(112B),所述子电池(112B)包括基极(114B)和发射极(116);
所述子电池(112B)的所述基极(114B)的厚度为约2μm至3μm;
所述子电池(112B)的所述基极(114B)以约1e14cm-3至1e16cm-3被掺杂;以及
反射器(130),所述反射器(130)被插入到所述子电池(112B)的后面,以使所述子电池(112B)产生的电流最大化。
CN202010332722.2A 2019-06-25 2020-04-24 针对高辐射剂量下的性能而优化的太阳能电池设计 Pending CN112133776A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/452,083 2019-06-25
US16/452,083 US20200411708A1 (en) 2019-06-25 2019-06-25 Solar cell design optimized for performance at high radiation doses

Publications (1)

Publication Number Publication Date
CN112133776A true CN112133776A (zh) 2020-12-25

Family

ID=70227840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010332722.2A Pending CN112133776A (zh) 2019-06-25 2020-04-24 针对高辐射剂量下的性能而优化的太阳能电池设计

Country Status (4)

Country Link
US (1) US20200411708A1 (zh)
EP (1) EP3758072A1 (zh)
JP (1) JP2021013013A (zh)
CN (1) CN112133776A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690335A (zh) * 2021-10-26 2021-11-23 南昌凯迅光电有限公司 一种改善型三结砷化镓太阳电池及其制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713205A (zh) * 2021-03-29 2021-04-27 南昌凯迅光电有限公司 一种高抗辐照三结砷化镓太阳电池及其制备方法
CN112864282B (zh) * 2021-04-23 2021-11-05 南昌凯迅光电有限公司 一种抗辐照高效砷化镓太阳电池的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326496A1 (en) * 2009-06-24 2010-12-30 Florida State University Research Foundation, Inc. High efficiency photovoltaic cell for solar energy harvesting
CN104617168A (zh) * 2014-12-26 2015-05-13 天津蓝天太阳科技有限公司 一种抗辐照三结级联砷化镓太阳电池及制备方法
US20170092800A1 (en) * 2015-08-17 2017-03-30 Solaero Technologies Corp. Four junction inverted metamorphic solar cell
US20170200849A1 (en) * 2016-01-12 2017-07-13 The Boeing Company Structures for Increased Current Generation and Collection in Solar Cells with Low Absorptance and/or Low Diffusion Length
WO2019010037A1 (en) * 2017-07-06 2019-01-10 Solar Junction Corporation HYBRID MOCVD / MBE EPITAXIAL GROWTH OF MULTI-JUNCTION SOLAR CELLS ADAPTED TO THE HIGH-PERFORMANCE NETWORK

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005000767A1 (de) 2005-01-04 2006-07-20 Rwe Space Solar Power Gmbh Monolithische Mehrfach-Solarzelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326496A1 (en) * 2009-06-24 2010-12-30 Florida State University Research Foundation, Inc. High efficiency photovoltaic cell for solar energy harvesting
CN104617168A (zh) * 2014-12-26 2015-05-13 天津蓝天太阳科技有限公司 一种抗辐照三结级联砷化镓太阳电池及制备方法
US20170092800A1 (en) * 2015-08-17 2017-03-30 Solaero Technologies Corp. Four junction inverted metamorphic solar cell
US20170200849A1 (en) * 2016-01-12 2017-07-13 The Boeing Company Structures for Increased Current Generation and Collection in Solar Cells with Low Absorptance and/or Low Diffusion Length
WO2019010037A1 (en) * 2017-07-06 2019-01-10 Solar Junction Corporation HYBRID MOCVD / MBE EPITAXIAL GROWTH OF MULTI-JUNCTION SOLAR CELLS ADAPTED TO THE HIGH-PERFORMANCE NETWORK

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690335A (zh) * 2021-10-26 2021-11-23 南昌凯迅光电有限公司 一种改善型三结砷化镓太阳电池及其制作方法

Also Published As

Publication number Publication date
EP3758072A1 (en) 2020-12-30
US20200411708A1 (en) 2020-12-31
JP2021013013A (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
US10714636B2 (en) Method for forming a multijunction metamorphic solar cell for space applications
US11670728B2 (en) Multijunction metamorphic solar cells
EP2641275B1 (en) TYPE-II HIGH BANDGAP TUNNEL JUNCTIONS OF InP LATTICE CONSTANT FOR MULTIJUNCTION SOLAR CELLS
EP2689465B1 (en) Metamorphic solar cell having improved current generation
EP3758072A1 (en) Solar cell design optimized for performance at high radiation doses
US20180240922A1 (en) Four junction solar cell and solar cell assemblies for space applications
EP3159939B1 (en) Multijunction solar cell assemblies for space applications
EP3514838B1 (en) Four junction solar cell and solar cell assemblies for space applications
Aho et al. Lattice‐matched four‐junction tandem solar cell including two dilute nitride bottom junctions
CN110047954B (zh) 用于空间应用的四结太阳能电池
US10707366B2 (en) Multijunction solar cells on bulk GeSi substrate
US20220149211A1 (en) Multijunction solar cell assembly
US20210242360A1 (en) Multijunction metamorphic solar cell
Wilt et al. Electrical and optical performance characteristics of 0.74 eV p/n InGaAs monolithic interconnected modules
US10256359B2 (en) Lattice matched multijunction solar cell assemblies for space applications
Andreev et al. Concentrator tandem solar cells based on AlGaAs/GaAs-InP/InGaAs (or GaSb) structures
US20180226532A1 (en) METHOD FOR FABRICATING MULTIJUNCTION SOLAR CELLS ON BULK GeSi SUBSTRATE
US20220393055A1 (en) Multijunction metamorphic solar cells
US20230142352A1 (en) Inverted metamorphic multijunction solar cells for space applications
CN109950331B (zh) 一种多结太阳能电池
JP2020178116A (ja) 太陽電池の低温性能向上を目指した設計

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination