CN112120833A - 一种植入物增强3d打印骨初始强度的方法 - Google Patents

一种植入物增强3d打印骨初始强度的方法 Download PDF

Info

Publication number
CN112120833A
CN112120833A CN202010978654.7A CN202010978654A CN112120833A CN 112120833 A CN112120833 A CN 112120833A CN 202010978654 A CN202010978654 A CN 202010978654A CN 112120833 A CN112120833 A CN 112120833A
Authority
CN
China
Prior art keywords
printing
bone
fused deposition
strength
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010978654.7A
Other languages
English (en)
Inventor
朱纪文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu MAILUN Medical Technology Co.,Ltd.
Original Assignee
朱纪文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱纪文 filed Critical 朱纪文
Priority to CN202010978654.7A priority Critical patent/CN112120833A/zh
Publication of CN112120833A publication Critical patent/CN112120833A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30985Designing or manufacturing processes using three dimensional printing [3DP]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种植入物增强3D打印骨初始强度的方法;包括设置有常温打印头、熔融沉积打印头的3D打印机及控制系统;3D打印机配合控制系统控制常温打印和熔融沉积打印进行交替打印,形成增强型人工骨,以使得熔融沉积打印的高分子聚合物在产品中起到增强产品强度的作用;所述常温打印头用于将生物医用功能材料打印出供人体骨细胞流通和修复的修复层,所述熔融沉积打印头用于将聚乳酸丝材料打印出承接强度和耐腐蚀的支撑层;本发明中支撑层能对极大的增强修复时人工骨的强度,有效的杜绝了人工骨在植入体内导致其机体部分酸性反应性,失去支撑强度的问题,并且本方法中同步设置有修复层,保证骨细胞与碎骨之间的运输,保证骨细胞的高效修复完成。

Description

一种植入物增强3D打印骨初始强度的方法
技术领域
本发明涉及生物修复及人工骨领域,尤其是一种植入物增强3D打印骨初始强度的方法。
背景技术
人工骨是指用生物功能材料制造的人骨替代品或者骨折固定材料骨组织修复支架,它具有良好的生物安全性和生物活性,能够使植入材料逐步被自体骨组织替代,以完成缺损骨组织的修复。减少致残率,替代非吸收性材料的使用,能极大地减轻患者痛苦,具有非常重要的社会效益和经济价值。
目前,获得临床应用的人工骨替换或修复材料主要包括:金属(包括医用钛合金和不锈钢等),高分子聚合物(包括聚乳酸、聚乙烯、尼龙和胶原等),陶瓷(包括羟基磷灰石、氧化铝、氧化锆和氮化硅等),以及它们的复合材料。理想的骨组织工程材料应具有生物相容性、可降解性和多孔性等特点,以利于细胞粘附、生长、增殖和分化,并形成功能性组织。为此,人们提出了很多制造人工骨支架的方法。
如申请号CN201510194743.1所公开的一种生物医学骨组织工程领域的多尺度仿生人工骨支架的增材制造方法,其将生物高分子材料和生物陶瓷材料混合后与去离子水或有机溶剂混合成均匀浆料,再进行冷冻干燥,获得均质粉体,再与去离子水或有机溶剂混合搅拌,真空排气后,通过螺杆泵定量挤出,采用 XYZ运动装置,按照从CT扫描获取的骨缺损三维几何模型,通过计算机程序设计该几何模型内部的孔隙形状、尺寸和孔隙率,挤出材料的运动轨迹,完成增材制造。采用可降解生物复合材料,骨缺损部位最终被人体自体组织替换,满足人体终身生长要求。
在现有技术中,通过3D常温打印工艺成型且未经过烧结的人工骨,为了利于提高加工性能在羟基磷灰石(HA)和B-磷酸三钙(B-TCP)粉料加入的水溶性粘结剂,经搅拌均匀后制备常温浆料进行打印。人工骨在植入人体后,需要在 1~4个月内保证一定的强度使人体骨细胞沿着人工骨进行生长和定型,确保植入初期正常的骨细胞粘附和生长。
但是由于亲水性粘合剂在植入体内后,在体液环境中较短时间内失去初始强度并崩塌使得人工骨的支架作用丧失,影响了骨细胞的粘附和生长。
现有技术中也有尝试改变常温打印工艺,采用聚乳酸做粘合剂进行熔融沉积法(FDM打印)。但是,如果聚乳酸的添加量能够足于通过FDM工艺打印,那么聚乳酸的添加量太多,植入机体会导致局部酸性反应,影响骨骼的修复,且此时羟基磷灰石(HA)和β-磷酸三钙(β-TCP)的植入量远低于骨骼修复所需的量;而要满足达到修复骨骼的生物陶瓷HA和β-TCP的量,则会出现添加的生物陶瓷量太多导致无法实现聚乳酸拉丝和FDM打印。
发明内容
本发明目的在于:针对上述问题,提供一种植入物增强3D打印骨初始强度的方法,解决了人工骨中粘合剂在植入体内后,在体液环境中较短时间 (1~4个月)内失去初始强度并崩塌使得人工骨的支架作用丧失,影响了骨细胞的粘附和生长的问题。
本发明是通过下述方案来实现的:
一种植入物增强3D打印骨初始强度的方法,包括设置有常温打印头、熔融沉积打印头的3D打印机及控制系统;3D打印机配合控制系统控制常温打印和熔融沉积打印进行交替打印,形成增强型人工骨,以使得熔融沉积打印的高分子聚合物在产品中起到增强产品强度的作用;在常温打印的材料中增加热熔型材料进行加固和增强。
作为优选的,所述常温打印头用于将生物医用功能材料打印出供人体骨细胞流通和修复的修复层,所述熔融沉积打印头用于打印出承接强度和耐腐蚀的支撑层。
作为优选的,所述生物医用功能材料包括但不仅限于生物活性陶瓷材料和和辅料及添加剂。
作为优选的,所述生物活性陶瓷材料包括羟基磷灰石、β-磷酸三钙、羟基磷灰石和β-磷酸三钙的混合物双相磷酸钙陶瓷、生物活性玻璃、磷酸钙骨水泥、氧化锆陶瓷等陶瓷材料中的一种或多种。
作为优选的,所述辅料和添加剂包括聚乙烯醇、聚乳酸、聚乳酸羟基乙酸、聚醚醚酮、胶原蛋白、壳聚糖和金属锶中的一种或多种。
一种植入物增强3D打印骨初始强度的方法,其具体步骤如下:
步骤一:制备聚乳酸丝材料,选择不同类型聚乳酸和羟基磷灰石混合,经充分混合后进行拉丝得到聚乳酸丝材料;
步骤二:将生物陶瓷羟基磷灰石和β-磷酸三钙的按照一定比例设置;
步骤三:在羟基磷灰石和β-磷酸三钙的混合料中,根据实际需求,加入粘结剂,充分搅拌均匀后浆料注入3D打印机的常温打印料筒;供打印机的常温挤出打印头打印输出;
步骤四:将步骤一中制备的含有羟基磷灰石粉料的聚乳酸丝材料的一端装入3D打印机的熔融沉积打印头,以供熔融沉积打印输出;
步骤五:开始打印,常温打印头和熔融沉积打印头交替打印出支撑层和修复层。
步骤一中,所述聚乳酸和羟基磷灰石混合,其混入比为80:20至99:1,经充分混合后进过挤出设备进行拉丝,制得聚乳酸丝材料直径为1.0mm- 2.0mm。
步骤二中,所述生物陶瓷羟基磷灰石和β-磷酸三钙的比例维持在70:30 至60:40之间。
步骤三中,所述粘结剂的加入量为总质量1%~12%;所述粘结剂应经纯化水或注射用水进行加温到100℃后保持一定时间。为了使粘结剂更好的发挥作用。
步骤五中,要确保支撑层和修复层的宏观空隙在200um~600um之间,孔隙率确保在60%~85%之间;在打印一层或若干层修复层后启动熔融沉积打印头,通过熔融沉积方式打印出一层或多层以供人工骨支撑的聚乳酸网状支撑层结构;完成熔融沉积打印后再次启动常温打印;如此交替打印出所需的人工骨。综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、通过本发明的到的人工骨,可以有效的在修复期(1~4个月)内保证人工骨的强度,本发明中支撑层能对极大的增强修复时人工骨的强度,有效的杜绝了人工骨在植入体内导致其机体部分酸性反应性,失去支撑强度的问题,并且本方法中同步设置有修复层,保证骨细胞与碎骨之间的运输,保证骨细胞的高效修复完成;通过支撑层为碎骨连接处提供强度支撑,并且通过修复层保证骨细胞的修复要求,双重功能叠加解决了现有技术中存在的难题。
附图说明
图1是本发明中实施例3中人工骨打印结构的示意图;
图2是本发明中实施例3中人工骨打印结构俯视结构示意图;
图3是本发明中实施例4中人工骨打印结构组合的整体示意图;
图4是本发明中实施例4中人工骨打印结构组合的侧视示意图;
图5是本发明中实施例4中人工骨打印结构的俯视结构示意图;
图6是本发明中实施例4中人工骨打印结构的侧视结构示意图;
附图说明:1、修复层;2、支撑层。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或隐含地包括一个或多个该特征。
实施例1
一种植入物增强3D打印骨初始强度的方法,包括设置有常温打印头、熔融沉积打印头的3D打印机及控制系统;3D打印机配合控制系统控制常温打印和熔融沉积打印进行交替打印,形成增强型人工骨,以使得熔融沉积打印的高分子聚合物在产品中起到增强产品强度的作用;在常温打印的材料中增加热熔型材料进行加固和增强;
所述常温打印头用于将生物医用功能材料打印出供人体骨细胞流通和修复的修复层1,所述熔融沉积打印头用于将聚乳酸丝材料打印出承接强度和耐腐蚀的支撑层2。
通过在常温打印的骨科植入人工骨中加入聚乳酸材料的支撑结构,以维持产品自身的强度;聚乳酸路径和用量根据实际需求进行选择;
所述生物医用功能材料包括但不仅限于生物活性陶瓷材料和和辅料及添加剂;
所述生物活性陶瓷材料包括羟基磷灰石(HA)、β-磷酸三钙(β-TCP)羟基磷灰石(HA)和β-磷酸三钙(β-TCP)的混合物双相磷酸钙陶瓷、生物活性玻璃 (bioglasses,BG)、磷酸钙骨水泥(calcium phosphate cement,CPC)、氧化锆陶瓷等陶瓷材料中的一种或多种。
所述辅料和添加剂包括聚乙烯醇(PVP)、聚乳酸(PLA,此涵盖PLLA、PDLA 和PDLLA)、聚乳酸羟基乙酸PLGA)聚醚醚酮(PEEK)、胶原蛋白、壳聚糖和金属锶中的一种或多种。
现有技术中,如申请号CN201510194743.1所公开的一种生物医学骨组织工程领域的多尺度仿生人工骨支架的增材制造方法,其所采用的方法也是进行常规的打印方法,其所产生的产品在植入体内后,人工骨中粘合剂在体液环境中较短时间(1~4个月)内同样会失去初始强度并崩塌使得人工骨的支架作用丧失,影响了骨细胞的粘附和生长。
而本申请现对现有工艺进行优化和改进创新;采用一台打印机两个打印喷头,一个以常温打印喷头打印羟基磷灰石(HA)和β-磷酸三钙(β-TCP)粉料加入的水溶性粘结剂的生物墨水浆料;另外一个以FDM工艺打印聚乳酸和羟基磷灰石(HA)的共混料,打印出在短时间内既能够满足强度要求,后期又能进行降解的支撑层2结构,和能够满足骨细胞修复的运输的修复层1复合结构;
通过支撑层2为碎骨连接处提供强度支撑,并且通过修复层1保证骨细胞的修复要求,双重功能叠加解决了现有技术中存在的难题。
实施例2
本实施例提供一种植入物增强3D打印骨初始强度的方法,其具体步骤如下:
步骤一:制备聚乳酸丝材料,选择不同类型聚乳酸(PLLA、PDLA和PDLLA) 和羟基磷灰石混合,其混入比为80:20至99:1,经充分混合后进过挤出设备进行拉丝,制得直径为1.0mm-2.0mm的聚乳酸丝材料备用;
步骤二:将生物陶瓷羟基磷灰石(HA)和β-磷酸三钙(β-TCP)的比例维持在70:30至60:40之间;
步骤三:在羟基磷灰石(HA)和β-磷酸三钙(β-TCP)的混合料中,根据实际需求,加入总质量1%~12%的粘结剂,粘结剂包括聚乙烯醇(PVA);
在步骤三中,所述粘结剂应经纯化水或注射用水进行加温到100℃后保持一定时间,然后混入羟基磷灰石(HA)和β-磷酸三钙(β-TCP)的混合料中进行充分搅拌均匀后浆料注入3D打印机的常温打印料筒,以供打印机的常温挤出打印头打印输出;
步骤四:将步骤一中制备的含有羟基磷灰石粉料的聚乳酸丝材料的一端装入3D打印机的熔融沉积(FDM)打印头,以供熔融沉积打印输出;
步骤五:开始打印,首先以常温打印头开始打印,确保宏观空隙在 200um~600um之间,孔隙率确保在60%~85%之间设置打印层高;在打印一层或若干层后启动熔融沉积(FDM)打印头,通过熔融沉积方式打印出一层或多层以供人工骨支撑的聚乳酸网状支撑层2结构;完成熔融沉积打印后再次启动常温打印;如此交替打印出所需的人工骨。
本方法中没有对人工骨的打印路径进行具体限定,只要是能够将由将聚乳酸丝材料打印出承接强度和耐腐蚀的支撑层2,和由生物医用功能材料打印出供人体骨细胞流通和修复的修复层1独立作用并相互配合实现人工骨强度增强的打印方法均属于本申请所要求保护的范围。
实施例3
如图1~2所示,本实施例提供一种具体植入物增强3D打印人工骨的结构图,如图1所述,支撑层2和修复层1交替打印出人工骨结构,所述人工骨结构的支撑层2和修复层1沿高度方向依次重叠设置,并且每个打印层之间间隔设置,最终确保宏观空隙在200um~600um之间,孔隙率确保在60%~85%之间;保证骨细胞能够流畅的在人工骨之间流动并且进行自动修复。
实施例4
如图3~6所示,本实施例提供另一种具体植入物增强3D打印人工骨的结构图,如图3~4所示,本实施例中支撑层2打印成形后整体为圆柱形框架结构,所述修复层1打印为横纵交错的蜂窝状形态,所述修复层1与支撑层2的外形结构相匹配设置,所述修复层1中设置有与支撑层2相匹配的内空槽,支撑层2设置在修复层1的内空槽中;
在进行打印时,根据具体形态依次通过常温打印头、熔融沉积打印头打印出人工骨;圆柱形框架结构的支撑层2为骨连接提供支撑强度,修复层1为骨细胞提供修复路径和通道,保证整体的修复效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种植入物增强3D打印骨初始强度的方法,其特征在于:包括设置有常温打印头、熔融沉积打印头的3D打印机及控制系统;3D打印机配合控制系统控制常温打印和熔融沉积打印进行交替打印,形成增强型人工骨,以使得熔融沉积打印的高分子聚合物在产品中起到增强产品强度的作用;在常温打印的材料中增加热熔型材料进行加固和增强。
2.如权利要求1所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:所述常温打印头用于将生物医用功能材料打印出供人体骨细胞流通和修复的修复层,所述熔融沉积打印头用于打印出承接强度和耐腐蚀的支撑层。
3.如权利要求2所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:所述生物医用功能材料包括但不仅限于生物活性陶瓷材料和和辅料及添加剂。
4.如权利要求3所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:所述生物活性陶瓷材料包括羟基磷灰石、β-磷酸三钙、羟基磷灰石和β-磷酸三钙的混合物双相磷酸钙陶瓷、生物活性玻璃、磷酸钙骨水泥、氧化锆陶瓷等陶瓷材料中的一种或多种。
5.如权利要求4所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:所述辅料和添加剂包括聚乙烯醇、聚乳酸、聚乳酸羟基乙酸、聚醚醚酮、胶原蛋白、壳聚糖和金属锶中的一种或多种。
6.如权利要求1或2或3或4或5所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:其具体步骤如下:
步骤一:制备聚乳酸丝材料,选择不同类型聚乳酸和羟基磷灰石混合,经充分混合后进行拉丝得到聚乳酸丝材料;
步骤二:将生物陶瓷羟基磷灰石和β-磷酸三钙的按照一定比例设置;
步骤三:在羟基磷灰石和β-磷酸三钙的混合料中,根据实际需求,加入粘结剂,充分搅拌均匀后浆料注入3D打印机的常温打印料筒;供打印机的常温挤出打印头打印输出;
步骤四:将步骤一中制备的含有羟基磷灰石粉料的聚乳酸丝材料的一端装入3D打印机的熔融沉积打印头,以供熔融沉积打印输出;
步骤五:开始打印,常温打印头和熔融沉积打印头交替打印出支撑层和修复层。
7.如权利要求6所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:步骤一中,所述聚乳酸和羟基磷灰石混合,其混入比为80:20至99:1,经充分混合后进过挤出设备进行拉丝,制得聚乳酸丝材料直径为1.0mm-2.0mm。
8.如权利要求6所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:步骤二中,所述生物陶瓷羟基磷灰石和β-磷酸三钙的比例维持在70:30至60:40之间。
9.如权利要求6所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:步骤三中,所述粘结剂的加入量为总质量1%~12%;所述粘结剂应经纯化水或注射用水进行加温到100℃后保持一定时间。
10.如权利要求6所述的一种植入物增强3D打印骨初始强度的方法,其特征在于:步骤五中,要确保支撑层和修复层的宏观空隙在200um~600um之间,孔隙率确保在60%~85%之间;在打印一层或若干层修复层后启动熔融沉积打印头,通过熔融沉积方式打印出一层或多层以供人工骨支撑的聚乳酸网状支撑层结构;完成熔融沉积打印后再次启动常温打印;如此交替打印出所需的人工骨。
CN202010978654.7A 2020-09-17 2020-09-17 一种植入物增强3d打印骨初始强度的方法 Pending CN112120833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010978654.7A CN112120833A (zh) 2020-09-17 2020-09-17 一种植入物增强3d打印骨初始强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010978654.7A CN112120833A (zh) 2020-09-17 2020-09-17 一种植入物增强3d打印骨初始强度的方法

Publications (1)

Publication Number Publication Date
CN112120833A true CN112120833A (zh) 2020-12-25

Family

ID=73846257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010978654.7A Pending CN112120833A (zh) 2020-09-17 2020-09-17 一种植入物增强3d打印骨初始强度的方法

Country Status (1)

Country Link
CN (1) CN112120833A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683827A (zh) * 2021-07-06 2021-11-23 湖南浚朗科技有限公司 单标定体模及制作该单标定体模的设备和制作方法
CN114192801A (zh) * 2021-12-16 2022-03-18 沈阳航空航天大学 一种基于增材制造的三维双连通结构复合材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683827A (zh) * 2021-07-06 2021-11-23 湖南浚朗科技有限公司 单标定体模及制作该单标定体模的设备和制作方法
CN113683827B (zh) * 2021-07-06 2023-10-03 湖南浚朗科技有限公司 单标定体模及制作该单标定体模的设备和制作方法
CN114192801A (zh) * 2021-12-16 2022-03-18 沈阳航空航天大学 一种基于增材制造的三维双连通结构复合材料的制备方法
CN114192801B (zh) * 2021-12-16 2024-02-20 沈阳航空航天大学 一种基于增材制造的三维双连通结构复合材料的制备方法

Similar Documents

Publication Publication Date Title
Feng et al. Application of 3D printing technology in bone tissue engineering: a review
Chen et al. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration
CN104826171B (zh) 一种多尺度仿生人工骨支架的增材制造方法
Kang et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
Do et al. 3D printing of scaffolds for tissue regeneration applications
CN104353122B (zh) 一种具有仿生三维微支架的3d打印多孔金属及其制备方法
KR101499084B1 (ko) 금속 산화물 스캐폴드
Ge et al. Manufacture of degradable polymeric scaffolds for bone regeneration
Latimer et al. Regenerative medicine technologies to treat dental, oral, and craniofacial defects
JP2004531292A (ja) 生物医学的に適用される組成物及び方法
CN112120833A (zh) 一种植入物增强3d打印骨初始强度的方法
Bose et al. Clinical significance of three-dimensional printed biomaterials and biomedical devices
WO2010102533A1 (zh) 人工硬脑膜及其制备方法
Aytac et al. Innovations in craniofacial bone and periodontal tissue engineering–from electrospinning to converged biofabrication
CN110279896A (zh) 一种具有药物缓释功能的多孔pcl-tcp人工骨支架及其制备方法
Cao et al. Progress of 3D printing techniques for nasal cartilage regeneration
Lin et al. Manufacturing of porous magnesium scaffolds for bone tissue engineering by 3D gel-printing
Lin et al. Advances in filament structure of 3D bioprinted biodegradable bone repair scaffolds
CN114470318A (zh) 一种基于选择性激光烧结制备多孔生物陶瓷人工骨的方法
Gruber et al. Direct 3D printing of decellularized matrix embedded composite polycaprolactone scaffolds for cartilage regeneration
CN109676915B (zh) 一种车轮状多孔支架及其制备方法与应用
CN107007888B (zh) 一种基于光固化3d打印技术个体化定制型的二氧化锆多孔生物骨修复支架及其制备方法
CN104708736A (zh) 一种改性聚乙烯醇水凝胶材料及专用模具、制备方法和应用
Piaia et al. Additive manufacturing of nanostructured bone scaffolds
Saberi et al. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20220308

Address after: 226200 floors 1-2, building 1, No. 559, Jinke Road, Qidong life and Health Science Park, Nantong City, Jiangsu Province

Applicant after: Jiangsu MAILUN Medical Technology Co.,Ltd.

Address before: Room 202, No.2, no.889, Jianghai Middle Road, Huilong Town, Qidong City, Jiangsu Province 226200

Applicant before: Zhu Jiwen

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination