CN112117337A - 具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备 - Google Patents

具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备 Download PDF

Info

Publication number
CN112117337A
CN112117337A CN202011012078.7A CN202011012078A CN112117337A CN 112117337 A CN112117337 A CN 112117337A CN 202011012078 A CN202011012078 A CN 202011012078A CN 112117337 A CN112117337 A CN 112117337A
Authority
CN
China
Prior art keywords
layer
sic
micropores
etched
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011012078.7A
Other languages
English (en)
Other versions
CN112117337B (zh
Inventor
张峰
付钊
洪荣墩
蔡加法
陈厦平
林鼎渠
吴少雄
吴正云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202011012078.7A priority Critical patent/CN112117337B/zh
Publication of CN112117337A publication Critical patent/CN112117337A/zh
Application granted granted Critical
Publication of CN112117337B publication Critical patent/CN112117337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/002Holes characterised by their shape, in either longitudinal or sectional plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00087Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00396Mask characterised by its composition, e.g. multilayer masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00523Etching material
    • B81C1/00531Dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Weting (AREA)

Abstract

具有刻蚀微孔结构的4H‑SiC紫外光电探测器及制备,所述4H‑SiC紫外光电探测器包括P+层、吸收层和P层环形电极,还包括设于P层环形电极的内周的微孔,其从P+层刻蚀到达吸收层的上表面,微孔的壁面设有钝化层。当紫外光入射到探测器芯片上时,一部分被P+层吸收或者反射;另一部分被吸收层吸收并产生电子‑空穴对,在耗尽区内建电场的驱动下分离,并运动到探测器两端的电极,最后搭载外部负载电路形成电信号,通过检测电信号的大小,就可以判定紫外线强度的大小。微孔结构可减少P+层对紫外光的吸收,使得微孔处,光直接被吸收层吸收,提高探测器的响应度和量子效率,显著增加紫外光电探测器的实用性能。

Description

具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备
技术领域
本发明涉及半导体探测器件领域,尤其涉及具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备。
背景技术
随着半导体技术领域的迅速发展,半导体紫外光电探测器应运而生。4H-SiC属于第三代宽禁带半导体,用它制作的紫外光电探测器不仅具有高灵敏度、高信噪比、高速度、高光谱选择性、高稳定性等优点,而且还拥有更多的优点,如:1、4H-SiC在室温下其禁带宽度约为3.26eV,这意味着其做出来的光电探测器为“可见光盲”型,其探测范围刚好是紫外波段,拥有极高的紫外/可见光抑制比。2、在探测峰值波长(280nm)附近,4H-SiC的穿透深度约为1μm,保证了光信号的充分吸收,使其光电探测器拥有较高的量子效率。3、4H-SiC本征载流子浓度极低,保证了4H-SiC紫外光电探测器拥有极低的漏电流。4、4H-SiC优良的晶体结构,使得4H-SiC紫外光电探测器能在高辐射、高温等极端条件下正常工作。5、4H-SiC拥有自己的衬底,只需进行掺杂即可得到p型和n型,大大降低了因为异质外延所带来的晶格失配。pin结构的4H-SiC紫外光电探测器拥有光电响应度高、响应速度快,无光电导增益等优点。
但是,随着时代的发展,市场对紫外探测器的性能要求越来越高,提高4H-SiC的响应度和量子效率,需要不断的突破与创新。传统的平面型pin及APD结构的4H-SiC紫外光电探测器,当紫外线照射进来时,有一部分会被P层吸收,产生的光生载流子未能进入耗尽区,便不能形成电子和空穴流向电源的两极,光电流较小,使得探测器的响应度和量子效率都不高。
发明内容
本发明的目的在于解决现有技术中的上述问题,提供具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备,减少P+层对紫外线的吸收,使更多的光源能直接被吸收层吸收,从而提高探测器的响应度和量子效率。
为达到上述目的,本发明采用如下技术方案:
具有刻蚀微孔结构的4H-SiC紫外光电探测器,所述4H-SiC紫外光电探测器包括P+层、吸收层和P层环形电极,还包括微孔,所述微孔设于P层环形电极的内周,并从P+层刻蚀到达吸收层的上表面。
所述微孔的壁面设有热氧化形成的二氧化硅钝化层。
所述微孔的孔径为1~10μm,微孔的间距为1~10μm。
所述微孔的形状包括圆形、方形、六边形、菱形;所述微孔均匀分布于P层环形电极的内周。
所述4H-SiC紫外光电探测器的类型包括4H-SiC pin紫外光电探测器和4H-SiCAPD紫外光电探测器。
具有刻蚀微孔结构的4H-SiC紫外光电探测器的制备,包括以下步骤:
1)首先在SiC外延片上做倾斜台面刻蚀,然后通过光刻和ICP刻蚀的方式刻蚀微孔,刻蚀微孔的深度刚好将P+层刻穿到达吸收层;
2)在刻蚀的微孔内表面生长钝化层,然后再开窗,最后光刻做P层环形电极,将微孔包围。
步骤1)中,通过光刻和ICP刻蚀的方式刻蚀微孔的方法如下:用光刻胶作为掩膜,采用反胶的技术,甩胶、前烘、用掩膜板曝光、泛曝、显影、冲洗,形成刻蚀微孔的图形,在需要刻孔的位置没有光刻胶,不需要刻蚀微孔处则有光刻胶作为阻挡层,最后通过ICP刻蚀形成微孔结构。
步骤2)中,在刻蚀的微孔内表面生长钝化层的方法如下:先用热氧化法形成第一层二氧化硅钝化层,然后用PECVD法形成第二层二氧化硅钝化层,最后用PECVD法形成最外层的氮化硅钝化层;开窗是指将有源区(微孔覆盖的区域)PECVD生长的钝化层刻蚀掉。
所述第一层二氧化硅钝化层的厚度可为10~100nm,第二层二氧化硅钝化层的厚度可为100~2000nm,最外层的氮化硅钝化层的厚度可为100~2000nm。
相对于现有技术,本发明技术方案取得的有益效果是:
1、本发明设计的具有刻蚀微孔结构的4H-SiC紫外光电探测器,在P+层刻蚀出多个微孔,微孔的深度刚好到吸收层,这样在微孔位置,紫外线便不会被P+层吸收,直接被吸收层吸收进入耗尽区,可以大大提高探测器的响应度和量子效率,对于提高4H-SiC紫外光电探测器的探测性能拥有非常重要的意义。
2、本发明是先刻蚀微孔再热氧化生长二氧化硅,因此在微孔的侧壁上都长有二氧化硅,器件工作时,紫外线照射在器件上,可以有效地减少光的反射,同时也可以减少漏电。
3、微孔的大小和孔间距要选取合适,因为在一定的孔间距下,如果微孔过大会导致刻蚀微孔位置的吸收层无法在水平方向耗尽,那么被吸收层直接吸收产生的光生载流子就无法进入耗尽区,反而会降低响应度和量子效率,本发明可以根据不同的孔间距,选取出最合适的孔径大小。
4、本发明中,刻蚀微孔的位置在P层环形电极中间,使电场分布更加均匀。
附图说明
图1为实施例1的剖面结构示意图;
图2为实施例1的俯面结构示意图;
图3为具有刻蚀微孔结构的4H-SiC pin紫外光电探测器与未刻蚀微孔结构的4H-SiC pin紫外光电探测器的光谱响应对比图;
图4为实施例2的剖面结构示意图。
附图说明:
实施例1中:N电极01,N+型4H-SiC衬底02,N型缓冲层03,i型吸收层04,P+层05,P层环形电极06,微孔07,倾斜台面08;
实施例2中:N+型4H-SiC衬底41,吸收层42,电荷层43,倍增层44,P+层45,P层环形电极46,微孔47,N电极48。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明做进一步详细说明。
实施例1
本实施例以4H-SiC pin紫外光电探测器为例进行说明。
如图1~2所示,本实施例4H-SiC pin紫外光电探测器的制备步骤如下:
1)在高掺杂的N+型4H-SiC衬底02上依次采用PECVD法外延同质生长N型缓冲层03、i型吸收层04,所述N型缓冲层03掺杂浓度可为1×1018/cm3~2×1020/cm3,厚度可为0.5~2μm;i型吸收层04的掺杂浓度可为1×1015/cm3~1×1017/cm3,厚度可为1~10μm;
2)利用PECVD的方式在i型吸收层04上表面形成P+层05,P+层05的掺杂浓度可为1×1018/cm3~2×1020/cm3,厚度可为0.1~0.5μm;然后对外延片进行RCA标准清洗;
3)通过光刻和ICP刻蚀技术刻蚀出倾斜台面08;
4)以光刻胶作为阻挡层,利用光刻和刻蚀技术刻出孔间距为1~10μm,孔直径为1~10μm的微孔07,刻孔深度刚好到i型吸收层04;
5)通过热氧化和PECVD的方法在器件表面生长钝化层,其中热氧化形成的二氧化硅的厚度可为10~100nm,PECVD法形成的二氧化硅钝化层的厚度可为100~2000nm,氮化硅钝化层的厚度可为100~2000nm;
6)利用光刻和ICP刻蚀技术开窗,开窗的区域为微孔覆盖的有源区,开窗的深度为步骤5)中PECVD所生长的二氧化硅钝化层和氮化硅钝化层的厚度,为200~4000nm;
7)利用光刻刻出P层环形电极06的图形,用BOE溶液腐蚀掉P层环形电极06部分热氧化形成的二氧化硅,再通过磁控溅射溅射金属,最后通过剥离,形成P层环形电极06;
8)刻蚀背面高掺杂的N+型4H-SiC衬底02,并溅射金属形成N电极01;
9)退火,使得金属与4H-SiC形成欧姆接触。
通过TCAD模拟仿真软件模拟刻蚀微孔结构和未刻蚀微孔结构的光谱响应图,如图3所示,可以看到具有刻蚀微孔结构的4H-SiC pin紫外光电探测器峰值响应度为0.35A/W,未刻蚀微孔结构的4H-SiC pin紫外光电探测器峰值响应度为0.21A/W,因此刻蚀微孔结构的4H-SiC pin紫外光电探测器对光谱的响应显著提高。
实施例2
本实施例以4H-SiC APD紫外光电探测器为例进行说明。微孔技术应用于APD时,刻蚀微孔的深度和孔径大小要根据不同的APD结构有所变化,刻蚀微孔的深度必须到达吸收层,最佳孔径大小需要通过计算和模拟得出,其制备工艺与实施例1的步骤相同。在固定的孔间距时,要选取合适的孔径大小,以保证不至于孔径太大导致i层在水平方向无法耗尽或者孔径太小导致量子效率提高不明显。
如图4所示,本实施例4H-SiC APD紫外光电探测器的制备步骤如下:
1)在高掺杂的N+型4H-SiC衬底41上依次采用PECVD法外延同质生长吸收层42、电荷层43、倍增层44;所述吸收层42的掺杂浓度可为1×1015/cm3~1×1016/cm3,厚度可为1~5μm;电荷层43的掺杂浓度可为1×1018/cm3~1×1019/cm3,厚度可为0.2~1μm;倍增层44的掺杂浓度可为1×1015/cm3~1×1016/cm3,厚度可为0.2~1μm。
2)用PECVD法在倍增层44表面形成P+层45,P+层的掺杂浓度可为1×1019/cm3~2×1020/cm3,厚度可为0.15~0.5μm;然后对外延片进行RCA标准清洗。
3)同实施例1的步骤3)。
4)根据掺杂浓度和各层厚度确定最佳微孔47的孔径大小和孔间距,用5214E光刻胶作为阻挡层,从P+层45往下刻孔到吸收层42。
步骤5~9)同实施例1的步骤5~9),生长钝化层、制备P层环形电极46、N电极48以及退火等。
实施例1和实施例2中的所述RCA标准清洗,具体步骤为:
①用甲苯、丙酮和乙醇超声3~5min,重复3遍,再用去离子水冲洗干净;
②用三号液于250℃下煮15~20min后,用热、冷去离子水冲洗;所述三号液按体积比的配比为H2SO4:H2O2=4:1;
③将样品放入稀释氢氟酸浸泡3-5min,再用热、冷去离子水冲洗;所述稀释氢氟酸按体积比的配比为HF:H2O=1:20;
④用一号液煮5~10min后,用热、冷去离子水冲洗;所述一号液按体积比的配比NH3·H2O:H2O2:H2O=1:1:4;
⑤将样品放入稀释氢氟酸中浸泡3~5min,再用热、冷去离子水冲洗;
⑥用二号液煮5~10min后,用热、冷去离子水冲洗,然后用氮气吹干待用;所述二号液按体积比的配比为HCl:H2O2:H2O=1:1:4。
实施例1和实施例2中的刻蚀倾斜台面的具体步骤为:
利用光刻胶回流技术,甩胶(4620)、前烘、用第一块掩膜板曝光、显影、冲洗形成台面图形,再通过后烘使光刻胶坍塌,最后通过ICP刻蚀形成台面结构,刻蚀分为两轮进行,片子背面需要涂油。
实施例1和实施例2中的刻蚀微孔具体步骤为:
由于微孔不深,所以直接用光刻胶作为掩膜,采用反胶的技术,甩胶(5214E)、前烘、用第二块掩膜板曝光、泛曝、显影、冲洗,形成刻蚀微孔的图形,在需要刻孔的位置没有光刻胶,不需要刻蚀微孔处则有光刻胶作为阻挡层,最后通过ICP刻蚀形成多个微孔结构。
钝化层的生长具体步骤为:
钝化层的生长在刻蚀微孔之后,微孔的内壁会有二氧化硅,可以减少漏电和反射。首先要通过干氧、湿氧、干氧交替氧化的方式长一层二氧化硅作为牺牲层,取出第一次氧化好的样品,放入缓冲氢氟酸溶液进行腐蚀,去除第一次氧化形成的氧化层,用去离子水冲洗干净,将样品放入氧化炉,再次通过干氧、湿氧、干氧交替氧化的方式长一层约10~100nm厚的致密二氧化硅,即第一层二氧化硅钝化层;然后采用PECVD法生长第二层二氧化硅钝化层,厚度为100~2000nm,最后采用PECVD法生长最外层的氮化硅,厚度为100~2000nm。
开窗的具体步骤为:
通过甩胶(4620)、前烘、用第三块掩膜板曝光、显影形成开窗图形,再坚膜使得光刻胶变硬,最后通过ICP刻蚀形成窗口。
P层环形电极和N电极制备的具体步骤为:
用第四块掩膜板在光敏面区光刻P型电极区,并用缓冲氢氟酸溶液腐蚀掉电极图像处的氧化层,供磁控溅射Ti/AL/Ti/Au多层金属作为P型电极;N型欧姆接触是在衬底背面形成的,具体步骤为:首先用光刻胶将器件正面保护好,然后用缓冲氢氟酸溶液腐蚀掉衬底背面自然氧化层,然后磁控溅射Ni/Au作为N电极;最后两种电极在高温下退火形成良好的欧姆接触。
焊盘制备:用第五块掩膜板光刻形成焊盘区,再通过磁控溅射Ti/Au作为器件的焊盘。
实施例1中4H-SiC pin紫外光电探测器结构自下而上是N电极01、高掺杂的N+型4H-SiC衬底02、N型缓冲层03、轻掺杂的i型吸收层04、高掺杂的P+层05、P层环形电极06以及二氧化硅钝化层,其中微孔07的方式是从P+层往i型吸收层开孔,刚好将P+层刻穿直到i型吸收层,其中刻孔的形状可以是圆形、方形、六边形、菱形等各种形状的微孔;微孔的大小和孔间距的大小也是要通过合理的计算和模拟的,以保证在微孔处的i型吸收层在水平方向上是完全耗尽的。当紫外光入射到探测器芯片上时,一部分被P+层吸收或者反射;另一部分被i型吸收层吸收并产生电子-空穴对,在i型吸收层的耗尽层电场的驱动下分离,并运动到探测器两端的电极,最终在外部负载电路中形成电信号,通过检测电信号的大小,就可以判定紫外线强度的大小。相较于一般的平面pin结构,微孔结构可以减少P+层对入射的紫外光的吸收,使得在微孔处,光直接被i型吸收层吸收,提高探测器的响应度和量子效率,显著增加紫外光电探测器的实用性能。同理,这种刻蚀微孔的技术也可以应用于包括pin、SAM、SACM等结构在内的APD,用于提高APD的响应度和量子效率,刻蚀微孔的深度是刚好从P层到吸收层,最佳孔径的大小可以根据器件的掺杂浓度和各层的厚度模拟计算得到。

Claims (8)

1.具有刻蚀微孔结构的4H-SiC紫外光电探测器,所述4H-SiC紫外光电探测器包括P+层、吸收层和P层环形电极,其特征在于:还包括微孔,所述微孔设于P层环形电极的内周,并从P+层刻蚀到达吸收层的上表面。
2.如权利要求1所述的具有刻蚀微孔结构的4H-SiC紫外光电探测器,其特征在于:所述微孔的壁面设有热氧化形成的二氧化硅钝化层。
3.如权利要求1所述的具有刻蚀微孔结构的4H-SiC紫外光电探测器,其特征在于:所述微孔的孔径为1~10μm,微孔的间距为1~10μm。
4.如权利要求1所述的具有刻蚀微孔结构的4H-SiC紫外光电探测器,其特征在于:所述微孔的形状包括圆形、方形、六边形、菱形;所述微孔均匀分布于P层环形电极的内周。
5.如权利要求1所述的具有刻蚀微孔结构的4H-SiC紫外光电探测器,其特征在于:所述4H-SiC紫外光电探测器的类型包括4H-SiC pin紫外光电探测器和4H-SiC APD紫外光电探测器。
6.具有刻蚀微孔结构的4H-SiC紫外光电探测器的制备,其特征在于包括以下步骤:
1)在SiC外延片上做倾斜台面刻蚀,然后通过光刻和ICP刻蚀的方式刻蚀微孔,刻蚀微孔的深度刚好将P+层刻穿到达吸收层;
2)在器件的表面生长钝化层:先用热氧化法形成第一层二氧化硅钝化层,然后用PECVD法形成第二层二氧化硅钝化层,最后用PECVD法形成最外层的氮化硅钝化层;
3)开窗:利用ICP刻蚀的方式将包括微孔的有源区内PECVD生长的钝化层全部刻蚀掉;
4)光刻做P层环形电极,将微孔包围。
7.如权利要求6所述的具有刻蚀微孔结构的4H-SiC紫外光电探测器的制备,其特征在于:步骤1)中,通过光刻和ICP刻蚀的方式刻蚀微孔的方法如下:用光刻胶作为掩膜,采用反胶的技术,甩胶、前烘、用掩膜板曝光、泛曝、显影、冲洗,形成刻蚀微孔的图形,在需要刻孔的位置没有光刻胶,不需要刻蚀微孔处则有光刻胶作为阻挡层,最后通过ICP刻蚀形成微孔结构。
8.如权利要求6所述的具有刻蚀微孔结构的4H-SiC紫外光电探测器的制备,其特征在于:第一层二氧化硅钝化层的厚度可为10~100nm,第二层二氧化硅钝化层的厚度可为100~2000nm,最外层的氮化硅钝化层的厚度可为100~2000nm。
CN202011012078.7A 2020-09-22 2020-09-22 具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备 Active CN112117337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011012078.7A CN112117337B (zh) 2020-09-22 2020-09-22 具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011012078.7A CN112117337B (zh) 2020-09-22 2020-09-22 具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备

Publications (2)

Publication Number Publication Date
CN112117337A true CN112117337A (zh) 2020-12-22
CN112117337B CN112117337B (zh) 2022-10-14

Family

ID=73800177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011012078.7A Active CN112117337B (zh) 2020-09-22 2020-09-22 具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备

Country Status (1)

Country Link
CN (1) CN112117337B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678429A (zh) * 2022-05-30 2022-06-28 陕西半导体先导技术中心有限公司 一种复合结构的MISIM型4H-SiC紫外探测器及制备方法
CN115000238A (zh) * 2022-05-09 2022-09-02 厦门大学 一种等离激元增强局域雪崩的紫外光电探测器及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201032635Y (zh) * 2006-12-23 2008-03-05 厦门三优光机电科技开发有限公司 一种PIN结构4H-SiC紫外光电探测器
CN105304748A (zh) * 2015-09-30 2016-02-03 厦门大学 双工作模式的4H-SiC紫外光电探测器及其制备方法
CN108400197A (zh) * 2018-04-28 2018-08-14 厦门大学 具有球冠结构的4H-SiC紫外光电探测器及制备方法
CN111133590A (zh) * 2017-07-21 2020-05-08 文和文森斯设备公司 微结构增强的吸收光敏器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201032635Y (zh) * 2006-12-23 2008-03-05 厦门三优光机电科技开发有限公司 一种PIN结构4H-SiC紫外光电探测器
CN105304748A (zh) * 2015-09-30 2016-02-03 厦门大学 双工作模式的4H-SiC紫外光电探测器及其制备方法
CN111133590A (zh) * 2017-07-21 2020-05-08 文和文森斯设备公司 微结构增强的吸收光敏器件
CN108400197A (zh) * 2018-04-28 2018-08-14 厦门大学 具有球冠结构的4H-SiC紫外光电探测器及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000238A (zh) * 2022-05-09 2022-09-02 厦门大学 一种等离激元增强局域雪崩的紫外光电探测器及制备方法
CN114678429A (zh) * 2022-05-30 2022-06-28 陕西半导体先导技术中心有限公司 一种复合结构的MISIM型4H-SiC紫外探测器及制备方法
CN114678429B (zh) * 2022-05-30 2022-08-26 陕西半导体先导技术中心有限公司 一种复合结构的MISIM型4H-SiC紫外探测器及制备方法

Also Published As

Publication number Publication date
CN112117337B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
EP2359412B1 (en) Solar cell
CN100514680C (zh) 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
US8664015B2 (en) Method of manufacturing photoelectric device
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
CN108400197B (zh) 具有球冠结构的4H-SiC紫外光电探测器及制备方法
CN112117337B (zh) 具有刻蚀微孔结构的4H-SiC紫外光电探测器及制备
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
KR101651302B1 (ko) 양면수광형 태양전지 및 그 제조방법
CN108630779B (zh) 碳化硅探测器及其制备方法
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
WO2023051242A1 (zh) 单光子探测器及其制作方法、单光子探测器阵列
CN111463308B (zh) 一种碳化硅同轴紫外光电探测器及其制备方法
CN110707181A (zh) 台面型光电探测器的制作方法
CN102544043B (zh) 一种平面型子像元结构铟镓砷红外探测器芯片
JPH02216874A (ja) シリコン結晶太陽電池
CN112382688A (zh) 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法
JPH06104463A (ja) 太陽電池およびその製造方法
KR20090017812A (ko) 실리콘 태양전지 및 그 제조 방법
CN112117336B (zh) 背照式结构的4H-SiC紫外光电探测器阵列及制备
CN110544731B (zh) 一种紫外探测器及其制备方法
CN115000238A (zh) 一种等离激元增强局域雪崩的紫外光电探测器及制备方法
JP4712073B2 (ja) 太陽電池用拡散層の製造方法および太陽電池セルの製造方法
CN110676327A (zh) 一种集成增透膜层的紫外探测器及其制备方法
JP2006060103A (ja) 半導体受光装置および紫外線センサー機器
CN111211196B (zh) 一种高灵敏度高线性度探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant