CN112110861B - 一种多菌灵虚拟模板分子印迹聚合物及其制备方法 - Google Patents

一种多菌灵虚拟模板分子印迹聚合物及其制备方法 Download PDF

Info

Publication number
CN112110861B
CN112110861B CN202010795923.6A CN202010795923A CN112110861B CN 112110861 B CN112110861 B CN 112110861B CN 202010795923 A CN202010795923 A CN 202010795923A CN 112110861 B CN112110861 B CN 112110861B
Authority
CN
China
Prior art keywords
carbendazim
virtual template
molecularly imprinted
preparation
imprinted polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010795923.6A
Other languages
English (en)
Other versions
CN112110861A (zh
Inventor
贾栩超
张名位
张瑞芬
刘磊
池建伟
黄菲
董丽红
马勤
赵东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sericulture and Agri Food Research Institute GAAS
Original Assignee
Sericulture and Agri Food Research Institute GAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sericulture and Agri Food Research Institute GAAS filed Critical Sericulture and Agri Food Research Institute GAAS
Priority to CN202010795923.6A priority Critical patent/CN112110861B/zh
Publication of CN112110861A publication Critical patent/CN112110861A/zh
Application granted granted Critical
Publication of CN112110861B publication Critical patent/CN112110861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/30Nitrogen atoms not forming part of a nitro radical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种多菌灵虚拟模板分子印迹聚合物及其制备方法。多菌灵虚拟模板分子,化学结构如通式(Ⅲ)所示。本发明通过化学计算筛选最优虚拟模板分子,采用原位聚合法合成多菌灵虚拟模板分子印迹聚合物,得到的聚合物吸附能力明显优于现有的填料,且模板分子廉价易得,易于工业化放大生产。本发明提供的方法能够为植物提取物中多菌灵的脱除提供快捷高效的吸附材料。
Figure DDA0002625587410000011

Description

一种多菌灵虚拟模板分子印迹聚合物及其制备方法
技术领域
本发明属于分子印迹聚合物制备技术领域,具体涉及一种多菌灵虚拟模板分子印迹聚合物及其制备方法。
背景技术
植物提取物是以植物为原料,采用适当的溶剂提取或物理方法,定向获取和富集植物中的有效成分而形成的产品。近年来随着“回归自然”的呼声不断升温,植物提取物不断受到医药、保健品、食品和日化等行业的广泛关注。植物提取物市场规模呈跳跃式发展,显示出巨大的市场发展潜力,预计2022年市场规模将突破340亿元。然而植物提取物的安全问题(农药残留、重金属等)日趋严重,已然成为行业发展亟待解决的重大问题。植提原材料种植过程中农药的滥用以及提取过程中农药的富集导致了最终提取物产品中的农药残留超标问题,植物提取物中的农药残留严重危害广大消费者的身体健康,也制约了植提行业的良性发展。
多菌灵是苯并咪唑类广谱高效抗菌剂,可以有效防治真菌引起的多种作物病害,在种植过程中被广泛使用。然而由于多菌灵的不合理使用加上其残留期长,致使多菌灵残留超标现象在多品类多批次的植物提取物中出现。多菌灵会引起肝脏疾病和染色体畸变,严重危害人类健康,因此植物提取物中的多菌灵脱除亟待解决。
分子印迹聚合物(molecularly imprinted polymers,MIPs)是采用分子印迹技术制备的对目标分子具有特异选择性的聚合物,其具有可预知性、特异选择性和应用的广泛性等优点。目前分子印迹材料作为固相萃取填料已经广泛应用于农药残留的分析与脱除。然而MIPs制备仍存在一些问题,传统的采用目标物作为模板分子制备分子印迹聚合物不可避免的存在模板渗漏现象,对后续定量分析和检测造成干扰。采用与目标分子结构相近的化学分子作为虚拟模板进行分子印迹可以有效避免模板渗漏,又可以实现目标物的高效特异性吸附。
发明内容:
本发明的目的是填补现有多菌灵农残脱除材料的不足,提供一种吸附能力明显优于现有的填料,且模板分子廉价易得,易于工业化放大生产的多菌灵虚拟模板分子印迹聚合物及其制备方法。
本发明的第一个目的是提供多菌灵虚拟模板分子化合物,其化学结构如通式(Ⅲ)所示
Figure BDA0002625587390000021
/>
其中R1为氢或碳数小于等于2的烷基;R2为氢或碳数小于等于2的烷基。
本发明的第二个目的是提供上述多菌灵虚拟模板分子化合物的制备方法,是将化合物Ⅰ和化合物Ⅱ通过酰化反应制备的得到多菌灵虚拟模板分子化合物;
其化学反应方程式如下:
Figure BDA0002625587390000022
其中R1为氢或碳数小于等于2的烷基;R2为氢或碳数小于等于2的烷基。
本发明的第三个目的是提供多菌灵虚拟模板分子印迹聚合物的制备方法:
1)将上述多菌灵虚拟模板分子化合物用氯仿溶解,加入功能单体,超声得到模板-单体复合物;
2)在模板-单体复合物中加入交联剂和引发剂,混合物超声后氮吹除氧,然后反应,反应停止后浓缩除去溶剂得到聚合物颗粒;
3)将聚合物颗粒用甲醇/乙酸的混合溶剂洗脱,洗脱后的不溶物干燥后得到多菌灵虚拟模板分子印迹聚合物。
优选地,步骤1)中的功能单体为甲基丙烯酸;进一步优选地,甲基丙烯酸与多菌灵虚拟模板分子化合物的物质的量比例为2:1-10:1。所述的超声为超声30min。
优选地,步骤2)中交联剂为乙二醇二甲基丙烯酸酯,乙二醇二甲基丙烯酸酯与甲基丙烯酸的物质的量比例为8:1-30:1;引发剂为偶氮二异丁腈,偶氮二异丁腈与乙二醇二甲基丙烯酸酯的物质的量比例为1:40-1:80。所述的超声是超声20min,所述的氮吹是氮吹10min,所述的反应是60℃水浴反应24h。
优选地,步骤3)中甲醇/乙酸的比例为体积比6:1-10:1。所述的洗脱是索氏提取24h,所述的干燥是50℃真空干燥。
所述的多菌灵虚拟模板分子印迹聚合物可以用于吸附脱除多菌灵。
本发明的有益结果为:本发明通过化学计算筛选最优虚拟模板分子,采用原位聚合法合成多菌灵虚拟模板分子印迹聚合物,得到的聚合物吸附能力明显优于现有的填料,且模板分子廉价易得,易于工业化放大生产。本发明提供的方法能够为植物提取物中多菌灵的脱除提供快捷高效的吸附材料。
附图说明
图1为N-(1H-benzo[d]imidazole-2-yl)acetamide的核磁共振氢谱;
图2为N-(1H-benzo[d]imidazole-2-yl)acetamide的核磁共振碳谱;
图3为多菌灵虚拟模板分子印迹聚合物的红外图谱;
图4为多菌灵虚拟模板分子印迹聚合物的扫描电镜图;
图5位非印迹聚合物的扫描电镜图;
图6为多菌灵虚拟模板分子印迹聚合物的热重曲线;
图7是分子印迹聚合物材料的重复利用性。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
步骤一:计算机辅助筛选虚拟模板分子
根据分子印迹的原理,通过化学数据库初步筛选可作为多菌灵虚拟模板的化学结构;进一步运用量子化学的计算方法,通过Gaussian 09比较不同虚拟模板分子之间的分子尺寸、电荷分布等性质,分子几何构型优化和电荷布局分布使用密度泛函b3lp2,在6-31G(d)3基组下进行,比较虚拟模板分子与多菌灵之间的分子相似性,筛选出与多菌灵性质更接近的最优虚拟模板分子;进一步结合分子结构性质,筛选商业易得或者易于合成的结果作为虚拟模板分子,所述筛选得到的多菌灵虚拟模板分子化合物的化学结构如通式(Ⅲ)所示
Figure BDA0002625587390000041
其中R1为氢或碳数小于等于2的烷基;R2为氢或碳数小于等于2的烷基。
步骤二:多菌灵虚拟模板分子化合物的合成制备
所述的多菌灵虚拟模板分子化合物包括以下合成步骤:化合物Ⅰ和化合物Ⅱ通过酰化反应制备的得到多菌灵虚拟模板分子化合物(如式Ⅲ所示);其化学反应方程式如下:
Figure BDA0002625587390000051
其中R1为氢或碳数小于等于2的烷基;R2为氢或碳数小于等于2的烷基。
步骤三:分子印迹聚合物的制备
1)将上述多菌灵虚拟模板分子化合物中的任一种置于圆底烧瓶中,加入氯仿溶解,加入甲基丙烯酸,室温超声30min,得到模板-单体复合物;甲基丙烯酸与多菌灵虚拟模板分子化合物的物质的量比例为2:1-10:1
2)在上述圆底烧瓶内加入乙二醇二甲基丙烯酸酯和偶氮二异丁腈,混合物超声20min后氮吹10min除氧,密封,60℃水浴反应24h,反应停止后减压浓缩除去溶剂得到聚合物颗粒;乙二醇二甲基丙烯酸酯与甲基丙烯酸的物质的量比例为8:1-30:1;偶氮二异丁腈与乙二醇二甲基丙烯酸酯物质的量比例为1:40-1:80。
3)将聚合物颗粒用甲醇/乙酸的混合溶剂索氏提取24h,不溶物50℃真空干燥后得到多菌灵虚拟模板分子印迹聚合物。所用的甲醇/乙酸的比例为体积比6:1-10:1。
实施例1:
虚拟模板分子化合物N-(1H-benzo[d]imidazole-2-yl)acetamide的制备:
取2mmol 2-氨基苯并咪唑(266mg)溶于200ml三乙胺溶液中,冰浴条件下缓慢滴加2.5mmol乙酰氯(196.25g),待乙酰氯滴加完毕后,继续冰浴反应16小时,反应结束后真空浓缩除去溶剂,经正相硅胶柱层析分离,得到虚拟模板分子化合物N-(1H-benzo[d]imidazole-2-yl)acetamide(其核磁共振氢谱和碳谱如图1和图2所示),产率72%。
Figure BDA0002625587390000061
1H NMR(400MHz,DMSO-d6)δ13.28(s,1H),7.71(m,2H),7.34(br s,2H),2.70(s,3H);13C NMR(100MHz,DMSO-d6)δ191.7,148.3,125.6,123.1,121.3,112.8,26.2。
实施例2
多菌灵虚拟模板分子印迹聚合物的合成方法:
将175mg N-(1H-benzo[d]imidazole-2-yl)acetamide置于500ml圆底烧瓶中,加入200ml氯仿溶解,加入275mg甲基丙烯酸作为功能单体,室温超声30min,得到模板-单体复合物;然后加入6.4g交联剂乙二醇二甲基丙烯酸酯和131mg引发剂偶氮二异丁腈,混合物超声20min后氮吹10min除氧,密封,60℃水浴反应24h,反应停止后减压浓缩除去溶剂得到聚合物颗粒;聚合物颗粒采用甲醇/乙酸=8:1(v/v)的混合溶剂索氏提取24h,不溶物经50℃真空干燥后得到多菌灵虚拟模板分子印迹聚合物(MIPs)。
实施例3
一种多菌灵虚拟模板分子印迹聚合物的合成方法:
将200mg N-(1H-benzo[d]imidazole-2-yl)acetamide置于500ml圆底烧瓶中,加入200ml氯仿溶解,加入300mg甲基丙烯酸作为功能单体,室温超声30min;然后加入8g交联剂乙二醇二甲基丙烯酸酯和110mg引发剂偶氮二异丁腈,混合物超声20min后氮吹10min除氧,密封,60℃水浴反应24h,反应停止后减压浓缩除去溶剂得到聚合物颗粒;聚合物颗粒采用甲醇/乙酸=8:1(v/v)的混合溶剂索氏提取24h,不溶物经50℃真空干燥后得到多菌灵虚拟模板分子印迹聚合物(MIPs)。
实施例4
一种多菌灵虚拟模板分子印迹聚合物的合成方法:
将175mg N-(1H-benzo[d]imidazole-2-yl)acetamide置于500ml圆底烧瓶中,加入200ml氯仿溶解,加入172mg甲基丙烯酸作为功能单体,室温超声30min,得到模板-单体复合物;然后加入3.168g交联剂乙二醇二甲基丙烯酸酯和32.8mg引发剂偶氮二异丁腈,混合物超声20min后氮吹10min除氧,密封,60℃水浴反应24h,反应停止后减压浓缩除去溶剂得到聚合物颗粒;聚合物颗粒采用甲醇/乙酸=10:1(v/v)的混合溶剂索氏提取24h,不溶物经50℃真空干燥后得到多菌灵虚拟模板分子印迹聚合物(MIPs)。
实施例5
一种多菌灵虚拟模板分子印迹聚合物的合成方法:
将175mg N-(1H-benzo[d]imidazole-2-yl)acetamide置于500ml圆底烧瓶中,加入200ml氯仿溶解,加入860mg甲基丙烯酸作为功能单体,室温超声30min,得到模板-单体复合物;然后加入59.4g交联剂乙二醇二甲基丙烯酸酯和820mg引发剂偶氮二异丁腈,混合物超声20min后氮吹10min除氧,密封,60℃水浴反应24h,反应停止后减压浓缩除去溶剂得到聚合物颗粒;聚合物颗粒采用甲醇/乙酸=6:1(v/v)的混合溶剂索氏提取24h,不溶物经50℃真空干燥后得到多菌灵虚拟模板分子印迹聚合物(MIPs)。
实施例6
非印迹聚合物NIPs的合成
NIPs的合成不添加模板分子,其余步骤与实施例2相同,得到非印迹聚合物NIPs。
以实施例2合成的多菌灵虚拟模板分子印迹聚合物(MIPs)为例进行说明。
1、MIPs和NIPs的红外图谱如图3所示,MIPs的扫描电镜图如图4所示,NIPs的扫描电镜图如图5所示,聚合物的扫描电镜结果表明NIPs结构紧致密实,而MIPs结构疏松多孔,具有更多的吸附位点;MIPs的热重曲线如图6所示,表明制备的MIPs热稳定性良好,具有重要的应用价值。
2、平衡结合实验
分别称取20mg MIPs/NIPs于10m L离心管中,加入0.1mg/ml的多菌灵标准品甲醇溶液6ml,在室温下震荡24h,离心(8000rpm,5min)分离MIPs/NIPs,通过LC-MS测定上清液中多菌灵的浓度,计算分子印迹聚合物和非印迹聚合物的结合性能。每个实验平行重复3次。
MIPs和NIPs的平衡吸附量分别为16.5±0.43mg/g和1.45±0.17mg/g,印迹因子IF为22.7。上述吸附结果表明以N-(1H-benzo[d]imidazole-2-yl)acetamide为模板分子合成的多菌灵虚拟模板分子印迹聚合物对多菌灵具有优异的吸附性能。
3、重复利用性实验
经过10次重复吸附洗脱后,多菌灵分子印迹聚合物填料的吸附能力略有下降,吸附量为为14.1±0.35mg/g(图7),上述吸附结果表明以N-(1H-benzo[d]imidazole-2-yl)acetamide为模板分子合成的多菌灵虚拟模板分子印迹聚合物对多菌灵具有良好的重复利用性。综上所述,该分子印迹聚合物材料在多菌灵的脱除方面具有较大的应用潜力。

Claims (7)

1.一种多菌灵虚拟模板分子印迹聚合物的制备方法,其特征在于,步骤如下:
1)将多菌灵虚拟模板分子化合物用氯仿溶解,加入功能单体,超声得到模板-单体复合物;
2)在模板-单体复合物中加入交联剂和引发剂,混合物超声后氮吹除氧,然后反应,反应停止后浓缩除去溶剂得到聚合物颗粒;
3)将聚合物颗粒用甲醇/乙酸的混合溶剂洗脱,洗脱后的不溶物干燥后得到多菌灵虚拟模板分子印迹聚合物;
所述的多菌灵虚拟模板分子,化学结构如通式(Ⅲ)所示
Figure FDA0003788860580000011
其中R1为氢或碳数小于等于2的烷基;R2为氢或碳数小于等于2的烷基;
所述的功能单体为甲基丙烯酸;
所述的交联剂为乙二醇二甲基丙烯酸酯。
2.根据权利要求1所述的制备方法,其特征在于,所述的功能单体甲基丙烯酸与多菌灵虚拟模板分子化合物的物质的量比例为2:1-10:1。
3.根据权利要求1所述的制备方法,其特征在于,乙二醇二甲基丙烯酸酯与甲基丙烯酸的物质的量比例为8:1-30:1;所述的引发剂为偶氮二异丁腈,偶氮二异丁腈与乙二醇二甲基丙烯酸酯的物质的量比例为1:40-1:80。
4.根据权利要求1所述的制备方法,其特征在于,所述的甲醇/乙酸的混合溶剂是甲醇/乙酸的体积比例为6:1-10:1。
5.根据权利要求1所述的制备方法,其特征在于,所述的步骤1)中的超声为超声30min,步骤2)中的超声为超声20min,所述的氮吹是氮吹10min,所述的反应是60℃水浴反应24h;步骤3)中洗脱是索氏提取24h,所述的干燥是50℃真空干燥。
6.一种按照权利要求1所述的制备方法制备得到的多菌灵虚拟模板分子印迹聚合物。
7.权利要求6所述的多菌灵虚拟模板分子印迹聚合物在脱除多菌灵中的应用。
CN202010795923.6A 2020-08-10 2020-08-10 一种多菌灵虚拟模板分子印迹聚合物及其制备方法 Active CN112110861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010795923.6A CN112110861B (zh) 2020-08-10 2020-08-10 一种多菌灵虚拟模板分子印迹聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010795923.6A CN112110861B (zh) 2020-08-10 2020-08-10 一种多菌灵虚拟模板分子印迹聚合物及其制备方法

Publications (2)

Publication Number Publication Date
CN112110861A CN112110861A (zh) 2020-12-22
CN112110861B true CN112110861B (zh) 2023-03-28

Family

ID=73803971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010795923.6A Active CN112110861B (zh) 2020-08-10 2020-08-10 一种多菌灵虚拟模板分子印迹聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN112110861B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486825B (zh) * 2021-12-31 2023-01-17 江苏大学 一种基于上转换-分子印迹荧光传感器的多菌灵快速检测方法
CN114479863B (zh) * 2022-01-06 2024-01-30 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 多菌灵分子印迹比率型荧光传感器及其制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1811409A (zh) * 2006-02-16 2006-08-02 上海交通大学 氯霉素分子印迹固相萃取小柱的制备方法
CN102539587A (zh) * 2012-01-04 2012-07-04 河南科技大学 常山酮分子印迹固相萃取小柱的制备方法和应用
CN111505143A (zh) * 2020-04-27 2020-08-07 安徽农业大学 一种快速检测百菌清及其氧化还原产物的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1811409A (zh) * 2006-02-16 2006-08-02 上海交通大学 氯霉素分子印迹固相萃取小柱的制备方法
CN102539587A (zh) * 2012-01-04 2012-07-04 河南科技大学 常山酮分子印迹固相萃取小柱的制备方法和应用
CN111505143A (zh) * 2020-04-27 2020-08-07 安徽农业大学 一种快速检测百菌清及其氧化还原产物的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Design and synthesis of N-benzimidazol-2-yl-N"-sulfonyl acetamidines;Nadezhda A. Rupakova et al.;《ARKIVOC (Gainesville, FL, United States)》;20170729(第3期);225-240 *
Joseph W. Eckert and Michael L. Rahm.The Antifungal Activity of Alkyl Benzimidazol-2-ylcarbamates and Related Compounds.《Pesticide Science》.1979,第10卷(第6期),473-477. *
Kianoosh Ahmadi Meleh Amiri et al..Synthesis, Characterization, and Properties of N-Heteroaryl Formamide Derivatives in the Presence of the Al-MCM-41-Nanocatalyst.《Silicon》.2019,第11卷(第4期),2117-2125. *
Nadezhda A. Rupakova et al..Design and synthesis of N-benzimidazol-2-yl-N"-sulfonyl acetamidines.《ARKIVOC (Gainesville, FL, United States)》.2017,(第3期),225-240. *
Synthesis and biological activity of derivatives of 2-aminobenzimidazole and carboxylic acids;V.S.Pilyugin et al.;《Bashkirskii Khimicheskii Zhurnal》;20011231;第8卷(第1期);18-25 *
Synthesis, Characterization, and Properties of N-Heteroaryl Formamide Derivatives in the Presence of the Al-MCM-41-Nanocatalyst;Kianoosh Ahmadi Meleh Amiri et al.;《Silicon》;20190117;第11卷(第4期);2117-2125 *
The Antifungal Activity of Alkyl Benzimidazol-2-ylcarbamates and Related Compounds;Joseph W. Eckert and Michael L. Rahm;《Pesticide Science》;19791231;第10卷(第6期);473-477 *
V.S.Pilyugin et al..Synthesis and biological activity of derivatives of 2-aminobenzimidazole and carboxylic acids.《Bashkirskii Khimicheskii Zhurnal》.2001,第8卷(第1期),18-25. *

Also Published As

Publication number Publication date
CN112110861A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
Liu et al. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction
CN112110861B (zh) 一种多菌灵虚拟模板分子印迹聚合物及其制备方法
Gao et al. Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres
CN104014320B (zh) 一种富集痕量速灭威的水相金属有机框架分子印迹材料
Zhao et al. Synthesis of molecularly imprinted polymer using attapulgite as matrix by ultrasonic irradiation for simultaneous on-line solid phase extraction and high performance liquid chromatography determination of four estrogens
Wang et al. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules
CN109772178B (zh) 一种基于点击化学双面负载的乙胺嘧啶分子印迹复合膜的制备方法及应用
Javanbakht et al. Extraction and purification of penicillin G from fermentation broth by water-compatible molecularly imprinted polymers
Cai et al. Preparation of monodisperse, restricted-access, media-molecularly imprinted polymers using bi-functional monomers for solid-phase extraction of sarafloxacin from complex samples
WO2021103622A1 (zh) 烟酰胺虚拟模板表面分子印迹材料及其制备方法和应用
CN107118354A (zh) 一种赭曲霉毒素金属有机骨架‑分子印迹复合的分离介质的制备方法及应用
Sun et al. A restricted access molecularly imprinted polymer coating on metal–organic frameworks for solid-phase extraction of ofloxacin and enrofloxacin from bovine serum
Wu et al. Recognition characteristics of molecularly imprinted microspheres for triazine herbicides using hydrogen-bond array strategy and their analytical applications for corn and soil samples
Zheng et al. One-pot method for the synthesis of β-cyclodextrin and covalent organic framework functionalized chiral stationary phase with mixed-mode retention mechanism
CN112979985A (zh) 一种复合金属有机骨架材料及其制备方法
Chen et al. Magnetic molecularly imprinted polymers synthesized by surface‐initiated reversible addition‐fragmentation chain transfer polymerization for the enrichment and determination of synthetic estrogens in aqueous solution
Zhao et al. Novel metal-organic framework combining with restricted access molecularly imprinted nanomaterials for solid-phase extraction of gatifloxacin from bovine serum
Lyu et al. Preparation of ionic liquid mediated molecularly imprinted polymer and specific recognition for bisphenol A from aqueous solution
Liang et al. Amido surface-functionalized magnetic molecularly imprinted polymers for the efficient extraction of Sibiskoside from Sibiraea angustata
Ren et al. Thermoresponsive chiral stationary phase functionalized with the copolymer of β-cyclodextrin and N-isopropylacrylamide for high performance liquid chromatography
Liang et al. Synthesis of sulfhydryl modified bacterial cellulose gel membrane and its application in adsorption of patulin from apple juice
Zhang et al. A facile one-pot synthesis of ionic liquid@ porous organic frameworks for rapid high-capacity removal of heavy metal ions, pesticides and aflatoxin from two non-food bioactive products
CN113372525B (zh) 一种具有分子印迹型的共价有机框架材料及其制备方法和应用
CN105854844B (zh) 青蒿酸磁性印迹微球及其制法与应用
Liu et al. Selective separation of target glycoproteins using boronate affinity imprinted copolymers: Precise identification and increase the number of recognition sites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant