CN112080685B - 一种吉帕级超高强度钢板及其生产方法 - Google Patents
一种吉帕级超高强度钢板及其生产方法 Download PDFInfo
- Publication number
- CN112080685B CN112080685B CN202010759827.6A CN202010759827A CN112080685B CN 112080685 B CN112080685 B CN 112080685B CN 202010759827 A CN202010759827 A CN 202010759827A CN 112080685 B CN112080685 B CN 112080685B
- Authority
- CN
- China
- Prior art keywords
- percent
- steel plate
- strength
- controlled
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
本发明公开了一种吉帕级超高强度钢板及其生产方法,其化学成分组成及其质量百分含量为:C 0.15%~0.17%,Si 0.16%~0.41%,Mn 2.11%~2.29%,P 0.014%~0.018%,S≤0.008%,Al 0.02%~0.07%,Cr 0.51%~0.61%,Mo 0.31%~0.43%,Nb 0.035%~0.047%,Ti 0.031%~0.045%,B 0.001%~0.003%,Ni 0.21%~0.27%,La 0.05%~0.07%,余量为Fe和不可避免的杂质。本钢板通过合理的化学成分设计和生产工艺控制,不但具有超高强度、高塑性、高拉延性和低回弹性,同时具有良好的抗延迟断裂性能,可用于制造轿车地板门槛梁和A柱加强板等部件;钢板的屈服强度835~875MPa、抗拉强度1190~1250MPa、延伸率7~11%、应变硬化指数(n值):0.13~0.17、冲压成件钢板氢含量≤5ppm。
Description
技术领域
本发明属于冶金技术领域,尤其是一种吉帕级超高强度钢板及其生产方法。
背景技术
随着汽车不断轻量化,超高强度钢的应用比例越来越高,对于1000MPa级的超高强度钢来说,冲压成形过程中钢板开裂和氢脆问题导致在汽车上应用受阻,难以满足复杂零部件冲压要求。
关于具有吉帕级超高强度钢板的研究,专利申请公开号CN102925802A公开了“一种超高强钢板的生产方法”;该钢化学成分质量百分比为:C:0.18~0.20,Si:0.35~0.42,Mn:1.30~1.40,P≤0.015,S≤0.010,Al:0.03~0.06,Nb:0.02~0.03,V:0.05~0.06,Ti:0.035~0.045,Mo:0.25~0.35,B:0.0017~0.0022。该钢板组织为超细板条马氏体+纳米级板条残余奥氏体及沉淀出的复杂碳化物。该钢板产品厚度为8~60mm,屈服强度不低于1100MPa,抗拉强度不低于1200MPa,延伸率大于10%。该钢板成品是热轧材,如此厚规格的钢板难以在轿车加强件上应用来满足轻量化要求。另外,该钢未给出应变硬化指数即n值,由屈强比可以看出该钢的n值不会高于0.10,导致其拉延性难以满足汽车复杂结构件和加强件的冲压要求。
专利申请公开号CN110358971A公开了“一种屈服强度1300MPa级的低碳超高强度钢及其制备方法”;该钢化学成分质量百分比(wt%)为:C:0.05~0.09%,Si:0.15~0.35%,Mn:0.60~1.20%,Nb:0.04~0.10%,Cu:1.5~2.5%, Mo:0.4~0.8%,Cr:0.4~0.8%,Al:0.5~0.8%,Ni:2.5~4%,余量为Fe及不可避免的杂质。该钢板微观组织为以贝氏体为主,在贝氏体基体中存在大量纳米尺寸的析出强化相;该钢板的屈服强度≥1300MPa,抗拉强度≥1350MPa,断后伸长率≥15%;根据其6个实施例可以看出,其成品为热轧回火钢板,厚度为10~30mm。如此厚规格的钢板难以在轿车加强件上应用来满足轻量化要求。另外,其化学成分中,如此高的铜含量,因成分偏析和铜的本身属性冲压极易引起裂纹和脆性,即使再轧薄到轿车门槛梁厚度要求(2.0mm以下),也难以实现双相刚组织结构及满足冲压成形要求。
发明内容
本发明要解决的技术问题是提供一种综合性能优良、轻量化的吉帕级超高强度钢板;本发明还提供了一种吉帕级超高强度钢板的生产方法。
为解决上述技术问题,本发明化学成分组成及其质量百分含量为:C 0.15%~0.17%,Si 0.16%~0.41%,Mn 2.11%~2.29%,P 0.014%~0.018%,S≤0.008%,Al 0.02%~0.07%,Cr 0.51%~0.61%,Mo 0.31%~0.43%,Nb 0.035%~0.047%,Ti 0.031%~0.045%,B0.001%~0.003%,Ni 0.21%~0.27%,La 0.05%~0.07%,余量为Fe和不可避免的杂质。
本发明所述钢板组织为83~87%低碳马氏体和13~17%高碳铁素体。
本发明所述钢板的屈服强度835~875MPa、抗拉强度1190~1250MPa、延伸率7~11%、应变硬化指数n=0.13~0.17。
本发明为了保证综合性能优良,各元素含量限定基本原理如下:
C:可以稳定马氏体组织比例和利用固溶体硬化强化铁素体基体。C在铁素体中固溶强化缩小与马氏体的硬度和强度来达到协同变形;为此,C含量过低,则钢的组织协同性不足,C含量过高,钢的塑性和焊接性不足。
Si:抑制渗碳体形成,促进马氏体相变和马体中碳向铁素体中转移;同时,Si能够起到固溶强化作用,提高钢的强度;Si含量过低,无法起到上述作用,Si含量过高,材料表面质量差,钢材热轧时也易产生边裂现象。
Mn:是常规的强韧化元素,但Mn元素含量太高,一方面增加成本,使焊接组织出现硬化层导致裂纹焊缝及热影响区裂纹敏感性增高。
P:在本发明中,P具有与Si类似的作用,但含量过高影响焊接性能。
S:含量在钢中越低越好,避免对本发明的钢铁材料产生裂纹和焊接的不利影响。另外,硫含量偏高会消耗过多的锰元素,影响材料的强韧化效果,或增加材料的成本。
Al:在本发明中主要是起到脱氧的作用。
Cr、Mo和B起到提高钢材在热处理环节提高淬透性形成马氏体的作用,同时,起到固溶强化作用提高钢产品的强度以及降低屈强比提高应变硬化指数的作用。过高增加了制造成本,过低达不到所需要的性能。
Nb、Ti、Ni有利于析出强化提高钢产品的强度和耐腐蚀性,并且可以阻止高温奥氏体过分长大,但含量过高,容易导致碳氮化物偏聚,其加工性变差,同时,增加了材料成本。
La:在本发明中,起到避免氢脆导致的零部件延迟开裂作用。
本发明方法包括冶炼、连铸、加热、热轧、冷轧和退火处理工序。
本发明方法所述加热工序:板坯加热温度控制在1231~1249℃,板坯加热时间控制在151~169min。
本发明方法所述热轧工序:采用粗轧+精轧工艺;所述粗轧温度控制在1115~1135℃,精轧终轧温度控制在889~909℃,卷取温度控制在621~641℃。
本发明方法所述冷轧工序:冷轧压下率60.0~66.7%。
本发明方法所述退火处理工序:采用连续退火处理,均热温度819~829℃,冷却段冷速39~49℃/s。
采用上述技术方案所产生的有益效果在于:本发明通过合理的化学成分设计和生产工艺控制,不但具有超高强度、高塑性、高拉延性和低回弹性,同时具有良好的抗延迟断裂性能,可用于制造轿车地板门槛梁和A柱加强板等部件。
本发明钢板组织含有83~87%低碳马氏体、13~17%高碳铁素体,在成形过程中,拉延性保证了成形性好,无开裂现象;同时,变形后零件尺寸保持稳定,在焊接过程中,铁素体可以吸收裂纹尖端应力、缓解裂纹形成与扩展,零件焊接过程中未发生裂纹及开裂,具有良好的焊接性能。
本发明方法通过合理的化学成分设计和生产工艺控制,不但具有高强度、高塑性和高拉延性;同时,因化学成分设计中,添加了避免吸氢的微量元素La实现冲压成件钢板氢含量≤5ppm,避免了延迟断裂。本发明产品可用于制造轿车地板门槛梁和A柱加强板等部件,是高端汽车零部件理想用材。
本发明钢板的屈服强度835~875MPa、抗拉强度1190~1250MPa、延伸率7~11%、应变硬化指数(n值):0.13~0.17、冲压成件钢板氢含量≤5ppm;解决了传统高强钢在冲压成形过程中钢板开裂和零件应用中氢脆问题导致在汽车上应用受阻,难以满足复杂零部件冲压要求等问题;具有良好的市场应用前景。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明的金相显微组织结构图。
具体实施方式
本吉帕级超高强度钢板的化学成分和生产工艺如下所述:(1)冶炼工序:冶炼钢水出钢结束温度控制在1645~1657℃。
(2)连铸工序:采用全程氩气保护浇铸。
(3)加热工序:板坯加热温度控制在1231~1249℃,板坯加热时间控制在151~169min。
(4)热轧工序:采用粗轧+精轧工艺;粗轧温度控制在1115~1135℃,精轧终轧温度控制在889~909℃;热轧工艺中对坯料进行7道次轧制,热轧后的热轧料板板厚控制在3.0~5.0mm;卷取温度控制在621~641℃。
(5)冷轧工序,将3.0~5.0mm的热轧料板经60.0~66.7%冷轧压下率的冷轧,得到冷轧板的板厚为1.0~2.0mm。
(6)退火处理工序:采用连续退火处理,均热温度819~829℃,冷却段冷速39~49℃/s。
(7)产品性能:所得钢板厚度为1.0~2.0mm,钢板组织由83~87%低碳马氏体、13~17%高碳铁素体组成;所得钢板屈服强度835~875MPa、抗拉强度1190~1250MPa、延伸率7~11%、应变硬化指数(n值):0.13~0.17,冲压成件钢板的氢含量≤5ppm。
实施例1-8:本吉帕级超高强度钢板的具体生产工艺如下所述。
(1)各实施例的具体工艺参数见表1。
表1:各实施例的具体工艺参数
(2)各实施例所得钢板的化学成分组成及其质量百分含量见表2,其中,余量为Fe和不可避免的杂质。
表2:各实施例所得钢板的化学成分(%)
(3)各实施例所得钢板的显微组织比例、力学性能和氢含量见表3。图1是所得钢板的金相显微组织结构图,由图1可见,其由马氏体和铁素体组成。
表3:各实施例所得钢板的显微组织比例、力学性能和氢含量
Claims (2)
1. 一种吉帕级超高强度钢板,其特征在于,其化学成分组成及其质量百分含量为:C0.15%~0.17%,Si 0.16%~0.41%,Mn 2.11%~2.29%,P 0.014%~0.018%,S≤0.008%,Al0.02%~0.07%,Cr 0.51%~0.61%,Mo 0.31%~0.43%,Nb 0.035%~0.047%,Ti 0.031%~0.045%,B 0.001%~0.003%,Ni 0.21%~0.27%,La 0.05%~0.07%,余量为Fe和不可避免的杂质;所述钢板组织为83~87%低碳马氏体和13~17%高碳铁素体;所述钢板的屈服强度835~875MPa、抗拉强度1190~1250MPa、延伸率7~11%、应变硬化指数n=0.13~0.17,冲压成件钢板氢含量≤5ppm。
2.权利要求1所述一种吉帕级超高强度钢板的生产方法,其特征在于:包括冶炼、连铸、加热、热轧、冷轧和退火处理工序;
所述加热工序:板坯加热温度控制在1231~1249℃,板坯加热时间控制在151~169min;
所述热轧工序:采用粗轧+精轧工艺;所述粗轧温度控制在1115~1135℃,精轧终轧温度控制在889~909℃,卷取温度控制在621~641℃;
所述冷轧工序:冷轧压下率60.0~66.7%;
所述退火处理工序:采用连续退火处理,均热温度819~829℃,冷却段冷速39~49℃/s。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010759827.6A CN112080685B (zh) | 2020-07-31 | 2020-07-31 | 一种吉帕级超高强度钢板及其生产方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010759827.6A CN112080685B (zh) | 2020-07-31 | 2020-07-31 | 一种吉帕级超高强度钢板及其生产方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112080685A CN112080685A (zh) | 2020-12-15 |
CN112080685B true CN112080685B (zh) | 2022-06-03 |
Family
ID=73735705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010759827.6A Active CN112080685B (zh) | 2020-07-31 | 2020-07-31 | 一种吉帕级超高强度钢板及其生产方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112080685B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114457286A (zh) * | 2021-12-29 | 2022-05-10 | 河钢股份有限公司 | 降低结构用超低碳钢表面硬度的生产方法 |
CN118326245A (zh) * | 2023-01-10 | 2024-07-12 | 宝山钢铁股份有限公司 | 一种点焊性能优异的带镀层吉帕钢及其制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005126733A (ja) * | 2003-10-21 | 2005-05-19 | Nippon Steel Corp | 高温加工性にすぐれた熱間プレス用鋼板及び自動車用部材 |
CN102471849A (zh) * | 2009-07-30 | 2012-05-23 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法 |
CN106661699A (zh) * | 2014-08-28 | 2017-05-10 | 杰富意钢铁株式会社 | 高强度熔融镀锌钢板及其制造方法 |
CN110268083A (zh) * | 2017-02-10 | 2019-09-20 | 杰富意钢铁株式会社 | 高强度镀锌钢板及其制造方法 |
CN110777297A (zh) * | 2019-10-12 | 2020-02-11 | 河钢股份有限公司 | 一种高扩孔性高拉延性高强度钢板及其制造方法 |
CN111433380A (zh) * | 2017-11-29 | 2020-07-17 | 杰富意钢铁株式会社 | 高强度镀锌钢板及其制造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109518080A (zh) * | 2018-11-27 | 2019-03-26 | 攀钢集团攀枝花钢铁研究院有限公司 | 冷轧低成本超高强双相钢及其制备方法 |
-
2020
- 2020-07-31 CN CN202010759827.6A patent/CN112080685B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005126733A (ja) * | 2003-10-21 | 2005-05-19 | Nippon Steel Corp | 高温加工性にすぐれた熱間プレス用鋼板及び自動車用部材 |
CN102471849A (zh) * | 2009-07-30 | 2012-05-23 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法 |
CN106661699A (zh) * | 2014-08-28 | 2017-05-10 | 杰富意钢铁株式会社 | 高强度熔融镀锌钢板及其制造方法 |
CN110268083A (zh) * | 2017-02-10 | 2019-09-20 | 杰富意钢铁株式会社 | 高强度镀锌钢板及其制造方法 |
CN111433380A (zh) * | 2017-11-29 | 2020-07-17 | 杰富意钢铁株式会社 | 高强度镀锌钢板及其制造方法 |
CN110777297A (zh) * | 2019-10-12 | 2020-02-11 | 河钢股份有限公司 | 一种高扩孔性高拉延性高强度钢板及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112080685A (zh) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113416890B (zh) | 高扩孔高塑性980MPa级冷轧连退钢板及其制备方法 | |
CN109023036B (zh) | 一种超高强热轧复相钢板及生产方法 | |
CN101153370B (zh) | 一种可大线能量焊接的低合金高强度钢板及其制造方法 | |
JP5598157B2 (ja) | 耐遅れ破壊特性及び衝突安全性に優れたホットプレス用鋼板及びその製造方法 | |
CN109207849B (zh) | 高强高塑性1000MPa级热轧钢板及制备方法 | |
CN112593154A (zh) | 屈服强度超过700MPa的980MPa级冷轧双相钢及其生产方法 | |
CN108018484A (zh) | 一种抗拉强度在1500MPa以上且成形性优良的冷轧高强钢及其制造方法 | |
CN113737087B (zh) | 一种超高强双相钢及其制造方法 | |
CN104498821B (zh) | 汽车用中锰高强钢及其生产方法 | |
KR20140119809A (ko) | 프레스 성형품의 제조 방법 및 프레스 성형품 | |
CN105861933B (zh) | 一种纳米/超细的中锰trip钢板及其温轧制备方法 | |
CN106282791B (zh) | 低内应力汽车桥壳用钢板及其生产方法 | |
CN112342462A (zh) | 一种大功率发动机曲轴用Nb-Ti微合金化高强韧性贝氏体非调质钢及其制备方法 | |
CN110129670A (zh) | 一种1300MPa级高强高塑性热冲压用钢及其制备方法 | |
CN109385570B (zh) | 一种高强钢板及其制造方法 | |
CN109136759B (zh) | 轮辐用厚规格1300MPa级热成形钢及制备方法 | |
CN109023055B (zh) | 一种高强度高成形性汽车钢板及其生产工艺 | |
CN112080685B (zh) | 一种吉帕级超高强度钢板及其生产方法 | |
CN109957716A (zh) | 一种高强度高扩孔性单一铁素体析出钢板及其制备方法 | |
CN111809114B (zh) | 具有优异高温强度的塑料模具钢及其制备方法 | |
CN111118403A (zh) | 一种Ti微合金化高强韧性贝氏体非调质钢及其控锻控冷工艺和生产工艺 | |
CN113737086A (zh) | 一种经济型780MPa级的冷轧退火双相钢及其制造方法 | |
CN113802051A (zh) | 一种塑性优异的超高强度钢及其制造方法 | |
CN113005367A (zh) | 一种具有优异扩孔性能的780MPa级热轧双相钢及制备方法 | |
CN114045441B (zh) | 800MPa级连退用增强塑性双相钢及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |