CN112080551B - 一种双酶介导级联信号放大的氨苄西林检测适体传感器 - Google Patents

一种双酶介导级联信号放大的氨苄西林检测适体传感器 Download PDF

Info

Publication number
CN112080551B
CN112080551B CN202010947091.5A CN202010947091A CN112080551B CN 112080551 B CN112080551 B CN 112080551B CN 202010947091 A CN202010947091 A CN 202010947091A CN 112080551 B CN112080551 B CN 112080551B
Authority
CN
China
Prior art keywords
dna
ampicillin
detection
chain
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010947091.5A
Other languages
English (en)
Other versions
CN112080551A (zh
Inventor
石星波
赵倩
张光胤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Agricultural University
Original Assignee
Hunan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Agricultural University filed Critical Hunan Agricultural University
Priority to CN202010947091.5A priority Critical patent/CN112080551B/zh
Publication of CN112080551A publication Critical patent/CN112080551A/zh
Application granted granted Critical
Publication of CN112080551B publication Critical patent/CN112080551B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Optics & Photonics (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于双酶介导级联信号放大的氨苄西林适体传感器,由以下步骤制备得到:使用bio‑AP、DNA1及H‑DNA相互杂交形成的双链DNA作为检测探针,在T4 DNA连接酶及核酸外切酶III的辅助下,得到完整的APH链;通过生物素‑亲和素的特异性结合,APH链被捕获到微孔板中,作为HCR引发链,导致发夹DNA H1和H2交叉打开,产生双链DNA聚合物,加入荧光染料SYBR Green I指示剂,当其嵌入到双链DNA中时产生明显的荧光。基于核酸适配体与目标物的特异性结合,通过荧光强度的改变实现了对氨苄西林检测。本方法灵敏度高,特异性好,准确性高,能应于被污染食品如牛奶中氨苄西林的检测。

Description

一种双酶介导级联信号放大的氨苄西林检测适体传感器
技术领域
本发明属于生物传感及核酸检测技术领域,涉及食品中氨苄西林(AMP)的检测,具体涉及一种双酶介导级联信号放大的氨苄西林检测适体传感器。
背景技术
作为广谱β-内酰胺抗生素之一的氨苄青霉素,AMP在医药及细菌感染治疗领域得到了广泛的应用,具有低毒性,低成本和良好临床效果的优势。近年来,尽管AMP作为生长调节剂或抗感染药促进了畜牧和饲料加工业的快速发展,但动物和家畜中非法、过量地使用,直接导致抗真菌药物在人类和动物源食品生产过程中的污染和残留,引起的健康和安全问题日益突出,如:超敏反应的出现,细菌对个体的抵抗力和肠道菌群失衡等。因此,为了保障人们的健康,实现食品中AMP的高灵敏检测至关重要。
目前,用于AMP的常规检测策略,如高效液相色谱(HPLC)、气相色谱(GC)、液相色谱串联质谱(HPLC-MS)、酶联免疫吸附测定(ELISA)、比色法等存在着灵敏度及特异性较低,分析过程繁琐、昂贵的试剂以及对精密仪器和技术人员的依赖等缺陷。因此,急需建立一种食品中AMP的高灵敏及高选择性方法。
作为一种单链的DNA或RNA分子,核酸适配体可以通过范德华力、静电相互作用、氢键相互作用等结合相应的靶标,包括金属离子,小分子,大分子,病毒和细胞等。与抗体相比,具有合成/修饰更简单,成本更低,易于储存和更好的稳定性的优点。同时,目标物分子的存在可以使适体与其互补DNA分离,从而诱导信号变化以进行目标检测,因此,发明人使用核酸适配体作为生物识别元件,结合DNA信号放大技术,构建了一种核酸适配体传感器用于AMP的检测研究。
发明内容
本发明的目的在于,克服上述现有技术的缺陷,提供一种双酶介导级联信号放大的氨苄西林检测适体传感器,以检测食品中氨苄西林(AMP)的含量。
为实现上述目的,本发明采用以下技术方案:一种双酶介导级联信号放大的氨苄西林检测适体传感器,该传感器由以下步骤制备得到:
A.特定DNA的生成:将如SEQ ID No:1所示的生物素标记的AMP核酸适配体、如SEQID No:2所示的载体DNA1及如SEQ ID No:3所示的杂交链式反应HCR引发链DNA杂交形成双链DNA检测探针;于双链DNA检测探针中加入梯度浓度的氨苄西林标准品,在T4 DNA连接酶和核酸外切酶III的辅助作用下得到完整的APH链;
B.特定DNA的捕获及HCR反应,即信号的放大及读出:将上述APH链加入到链霉亲和素包被的聚苯乙烯微孔板中,使APH链被捕获到微孔板中作为HCR引发链;于微孔板中加入发夹DNA1和发夹DNA2,由HCR引发链将发夹DNA1和发夹DNA2交叉打开,最后加入荧光染料SYBR Green I指示剂,根据不同的荧光强度建立氨苄西林检测标准曲线。
上述传感器制备过程中所需物质如下:
1)96孔聚苯乙烯微孔板,市购产品;
2)链霉亲和素,市购产品,浓度为10 mg/mL;
3)AMP 标准品,市购产品;
4)T4 DNA连接酶及核酸外切酶III(Exo III),市购产品,浓度均为100 U/mL;
5)生物素标记的AMP核酸适配体(bio-AP):浓度为1 mM,其核苷酸序列为:5’- Bio- GCGGGCGGTTGTATAGCGG-3’(SEQ ID No:1);
6)载体DNA1(DNA1):浓度为1 mM,其核苷酸序列为:5’-CGACTACTTTGCCGCTATACAACCGCCCGC-3’(SEQ ID No:2);
7)杂交链式反应HCR引发链DNA(H-DNA):浓度为1 mM,其核苷酸序列为:5’-CAAAGTAGTCGAGGCCC-3’(SEQ ID No:3);
8)发夹DNA1(H1):浓度为10 μM,其核苷酸序列为:
5’-AGTCGAGGCCCCGGCGTGGGTTAACACGCCGGGGCCTCGACTACTTTG-3’(SEQ ID No:4);
9)发夹DNA2(H2):浓度为10 μM,其核苷酸序列为:
5’-TTAACCCACGCCGGGGCCTCGACTCAAAGTAGTCGAGGCCCCGGCGTG-3’(SEQ ID No:5);
10)PBS缓冲液:浓度为0.01 M,市购产品;并按常规技术配制浓度为1 mg/mL牛血清白蛋白(BSA)的PBS缓冲溶液;
11)荧光染料SYBR Green I:浓度为5×SYBR Green I,市购产品。
具体地,本发明的基于双酶介导的级联信号放大的AMP适体传感器的制备方法如下,请结合参见图1:
(1)均相溶液中双酶介导的DNA降解反应,即特定DNA的生成:将bio-AP、DNA1及H-DNA按浓度比1:1:1杂交,在4 ℃条件下孵育1-2 h完成探针的制备,于4℃保存备用。分别取60 μL检测探针,加入20 μL浓度梯度为10-18-10-10 g/mL和0 g/mL的AMP标品,充分反应后,加入10 μL100 U /mL的T4连接酶,在16℃下反应20-40 min;随后继续加入10 μL100 U /mL的Exo III,在37℃下反应20-40 min。最后在70 ℃下变性10-30分钟,终止反应,得到完整的bio-AP+H-DNA长链DNA(APH链)。
(2)特定DNA的捕获:用0.01 M的PBS缓冲溶液稀释链霉亲和素至0.01 mg/mL,之后取100 μL加入96聚苯乙烯微孔板中,4 ℃下反应过夜,用0.01 M的PBS缓冲溶液洗涤3次,完成抗体包被。随后,加入200 μL 10 μg/mL BSA,37 ℃避光孵育1 h,以封闭微孔板上的非特异性活性位点,后用0.01 M的PBS溶液洗洗涤3次。
(3)HCR反应的进行:将步骤(1)所得反应液加入到微孔板中,25℃反应10-40 min,随后置于55℃下反应20 min,再甩干微孔板中的液体,用PBS缓冲溶液洗涤除去多余DNA。弃去液体,甩干,加入100 μL超纯水,再加入10 μL的H1(10 μM)和10 μL的H2(10 μM),于冰上反应1-2 h。弃去液体,甩干,3次洗涤后,除去多余游离的H1和H2,最后加入190 μL超纯水与10 μL终浓度为5×的SYBR Green I,4 ℃下避光孵育10-30 min。
(4)将微孔板放入多功能酶标仪中,检测溶液在490 nm激发波长下,520 nm吸收处的荧光值并建立AMP检测标准曲线,实现对AMP的荧光高灵敏定量检测。
本发明先采用bio-AP、DNA1及H-DNA相互杂交形成的双链DNA作为检测探针。当不存在目标物AMP时,通过T4连接酶的作用,以DNA1模板,可将bio-AP与H-DNA链通过磷酸二酯键结合,形成完整的APH链。此时,Exo III作用于APH链与DNA1形成双链DNA,且从DNA1的3’末端开始剪切DNA1,释放出游离的APH链。随后,将上述所的混合溶液加入到亲和素包被的聚苯乙烯微孔板中,通过生物素-亲和素的特异性结合,APH链被捕获到微孔板中,作为HCR引发链,导致发夹DNAH1和H2交叉打开,产生长的双链DNA聚合物。最后加入荧光染料SYBRGreen I指示剂,当其嵌入到双链DNA中时,产生明显的荧光。但目标物存在时,AMP优先与bio-AP适配体结合,形成一个稳定的复合体,bio-AP无法与DNA1结合,此时无T4连接酶可作用的位点,无法形成完成的APH链,同时Exo III也无法发挥剪切作用。微孔板中无法捕获到APH链,无法进行HCR反应,加入SYBR Green I指示剂后,无明显荧光。
本发明的检测方式是荧光检测,利用一台Tecan多功能酶标仪,所有检测过程中所用激发波长为490 nm,发射波长为520 nm,根据不同的荧光强度建立AMP检测标准曲线,同时实现对AMP高灵敏的精确定量检测。
本发明设计的双酶介导级联信号放大的氨苄西林检测方法灵敏度高,特异性强,准确性高,将其应用AMP的检测,取得了良好的检测结果;对于食品如牛奶样品中AMP的检测具有较为重要的应用价值。
与现有技术相比,本发明的有益效果是:
1)均相溶液中特定DNA的生成过程,明确地克服了空间位阻,改善了酶促反应中的DNA相互作用,保持了适配体的高结合亲和力。
2)特定DNA捕获过程中,一个链霉亲和素可以捕获四个生物素修饰的AMP核酸适配体,以及基于HCR的信号扩增反应,共同实现了级联信号放大,完成了对AMP的高灵敏检测。
3)使用核酸适配体作为目标物识别元件构建检测探针,赋予该方法较宽的适用范围及较强的扩展性,找到相对应的核酸适体,即可应用与其他食品危害物的检测。
附图说明
图1为本发明的检测原理图。
图2为核酸适体传感器可行性验证实验图。
其中:A为探针表征的荧光光谱图,图中光谱曲线由上至下依次表示DNA1+H-DNA+bio-Apt、DNA1+bio-AP、DNA1+H-DNA;B为T4连接酶和Exo III的功能表征荧光光谱图。
图3为双酶介导的DNA降解反应实验的条件优化实验图。
其中:A为T4连接酶的反应体积优化;B为T4连接酶的孵育时间优化;C为Exo III的反应体积优化;D为Exo III的孵育时间优化。
图4为AMP检测中探针体积的优化实验图。
图5为本发明核酸适体传感器用于AMP的检测图。
其中,A为不同AMP浓度时的荧光响应光谱图,图中光谱曲线由上至下依次表示的AMP浓度为0 g/mL、10-18-10-10 g/mL;B为AMP检测标准曲线。
图6为本发明核酸适体传感器用于实际样品中AMP检测实验图。
其中,A为牛奶与羊奶样品中AMP理论添加值与检测值对比;1-3分别表示加入的AMP标准品浓度为1×10-8、1×10-9、1×10-10 g/mL;B为牛奶与羊奶样品中AMP检测回收率。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详细的描述。
实施例1探针的制备
分别取50 μL10μM的DNA1、bio-Apt、H-DNA 引发链置于金属恒温振荡器中,70 ℃活化10 min。混合均匀后,在4 ℃条件下孵育2 h完成探针的制备,于4 ℃保存备用。之后向其中加入10 μL终浓度为5×的SYBR Green I,在4 ℃下孵育30 min,检测样品在490 nm激发光照射下520 nm处的荧光强度。为了验证DNA1、bio-Apt、H-DNA之间的杂交情况。选用如下样品:a)等体积及等浓度(10 μL, 10μM)的DNA1和bio-Apt,及10 μL水;b)等体积及等浓度(10 μL, 10μM)的DNA1和H-DNA,及10 μL水。将混合液在4 ℃下孵育2 h。之后分别向两个体系中加入10 μL终浓度为5×的SYBR Green I,在4 ℃下孵育30 min,检测样品在490 nm激发光照射下520 nm处的荧光强度。
检测结果如图2A所示,在相同浓度下,检测探针的荧光强度几乎是bio-AP和DNA1系统、H-DNA和DNA1系统的荧光强度的两倍,表明探针成功制备。
实施例2T4连接酶和Exo III的活性验证
试验过程:a)取10 μL100 U/mL的T4连接酶与100 μL检测探针,加入90 μL PBS缓冲液的溶液混合,并在37 ℃下孵育30 min,后于70 ℃灭活20 min。冷却后加入10 μL终浓度为5×的SYBR Green I,在4 ℃下孵育30 min。b)取10 μL100 U/mL的Exo III与100 μL检测探针,加入90 μL PBS缓冲液的溶液混合,并在37 ℃下孵育30 min,后于70 ℃灭活20min。冷却后加入10 μL终浓度为5×的SYBR Green I,在4 ℃下孵育30 min。c)取10 μL100U/mL的 T4连接酶与100 μL检测探针,并在16 ℃下孵育30 min。加入10 μL100 U/mL的ExoIII与80 μL PBS缓冲液的溶液混合,在37 ℃下孵育30 min,后于70 ℃灭活20 min。冷却后加入10 μL终浓度为5×的SYBR Green I,在4 ℃下孵育30 min。根据溶液在520 nm处的荧光强度值验证T4和Exo III的活性。
检测结果见图2B,借助T4 DNA连接酶形成了APH链/DNA1双链,荧光信号最高(曲线a)。如果仅用Exo III处理探针,则与bio-Ap杂交的部分DNA1将被Exo III切割。DNA1的其余部分与H-DNA杂交形成具有较高荧光信号的双链结构(曲线b)。在T4 DNA连接酶和Exo III的协同作用下,DNA1被剪切,仅剩下一条APH单链,具有微弱的荧光信号(曲线c),表明只有通过T4 DNA连接酶和Exo III的协同作用,才能得到完整且游离的APH单链。
实施例3双酶介导的DNA降解反应实验条件的优化
分别取5、10、20、30和40 μL100 U/mL的 T4连接酶,60 μL检测探针,在16 ℃下孵育30 min。加入10 μL100 U/mL的Exo III与80 μL PBS缓冲液的溶液混合,在37 ℃下孵育30 min,后于70 ℃灭活20 min。冷却后加入10 μL终浓度为5×的SYBR Green I,在4 ℃下孵育30 min。检测溶液在520 nm处的荧光强度值。
参见图3A,当T4连接酶的体积为10 μL时,溶液荧光强度达到平稳状态,为最佳反应体积。
分别取10 μL100 U/mL的 T4连接酶,60 μL检测探针,在16 ℃下分别孵育10、30、50、70和90 min。加入10 μL100 U/mL的Exo III与80 μL PBS缓冲液的溶液混合,在37 ℃下孵育30 min,后于70 ℃灭活20 min。冷却后加入10 μL终浓度为5×的SYBR Green I,在4℃下孵育30 min。检测溶液在520 nm处的荧光强度值。
参见图3B,当T4连接酶的孵育时间为30 min时,溶液荧光强度值最低,为最佳孵育时间。
取10 μL100 U/mL的 T4连接酶与60 μL检测探针,并在16 ℃下孵育30 min。分别加入5、10、20、30和40 μL100 U/mL的Exo你 III与80 μL PBS缓冲液的溶液混合,在37 ℃下孵育30 min,后于70 ℃灭活20 min。冷却后加入10 μL终浓度为5×的SYBR Green I,在4℃下孵育30 min。检测溶液在520 nm处的荧光强度值。
参见图3C,当Exo III的体积为10 μL时,溶液荧光强度达到平稳状态,为最佳反应体积。
取10 μL100 U/mL的 T4连接酶与60 μL检测探针,并在16 ℃下孵育30 min。加入10 μL100 U/mL的Exo III与80 μL PBS缓冲液的溶液混合,在37 ℃下分别孵育10、30、50、70和90 min,后于70 ℃灭活20 min。冷却后加入10 μL终浓度为5×的SYBR Green I,在4℃下孵育30 min。检测溶液在520 nm处的荧光强度值。
参见图3D,当Exo III的孵育时间为30 min时,溶液荧光强度值最低,为最佳孵育时间。
实施例4探针体积的优化
分别取10, 30, 60, 90 和120 μL的检测探针溶液,向其中加入20 μL浓度为5×10-12 g/mL的AMP标准品,充分反应后,加入10 μL100 U /mL的T4连接酶,在16℃下反应30min。随后继续加入10 μL100 U /mL的Exo III,在37℃下反应30 min。最后在70 ℃下变性20分钟,终止反应。检测溶液在520 nm处的荧光强度值。
检测结果如图4所示,当探针体积为60 μL时,溶液荧光强度值达到平台,随后基本不再发生明显变化,为最佳反应体积。
实施例5
分别取60 μL检测探针溶液,向其中加入20 μL浓度为10-18-10-10 g/mL及0g/mL的AMP标品,于4 ℃下避光孵育30 min。随后加入10 μL100 U /mL T4连接酶,16 ℃孵育30min,再加入10 μL100 U /mL Exo III,37 ℃孵育30 min,最后70 ℃灭活20 min。
向微孔板中加入100 μL,10 mg/mL的链霉亲合素,4 ℃下反应过夜;2)弃去液体,甩干,用0.01 M的PBS缓冲溶液对微孔板进行3次洗涤,除去多余游离的链霉亲合素后,加入200 μL牛血清白蛋白(BSA,1 μg/mL)进行封闭,37 ℃避光孵育1 h,弃去液体,三次洗涤后,加入上述所得混合溶液,25 ℃反应30 min,置于55 ℃下反应20 min,弃去液体,三次洗涤,加入100 μL超纯水及10 μL的H1(10 μM)和10 μL的H2(10 μM),于冰上反应2 h;弃去液体,三次洗涤,除去多余游离的H1和H2后。加入190 μL超纯水与10 μL终浓度为5×的SYBRGreen I,4 ℃下避光孵育30 min。最后检测溶液在490 nm激发520 nm吸收处的荧光值并建立AMP检测标准曲线。
检测结果如图5A所示,溶液在520 nm处荧光强度随着AMP浓度的增大而逐渐减弱。根据荧光强度值和空白值的差值于AMP浓度之间的关系,绘制标准曲线,如图5B所示,当AMP浓度范围为1×10-14 - 1×10-18 g/mL时,AMP浓度与荧光强度变化呈明显的线性关系,ΔF=3888.8+205lgc。
实施例6
分别取1 mL 3个不同批次的牛奶及羊奶样品,加入3 mL去离子水进行稀释。之后再分别向3个样品中加入40 μL浓度为1×10-8、1×10-9、1×10-10 g/mL的AMP标准品。将混合液沸腾10 min;立刻放入离心机中10000 r/min离心10 min,取中层清液。根据本发明所建立的双酶介导级联信号放大的氨苄西林检测适体传感器进行AMP检测。
检测结果如图6A所示,检测值与理论加入值基本保持一致。图6B为检测加标回收率,由图可知,回收率位于90.03% 到 99.5%之间。由此证明说明本发明所建立的双酶介导级联信号放大的氨苄西林检测适体传感器有着良好的准确性。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。
序列表
<110> 湖南农业大学
<120> 一种双酶介导级联信号放大的氨苄西林检测适体传感器
<130> 005
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 18
<212> DNA
<213> 人工序列()
<400> 1
cgggcggttg tatagcgg 18
<210> 2
<211> 30
<212> DNA
<213> 人工序列()
<400> 2
cgactacttt gccgctatac aaccgcccgc 30
<210> 3
<211> 17
<212> DNA
<213> 人工序列()
<400> 3
caaagtagtc gaggccc 17
<210> 4
<211> 48
<212> DNA
<213> 人工序列()
<400> 4
agtcgaggcc ccggcgtggg ttaacacgcc ggggcctcga ctactttg 48
<210> 5
<211> 48
<212> DNA
<213> 人工序列()
<400> 5
ttaacccacg ccggggcctc gactcaaagt agtcgaggcc ccggcgtg 48

Claims (5)

1.一种双酶介导级联信号放大的氨苄西林检测适体传感器,其特征在于,该传感器由以下步骤制备得到:
A.特定DNA的生成:如SEQ ID No:1所示的生物素标记的AMP核酸适配体、如SEQ ID No:2所示的载体DNA1及如SEQ ID No:3所示的杂交链式反应HCR引发链DNA杂交形成双链DNA检测探针;于双链DNA检测探针中加入梯度浓度的氨苄西林标准品,在T4 DNA连接酶和核酸外切酶III的辅助下得到APH链;
B.特定DNA的捕获及HCR反应:将上述APH链加入到链霉亲和素包被的聚苯乙烯微孔板中,使APH链被捕获到微孔板中作为HCR引发链;于微孔板中加入如SEQ ID No:4所示的发夹DNA1和如SEQ ID No:5所示的发夹DNA2,由HCR引发链将发夹DNA1和发夹DNA2交叉打开,最后加入荧光染料SYBR Green I指示剂,根据不同的荧光强度建立氨苄西林检测标准曲线。
2.如权利要求1所述一种双酶介导级联信号放大的氨苄西林检测适体传感器,其特征在于,所述AMP核酸适配体、载体DNA1及杂交链式反应HCR引发链DNA的浓度和体积相同。
3.如权利要求1所述一种双酶介导级联信号放大的氨苄西林检测适体传感器,其特征在于,所述氨苄西林标准品溶液的梯度浓度为10-18-10-10g/mL。
4.如权利要求1所述一种双酶介导级联信号放大的氨苄西林检测适体传感器,其特征在于,所述T4 DNA连接酶和核酸外切酶III的辅助作用时间均为20-40min。
5.如权利要求1所述一种双酶介导级联信号放大的氨苄西林检测适体传感器,其特征在于,所述荧光强度检测时激发波长为490nm,发射波长为520nm。
CN202010947091.5A 2020-09-10 2020-09-10 一种双酶介导级联信号放大的氨苄西林检测适体传感器 Active CN112080551B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010947091.5A CN112080551B (zh) 2020-09-10 2020-09-10 一种双酶介导级联信号放大的氨苄西林检测适体传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010947091.5A CN112080551B (zh) 2020-09-10 2020-09-10 一种双酶介导级联信号放大的氨苄西林检测适体传感器

Publications (2)

Publication Number Publication Date
CN112080551A CN112080551A (zh) 2020-12-15
CN112080551B true CN112080551B (zh) 2022-06-24

Family

ID=73732248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010947091.5A Active CN112080551B (zh) 2020-09-10 2020-09-10 一种双酶介导级联信号放大的氨苄西林检测适体传感器

Country Status (1)

Country Link
CN (1) CN112080551B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249443B (zh) * 2021-05-20 2023-06-16 中国科学技术大学 基于dna自组装的预制放大单元的扩增检测方法
CN113340863B (zh) * 2021-06-07 2023-05-23 郑州轻工业大学 一种无酶循环放大核酸适配体传感器及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646486A (zh) * 2019-10-14 2020-01-03 宁波大学 基于杂交链反应及TdT调控双重信号放大的铅离子交流阻抗传感器研究
WO2020120711A1 (en) * 2018-12-12 2020-06-18 Depixus Method of nucleic acid enrichment using site-specific nucleases followed by capture
CN111504966A (zh) * 2020-04-24 2020-08-07 济南大学 一种检测并降解氨苄青霉素的生物传感器及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120711A1 (en) * 2018-12-12 2020-06-18 Depixus Method of nucleic acid enrichment using site-specific nucleases followed by capture
CN110646486A (zh) * 2019-10-14 2020-01-03 宁波大学 基于杂交链反应及TdT调控双重信号放大的铅离子交流阻抗传感器研究
CN111504966A (zh) * 2020-04-24 2020-08-07 济南大学 一种检测并降解氨苄青霉素的生物传感器及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DNA-based hybridization chain reaction for signal amplification and ultrasensitive chemiluminescence detection of gibberellic acid;XU HUN et al.;《Sensors and Actuators B: Chemical》;20141031;第202卷;594-599 *
Ultra-sensitive detection of ampicillin via dual-enzyme mediated cascade-signal amplified aptasensor;QIAN ZHAO et al.;《Microchemical Journal》;20210531;第164卷;第106082篇 *

Also Published As

Publication number Publication date
CN112080551A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN109321635B (zh) 一种基于多支杂交链式反应的核酸检测方法及应用
Zhuang et al. A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation
EP1255861B1 (en) Methods and kits for proximity probing
US20160041178A1 (en) Array-based proximity ligation association assays
Ma et al. Femtogram ultrasensitive aptasensor for the detection of OchratoxinA
Zou et al. G-quadruplex DNAzyme-based chemiluminescence biosensing platform based on dual signal amplification for label-free and sensitive detection of protein
CN112080551B (zh) 一种双酶介导级联信号放大的氨苄西林检测适体传感器
Bialy et al. Protein‐mediated suppression of rolling circle amplification for biosensing with an aptamer‐containing DNA primer
US20220243196A1 (en) Screening method of aptamer and immunoassay using the aptamer
Wang et al. Aptamer-based silver nanosensor for multiple protein detection
CN112725343A (zh) 联合金纳米探针和CRISPR-Cas的蛋白标志物检测试剂盒及检测方法
CN109536577B (zh) 一种末端脱氧核酸酶活力的测定方法与应用
Ying et al. Light-up RNA aptamer enabled label-free protein detection via a proximity induced transcription assay
EP2494064A1 (en) A proximity ligation assay involving generation of catalytic activity
Feng et al. Label-free optical bifunctional oligonucleotide probe for homogeneous amplification detection of disease markers
CN115011713B (zh) 基于DNAzyme双循环体系的牛结核分枝杆菌检测探针组及其检测方法
Jiang et al. Rolling circle amplification and its application in microfluidic systems for Escherichia coli O157: H7 detections
Zhao et al. Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection
CN113186253B (zh) 一种用于检测路易体病标志物的Cas12a-DNAzyme传感器及其制备方法
Li et al. Construction of a self-sufficient DNA circuit for amplified detection of kanamycin
WO2020014883A1 (zh) 一种特异性识别妥布霉素的单链dna适配体及其应用
Huang et al. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications
CN107653297B (zh) 一种基于核酸适体的检测试剂盒
CN104165999A (zh) 基于邻位触击效应的均相化学发光免疫分析方法
KR102199394B1 (ko) 이중분자비콘과 산화그래핀을 포함하는 핵산 검출용 조성물 및 이를 이용한 핵산 검출의 비색신호 증폭 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant